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ABSTRACT As a critical technology in both civil and military fields, specific emitter identification (SEI)
can identify signal sources according to their various features. Existing methods on SEI are mostly based
on the prior knowledge of emitters, which are powerless in the non-cooperative scenario. In order to realize
the unsupervised identification, the mobile SEI method based on fingerprint set construction and feedback
classification algorithm is proposed in this paper. The proposed method first divides signal fingerprints into
static features and dynamic features, where the former describe the inherent features of emitters, and the
latter represent the moving state features of emitters. Then, the feedback classification algorithm composed
of dynamic curve fitting and back propagation (BP) neural network is applied in the classification of signals.
The dynamic curve accomplishes the first classification and the results with high credibility are used to train
the BP neural network which accomplishes the final classification. Simulation results demonstrate that the
proposed method can complete the identification of mobile specific emitter sources in the unsupervised state
with more than 95% identification rate.

INDEX TERMS SEI, curve fitting, signal fingerprint, BP neural network.

I. INTRODUCTION
In recent years, specific emitter identification (SEI) has been
recognized as a significant technology in both civil and mili-
tary fields [1]. By classifying the received signals, the nature
and threat levels of signals can be inferred, which plays an
important role in the monitoring and identification of signals.

The SEI system mainly consists of two parts, i.e., the
signal fingerprint set construction and classification. The sig-
nal fingerprint set construction refers to creating the unique
feature set which can be employed to represent the received
signals and associate with emitter individuals. Following the
construction, SEI can be accomplished by sorting these fin-
gerprints into different categories which represent different
emitter individuals.

On one hand, with the advent of information technol-
ogy revolution, various new multi-functional emitters have
been applied, leading to more complex electromagnetic envi-
ronments. Hence, the challenging problem arising in SEI
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is that traditional methods based on heuristic knowledge
or a large number of training samples cannot be imple-
mented. Under such circumstances, unsupervised identifica-
tion method which does not need any prior knowledge is
of great significance. On the other hand, with the continu-
ously increasing demands for the identification, it is not only
required to identify different types of emitter individuals with
different modulation types or parameters, but also expected to
accomplish the identification for the same type of emitters.
The main SEI components are illustrated in Fig. 1.

In general, each emitter individual has unique circuit struc-
ture and electronic device. Thus, signals emitted by different
individuals have different features even under the same mod-
ulation type and parameters [2]. According to the duration of
time, the signal features can be divided into transient features
and steady-state features. Transient features can always be
extracted from the instantaneous amplitude, phase, and fre-
quency of the received signals [3]. However, it is difficult in
detecting the start and the end of transient signal precisely and
satisfying the requirements of the sample rate transient analy-
sis [4]. Thus, the steady-state features with long duration time
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FIGURE 1. The main SEI components.

and stable performance are more conducive to processing and
analysis, since they can be obtained from the time, frequency
and transformed domains of the received signals.

In order to extract the steady-state features, Kawalec and
Owczarek [5] propose the feature vector which combines
signal feature parameters in the time and frequency domains.
Sui et al. [1] perform wavelet transformation on the signal,
where hierarchy and granularity are used to indicate the subtle
feature information of signals emitted by different emitter
individuals. The authors in [6] and [3] extract the energy
entropy and color moments as identification features to cope
with the SEI problems in both single-hop and relaying sce-
narios. The authors in [7] utilize power spectral density and
adjacent channel power ratio (ACPR) as fingerprint features.
Then, the principal component analysis (PCA) is employed
to reduce the dimension of features. The above-mentioned
features are utilizable due to they are not exactly the same
for different emitter individuals. However, when the emitter
individuals move in different states, it can also be considered
to distinguish them by the moving state information.

The classification is mainly achieved by traditional and
intelligent methods. The traditional methods require lower
computational complexity, which are suitable for the scenar-
ios with low-density emitters. For example, the authors in [8]
and [9] employ feature matching and Dezert-Smarandache
theory to accomplish the classification, respectively. In con-
trast with traditional methods, intelligent methods have
higher identification accuracy for large volume of data and
multi-feature identification. In [4],the authors employ support
vector machine (SVM) to classify the fingerprint composed
by overall and subtle transient features. In [10], SVM is used
to accomplish the classification with the features extracted by
empirical mode decomposition (EMD), but the classification
performance of SVM depends on the selection of the kernel
function. In [11], the neural network is employed with the
feature vectors composed by signal parameters of the pulse
repetition interval (PRI) and pulse width (PW), and it has
strong learning ability and robustness. However, the ability
for data mining is insufficient. After entering the era of deep
learning, Xu et al. [12] bring forward the three-way incre-
mental learning algorithm for emitter identification, which is

adaptive to the increase of emitter types and samples. In [13],
the method applying Convolutional Neural Networks (CNN)
as feature learners and extractors is proposed. However,
themethods in [12] and [13] both depend on the differences of
the signal modulation types or modulation parameters. Thus,
they are not applicable to the identification for the same type
of emitters.

In summary, regarding the identification of emitter individ-
uals which emit signals with the same parameters, the cur-
rent research is based on the existing fingerprint database
or other priori knowledge, which are only suitable for the
cooperative or semi-cooperative targets. To overcome this
difficulty, in this paper, we propose an unsupervised mobile
SEI method, where no prior knowledge is required for the
identification. The main contributions of this paper can be
summarized as follows: (1) We propose an unsupervised SEI
method for the scenario where there is no prior knowledge
about the emitter individuals, and the types of emitters are
all the same, i.e., there are no differences in signal modu-
lation types or parameters. The proposed method consists
of two parts, namely the signal feature extraction and the
classification algorithm. (2) In the signal feature extraction,
as an important supplement to the transient and steady-state
features, the moving state features are explored as fingerprint
for mobile SEI. With more kinds of features added to the
signal feature set, the identification rate can be improved.
(3) For the classification algorithm, we propose the feedback
classification algorithm composed of dynamic curve fitting
and back propagation (BP) neural network. Compared with
the K-Means clustering algorithm, the proposed feedback
classification algorithm can achieve more stable performance
and higher identification rate.

The rest of this paper is organized as follows. First,
the emitter signal model is given in Sec. II. Then, Sec.
III introduces the data preprocessing and signal fingerprint
construction. Next, Sec. IV presents the classification algo-
rithm based on BP neural network and dynamic curve fitting.
Finally, the simulation results and conclusions are discussed
in Secs. V and VI, respectively.

II. SIGNAL MODEL
The SEI system diagram, as shown in Fig. 2, is composed
of two parts, i.e., reconnaissance and identification. For the
part of reconnaissance, signals received by radar are initially
processed. Then, specific emitter signals studied in this paper
are sorted out and stored. For the part of identification, it con-
sists of the feature extractionmodule, fingerprint construction
module, classification and result storage module. The part of
identification aims at identifying the received signals from the
emitter sources.

The signals studied in this paper are in the offset quadrature
phase shift keying (OQPSK) format, and all of them have the
same modulation parameters. Thus, the signal radiated from
an ideal emitter can be modeled as

s0(t) = I (t) cos(ω0t)− Q(t) sin(ω0t), (1)
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FIGURE 2. The SEI system diagram of the proposed method.

where ω0 denotes the center carrier frequency of the received
signal. I (t) and Q(t) represent the co-directional and quadra-
ture branch signals of baseband, which can be expressed as

I (t) =
∑
n

ang(t − nTs), (2)

Q(t) =
∑
n

bng(t − nTs −
Ts
2
), (3)

where an and bn represent the n-th signal symbol, and Ts
represents the symbol period.

Taking the impacts of Doppler frequency and noise into
consideration, the received signal can be expressed as

s(t)= I (t) cos((ω0+1ω)t)− Q(t) sin((ω0+1ω)t)+ n(t),

(4)

where 1ω is the signal frequency offset, and n(t) represents
the noise.

III. FINGERPRINT SET CONSTRUCTION BASED ON
PARAMETER EXTRACTION
A. DATA PREPROCESSING
In this section, the extraction of specific emitter signals will
be completed, i.e., detecting and extracting target signals
from noise, interference and other non-target signals, and then
storing them for the identification.

Short-time Fourier transform (STFT) is employed to trans-
form the signal into time-frequency domain. The definition

of STFT is

STFTs(t, f ) =
∫
∞

−∞

[s(t ′)w∗(t ′ − t)]e−j2π ft
′

dt, (5)

where w∗(t ′ − t) is the window function, which determines
the resolution of the signal in the time-frequency domain.

In order to reduce the impact of noise, the STFT results of
multiple windows are accumulated, which can be expressed
as

STFTs(tk , f ) =
∑

n∈Nacc∗[k,k+1)

STFTs(tn, f ), (6)

where Nacc is the cumulative number of windows.
After the above processing on the received signal,

the cumulative result of STFT is obtained and shown in Fig. 3.
The color represents signal strength. The horizontal and ver-
tical axis are the relative frequency and time values, respec-
tively. The actual frequency and time can be calculated by

Freal = Frelative ∗ Fs/Nfft , (7)

Treal = Trelative ∗ Nacc/Fs, (8)

where Fs is the sampling rate of received signal, and Nfft is
the number of FFT points.

Next, the signal extraction can be achieved by the template
matching method [14], and then the target signal is stored for
the following processing.

Following the data preprocessing, the signal fingerprint
extraction is accomplished. In order to extract the steady-state
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FIGURE 3. The cumulative result of STFT.

features in the time, frequency and transformed domains,
parameter estimation will be completed during the signal
receiving and demodulating. In the parameters, there are
emitter individual inherent features andmoving state features.
These parameters will be employed to construct the signal
fingerprint.

The inherent features of the emitter individuals stem from
the unintentional modulation on pulse (UMOP), including
the features of noise, frequency source and spurious, etc.
The moving state features of emitter individuals are from the
differences of transmission paths. When emitter individuals
are in different moving states, the Doppler frequencies for the
received signals are different.

All above, the signal fingerprint can be constructed by
the parameters including Doppler frequency, SNR and pulse
parameters, etc. In the following, we will introduce the
parameter estimation in detail.

B. DOPPLER FREQUENCY ESTIMATION
Doppler effect is caused by the relative motion between the
emitter and receiver. The Doppler frequency can be expressed
as

1f = (v cos θ )/λ, (9)

where v is the speed of emitter. θ is the angle between the
movement direction of emitter and signal emission, and λ is
the signal wavelength.

It can be seen from (9) that Doppler frequency will change
with the variation of emitter’s speed or the relative posi-
tion between emitter and receiver, especially for the signal
with short wavelength. Besides, Doppler spread measures the
coherence time, related to the rate of change, of wireless com-
munication channels [15]. The change of moving state and
channel characteristics have significant effects on Doppler
frequency, which provides an opportunity to apply Doppler
frequency to distinguish emitter individuals.

By transforming the received signal shown in (4) to the
baseband, the quadrature and parallel components can be
found as

simid (t) = (I (t) cos((ω0 +1ω)t)

−Q(t) sin((ω0 +1ω)t)) cos(ω0t)

= I (t)(cos((2ω0 +1ω)t)+ cos(1ωt))

−Q(t)(sin((2ω0 +1ω)t)+ sin(1ωt))+ C1,

(10)

sqmid (t) = (I (t) cos((ω0 +1ω)t)

−Q(t) sin((ω0 +1ω)t)) sin(ω0t)

= I (t)(sin((2ω0 +1ω)t)− sin(1ωt))

−Q(t)(cos((2ω0 +1ω)t)− cos(1ωt))+ C2,

(11)

where C1 and C2 are the constants generated by the cal-
culation of the signal phase. The baseband signal sb(t) can
be obtained by processing simid and sqmid with the low-pass
filter, which can be expressed as

sb(t) = sbI (t)+ sbQ(t)

= LP(simid (t))+ LP(sqmid (t))

= I (t)(cos(1ωt)− j sin(1ωt))

+Q(t)(cos(1ωt)+ j sin(1ωt))

= I (t) exp(−j1ωt)+ jQ(t) exp(j1ωt), (12)

where LP(•) represents the signal processed with the
low-pass filter.

Then, by calculating the square spectrum of sb(t), we have

s2b(t) = I2(t) exp(−j21ωt)

− Q2(t) exp(j21ωt)+ 2jI (t)Q(t)

= I2(t) exp(−j21ωt)− Q2(t) exp(j21ωt), (13)

F {s2b(t) } = F {I2(t)} ∗ δ(ω + 21ω)

−F {Q2(t)} ∗ δ(ω − 21ω), (14)

where F (•) represents the signal processed with FFT. Sup-
pose the spectrum of I2(t) is P(f ). Combining (2) and (3),
the following expressions can be obtained as

F {I2(t)} = F {
∑
n

a2n g
2(t − nTs)} = P(f ), (15)

F {Q2(t)} = F {
∑
n

a2n g
2(t − nTs −

Ts
2
)}

= P(f )e−jπ fTs , (16)

F {s2b(t)} = P(f + 21f )− P(f − 21f )e−jπ (f−21f )Ts ,(17)

where1f = 1ω
2π . Obviously, F {s

2
b(t)} achieve the maximum

when f = 21f ± 1
Ts
, which are the two peak positions of

F {s2b(t)}. The frequencies of the two peak positions can be
calculated by

f1 = 21f +
1
Ts
, (18)

f2 = 21f −
1
Ts
. (19)

Then, the Doppler frequency parameter 1f can be obtained
by

1f =
(f1 + f2)

4
. (20)
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FIGURE 4. The NRMSE vs. 1fTs for the proposed doppler frequency
estimation method.

In order to measure the performance of the proposed
Doppler frequency estimation method, it is necessary to cal-
culate the normalized root-mean-square error (NRMSE) of
Doppler frequency [16], which can be expressed as

εNR1f =
[(1f − fd )2]1/2

fd
, (21)

where fd is the actual value of Doppler frequency. The
NRMSE versus 1fTs for the proposed Doppler frequency
estimationmethod is demonstrated in Fig. 4. According to the
performance in [15], the estimation in this paper is reliable,
and thus it can be applied to construct the signal fingerprint.

At the same time, in order to perform curve fitting on the
Doppler frequency, we also denote the reception time of each
received signal as a feature.

C. SNR ESTIMATION
There are two main reasons for the differences in SNR of
different emitter individuals. On one hand, from the statis-
tical point of view, there are slight differences on the noise
features of specific emitters due to the distinction in internal
devices; On the other hand, the distinction in transmission
paths, including different shadow fading, multipath fading,
and free space loss, also causes huge differences in signal
attenuation. Hence, the SNR of received signals involves
both the information of transmission paths and the indi-
vidual features of emitters. The M2M4 algorithm proposed
in [17] can be used to estimate the SNR of the received
signals.

Next, we calculate the NRMSE of SNR to measure the
performance of the proposed SNR estimation method. The
NRMSE of SNR can be expressed as

εNRS =
[(Scal − S)2]1/2

S
, (22)

where S is the actual value of SNR and Scal is the estimated
value of SNR. The NRMSE versus S for the proposed SNR

FIGURE 5. The NRMSE vs. SNR for the proposed SNR estimation method.

estimation method is displayed in Fig. 5. According to the
performance of the approach proposed in [18], the estimation
is reliable, and thus it can be used to construct the signal
fingerprint.

D. ENVELOPE DROP ESTIMATION
The signals emitted by different emitter individuals have
different envelope features. Firstly, the signal envelope con-
tains rich nonlinear features, because of the different para-
sitic modulations caused by phase noise and spurious output.
Secondly, the transmission clutter and multipath effects can
also cause dramatic changes in pulse envelope [19]. Thus,
the envelope features of received signals can be used as
fingerprint to identify different emitter individuals.

By combining (10) to (12), the received signal envelope
can be obtained from the parallel and quadrature components
of the signal, which can be expressed as

u(l) =
√
s2bI (l)+ s

2
bQ(l). (23)

The schematic diagram of the pulse envelope is shown
in Fig. 6, where the pulse envelope features can be extracted
mainly from the rising edge, top and falling edge of the
envelope. Two parameters of signal envelope, ascending time
and envelope drop [20], are selected to construct the signal
fingerprint set.

The time required for pulse envelope to rise from 10% to
90% of the average pulse top value is defined as the signal
pulse envelope ascending time, and the envelope drop can be
obtained by

ut =
1
N

L∑
l=1

ut (l), (24)

V =
1
N

L∑
l=1

(ut (l)− ut )2, (25)

where ut (l) is the sequence of u(l) in the top of the signal
pulse envelope.
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FIGURE 6. The schematic diagram of the pulse envelope.

E. SIGNAL FINGERPRINT CONSTRUCTION
In order to better apply the classification algorithm, the signal
fingerprint is built in the form ofmatrixD(D ∈ RM×R), where
M is the number of received signals and R is the number of
parameter types. dmr represents the r-th fingerprint feature of
the m-th received signal.

IV. IDENTIFICATION METHOD BASED ON FEEDBACK
CLASSIFICATION ALGORITHM
In this section, based on the signal fingerprint constructed in
the previous section, the feedback classification algorithm is
presentedwhich combines the curve fitting andBP neural net-
work to achieve better identification performance. Traditional
K-Means clustering algorithm is also introduced briefly in
order to conduct performance comparisons.

A. CURVE FITTING
Curve fitting refers to applying a continuous curve to approxi-
mate the functional relationship between the coordinates rep-
resented by discrete point groups on the plane. Considering
there areN+1 known points (xi, yi), i = 0, 1, 2, . . . , n, where
xi 6= xj (for i 6= j), curve fitting is to seek function y(x) which
is the closest to all data points [21]. It is specifically called
polynomial fitting when the selected y(x) has the form as

y(x) = a0 + a1x + a2x2 + . . .+ amxm. (26)

Curve fitting is suitable for the classification of dynamical
parameters, which is Doppler frequency in this paper. In order
to reduce the computational complexity, the relative reception
time, which means the differential sequence of fingerprint
reception time, is employed to complete the curve fitting.
The classification results can be obtained by fitting (ti, fi)(i ∈
[1,M ]) into different curves.
The emitter is generally carried by a fighter whose tra-

jectory includes straight-line flight and turning flight [22].
In order to simplify its moving state, we can observe the
trajectory in a short time where the trajectory can be approxi-
mated as a straight line and the relative position of the emitter
and receiver remains unchanged. In this cases, the Doppler

frequency is determined by the speed only. Then, the partial
fitting method using quadratic polynomials and least squares
can be applied to fit the Doppler frequency in each short
period of time.

If we have accomplished the classification ofm−1 finger-
prints, and they have been classified into several categories,
the classification category for the m-th fingerprint should be
determined.When all the fingerprints are classified, the curve
fitting classification results can be obtained.

When determining whether the m-th fingerprint (tm, fm)
should be classified into the e-th category, (ti, fi)(i ∈
(max(1, i − 15),m)) of the last 15 fingerprints in the e-th
category are chosen for curve fitting (if there are less than
15 fingerprints, taking all fingerprints in the e-th category).
Suppose the fitting result is he(t). In order to evaluate the
performance of the fitting curve he(t), the error between
the actual value yi and the predicted value he(xi) of each
sample point needs to be measured. The fitting objective is to
minimize the sum of errors. Themost commonly usedmethod
of curve fitting error calculation is the least squares method,
whose basic idea is to seek {a0, a1, . . . , am} = argmin(ε),
where ε can be expressed as

ε =

n∑
i=0

(y(xi)− yi)2. (27)

Since there are several curves that the current point can
be added to, it is necessary to determine the most reasonable
curve. On one hand, considering the fitting error, the current
fingerprint is supposed to be added to the curve which will
have the minimal internal error after the current point is
added, where the internal error εin(e) can be expressed as

εin(e) =
m∑
i=0

(he(ti)− fi)2,

i = max(1, i− 15), . . . ,m− 1,m. (28)

On the other hand, it is necessary to determine whether
there are suitable curves to join the 15 fingerprints after the
current one. The current fingerprint is supposed to be added
to minimize the external error εex(e), which can be expressed
as

εex(e) =
∑
k

min(hk (tj)− fj),

j= 1, 2, . . . , n; k=m+1,m+2, . . . ,min(m+ 15,M ).

(29)

In order to determine which category is the most suitable
for the current fingerprint to add to, the empty set U is
initialed. Firstly, by comparing (εin(e), εex(e))(e ∈ (1, n))
with the external error threshold and internal error threshold,
we can record the categories whose errors are greater than
the thresholds and add their serial numbers to U. Secondly,
by calculating the change of Doppler frequencies in each
category, we can record the categories where the values are
greater than the mutation threshold. Then, their serial num-
bers are added to the set U. Finally, expect for the categories
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Algorithm 1 The curve fitting classification algorithm

1. Initialize the fingerprint feature matrix DM×R. Let the
current number of category be N = 0. Denote the
serial number of category where the current fringer-
print will be added as n = 0, and the current serial
number of fingerprint as m = 1;

2. Calculate the relative reception time of every finger-
print;

3. while m<M do
4. Select the relative reception time and Doppler fre-

quency of the m-th fingerprint (tm, fm) for curve
fitting.

5. while n<N do
6. Calculate (εin(n), εex(n)) and the change of

Doppler frequency after adding (tm, fm) to the n-
th category. Then, n← n+ 1.

7. end while
8. If there are categories meeting the fitting error

thresholds, select the category with the smallest
fitting error for the fingerprint to join in. Otherwise,
create a new category and let it be the first finger-
print of the category,N ← N+1. Then,m← m+1;

9. end while
10. Considering the fingerprints on the same curve are

emitted by the same emitter, label the fingerprints in
DM×R and obtain the classification result matrix E.

whose serial numbers recorded in U, the current fingerprint
will be added to the category which has the smallest internal
error. If there is no remained category (U = [1, n]), the fin-
gerprint isn’t recorded in any of the current categories. In this
case, a new category is created and the current fingerprint is
the first one in the new category.

The curve fitting classification algorithm can be summa-
rized in Algorithm 1.

B. NEURAL NETWORK
BP neural network, composed of input layer, output layer
and hidden layer, is the feedforward network trained by error
back propagation algorithm. It has an outstanding advantage
in flexible network structure and strong nonlinear mapping
ability. The number of network’s intermediate layers and neu-
rons in each layer can be arbitrarily set according to specific
circumstances [23].

The classification problem is, essentially, to complete
the mapping from the fingerprint space to the decision
space, and the three-layer BP neural network can complete
any n-dimensional to m-dimensional mapping. Therefore,
the BP neural network can be used to solve the classification
problem.

The dimensions of BP neural network’s input layers are
determined by the signal fingerprint feature set DM×R.
According to the actual requirements, it equals to the number
of fingerprint features except Doppler frequency and recep-
tion time.

Algorithm 2 The selection algorithm of highly reliable fin-
gerprints

1. Obtain the classification result matrix E by Algo-
rithm 1;

2. Set a time window with appropriate length. Then,
calculate the average Doppler frequency of different
categories in the time window;

3. Calculate the differences between the average Doppler
frequencies of every two categories. If there is a value
below the threshold, denote the time window as an
uncertain window, and record the serial number of the
uncertain category in this window. Otherwise, denote
it as a certain window;

4. Find the longest continuously certain window, and
put the fingerprints in the continuous window into
the deterministic fingerprint set Ec, while the other
fingerprints are put into the uncertain fingerprint set
Eu;

5. Denote the fingerprint set Ec as the training set and Eu
as the test set.

The dimensions of BP neural network’s output layers
are determined by the result of curve fitting classification.
If assuming the curve fitting classification divides the signal
fingerprint into Z categories, the number of output layers
is Z .
As for the selection of the number of hidden nodes, a large

number of nodes leads to longer learning time. On the con-
trary, a few number of nodes results in poor fault tolerance
of the network. Hence, according to the empirical formula
proposed by [23], the number of nodes can be calculated by

Nh = (Nin + Nout )/2, (30)

where Nin represents the number of input layers and Nout is
the number of output layers.

For the BP neural network in this paper, it has three input
nodes, three hidden nodes and four output nodes. According
to the training parameters of the BP neural network in [24],
the learning rate in this paper is η = 0.001, and the momen-
tum constant is α = 0.9. For the maximum training times,
it is set as e = 1000 and the training accuracy is g = 0.01.

The highly reliable fingerprints in the curve fitting results
are selected as the training set of the BP neural network. And
the selection algorithm for the highly reliable fingerprints is
summarized in Algorithm 2.
Following the initialization of the neural network, the static

fingerprint features, which are recorded in the training set,
can be used to train the network. Afterwards, the probability
that each fingerprint in test set belongs to a specific category
can be obtained by the neural network.

C. FEEDBACK ALGORITHM DESIGN
The flow chart of the feedback classification algorithm is
shown in Fig. 7. The key idea of the algorithm is as follows.
Firstly, the first classification with curve fitting classification
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Algorithm 3 Feedback classification algorithm

1. Complete the first classification by curve fitting with
the dynamic features in DM×R, and obtain the classifi-
cation result matrix E;

2. By Algorithm 2, select the fingerprints with high reli-
ability to construct the training set Ec for BP neural
network, and the other fingerprints as test set Eu;

3. Initialize the neural network, and train the network with
static features in Ec. Obtain the probability that each
fingerprint in Eu belongs to a specific category;

4. Obtain the final classification result matrix according
to the probabilities.

FIGURE 7. The flow chart of feedback classification algorithm.

algorithm is used to obtain the preliminary results. Secondly,
the signal fingerprints with higher reliability are selected as
the training set of neural network. Thirdly, the signal finger-
prints are input into the trained network in order to obtain final
identification results. The feedback classification algorithm is
summarized in Algorithm 3.

D. THE IMPROVED K-MEANS CLASSIFICATION
ALGORITHM
K-Means algorithm is an unsupervised cluster algorithm,
where the distance is used as an indicator to measure the
similarity of samples. The key idea of K-Means algorithm
is to divide n data objects into K clusters, aiming at reduc-
ing the sum of distance between each data point in each
cluster to the center of the cluster. In this way, the sample
points in the same cluster are more similar than the samples
among different clusters. Hence, in order to improve the
applicability of K-Means classification algorithm, a criterion
is necessary to determine the reasonable number of categories
automatically.

After DM×R is divided into N categories, we can obtain
the variances of different fingerprint parameters in different
categories. Then, the average variances of different categories
for the same parameter can be calculated by

Vr (N ) =
1
N

∑
n

(Vrn), (31)

where Vrn is the variance of the r-th fingerprint in the
n-th category. As the number of categories N increases,

Algorithm 4 Improved K-Means classification algorithm

1. Initialize the fingerprint feature matrix DM×R. Denote
the number of category as N = 1;

2. DivideM fingerprints into N categories with K-Means
algorithm;

3. Calculate the average variance Vr (N ) of different fin-
gerprint parameters in different categories;

4. If N ≥ 2, calculate the changing rate of Vr (N ).
If the changing rate is below the threshold, mark the
corresponding fingerprint;

5. If all the fingerprints have been marked, continue Step
6. Otherwise, N ← N + 1, and go to Step 1;

6. Denote the number of categories corresponding to the
minimum Vr of r-th fingerprint as Nmin(r).

7. Find the modes of Nmin. If there is only one mode,
take it as the number of categories. Otherwise, take the
mode corresponding to the smallest sum variance as
the number of categories.

8. Obtain the number of categories and the classification
result matrix.

Vr (N )(r ∈ [1,R]) will become smaller. When Vr (N ) remains
almost unchanged, it is believed that the classification per-
formance is the best, and the corresponding N is the most
reasonable number of categories.

In summary, the improved K-Means classification algo-
rithm can be summarized as Algorithm 4.

E. COMPUTATIONAL COMPLEXITY
In the following, we analyze the computational complexity of
the proposed feedback classification algorithm.

(1) Assume the number of sampling points for each fin-
gerprint is Ns and the order of the low pass filter is Nf . The
Doppler frequency estimation is analyzed from (9) to (20),
where we can infer that the computational complexity is
O(M (Ns + Nf )2).

(2) The computational complexity of the SNR estimation
method in [17] is O(MNs).
(3) The envelope drop estimation is analyzed from (23) to

(25), and the computational complexity is O(M (Ns + L)).
(4) Assuming the numbers of calculated category and

the point for curve fitting are a and P, respectively,
then the computational complexity of the proposed feed-
back classification algorithm and the improved K-Means
classification algorithm are O(M (aP + R)) and O(aMR),
respectively.

The complexity of the overall identification process is
O(M ((Ns+Nf )2+L+aP+R)). Compared with the clustering
algorithm proposed in [4], the computational complexity of
the proposed algorithm is relatively lower.

Regarding the trade-off between the complexity and per-
formance, we find that the number of fingerprints determines
the computational complexity directly. A large number of
fingerprints leads to complicated calculation, while a few of
fingerprints affects the identification rate. Besides, a suitable
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TABLE 1. The parameters of experimental environments.

number of partial curve fitting points is of great importance.
This is because if the number of partial curve fitting points
is larger, the calculation will be more complicated, but the
fitting error of the moving state is smaller. On the con-
trary, if the number of partial curve fitting points is smaller,
the computational complexity will be lower and the fitting
error of the moving state is lager.

V. SIMULATION RESULTS
In this section, we evaluate the performances of the proposed
algorithms. In the simulations, four specific emitter sources
emit OQPSK signals with the same modulation parameters,
and the signals are captured by an antenna which is connected
to a digital receiver. The signal parameters are extracted to
make up the fingerprint set. Then, the fingerprint construction
results of the received signal and identification results are
illustrated. Finally, the identification rate and accuracy rate of
the feedback classification algorithm and K-Means algorithm
are presented and compared.

A. SIMULATION CONDITIONS
In terms of the channel conditions, the experiment and sim-
ulations are performed based on the air-to-ground chan-
nels. The channel parameters are functions of the elevation
angle, which depends on both the emitter altitude in the air
and the horizontal (or 2-D) distance with the corresponding
ground receiver [25]. Meanwhile, all the four emitter indi-
viduals are set in different positions. For the emitter indi-
viduals. we employ four signal sources of the same model
to emit signals with the same parameters. The modulation
format of the emitted signal is OQPSK. The carrier fre-
quency and the symbol rate are set to 450MHz and 2.5MHz,
respectively. By calculating the Doppler frequency in dif-
ferent cases, the real-time frequency offset is used to help
the identification of the specific emitter. The parameters
of the three experimental environments are shown in the
Table 1.

B. PERFORMANCE METRICS
Assume the calculated number of categories is a, and the
calculated classification result is Ci(i ∈ [1, a]). The actual
number of categories is b, and the actual classification result
is Bj(j ∈ [1, b]). Besides, suppose the category correspon-
dence operation between B andC has been completed, where
Ci has the highest similarity withBM (i), andBj has the highest
similarity with CN (j).
We propose two metrics to measure the classification per-

formance of different algorithms, namely identification rate
and accuracy rate, which are defined as

Rid (j) =
Num(CN (j) ∩ Bj)

Bj
, (32)

Rac(j) =
Num(BM (i) ∩ Ci)

Ci
. (33)

It is expected that the difference between a and b is as
small as possible. The more values of Rid are greater than
the effective threshold, the more effective categories are iden-
tified. When Rac is larger, the differentiating performance
along different categories is better. For the global accuracy
rate, it can be calculated by

R =

Num(
⋃
j
CN (j) ∩ Bj)

Num(
⋃
j
Bj)

. (34)

C. FINGERPRINT CONSTRUCTION RESULT
In this subsection, the results of signal fingerprint construc-
tion are shown by taking environment 1 as an example. The
Doppler frequency extraction results are shown in Fig. 8.
It can be observed intuitively that all Doppler frequency
points can be connected in series by four curves. On each
curve, the Doppler frequency is dynamically and continu-
ously changing. There is no mutation in a short time, which
meets the requirements of the curve fitting algorithm.

VOLUME 9, 2021 33905



Q. Zhang et al.: Dynamic Curve Fitting and BP Neural Network With Feature Extraction for Mobile SEI

FIGURE 8. The extraction results of doppler frequency.

FIGURE 9. The static feature extraction result.

The extraction results of other fingerprint features are
shown in Fig. 9. It can be seen that the points which rep-
resent static parameters are roughly divided into three cate-
gories. The points in each category are relatively concentrated
without large-scale mutation, which provides us with the
conditions of applying feedback classification algorithm and
K-Means clustering algorithm for the classification.

D. IDENTIFICATION RESULT
1) CURVE FITTING CLASSIFICATION RESULTS
According to the simulation setting, the ideal results of
curve fitting algorithm in the three environments are shown
in Figs. 10-12. The four colors in the figures represent the
signals of the four emitter sources.

The practical results of curve fitting algorithm (i.e.,
Algorithm 1) in the three environments are displayed
in Figs. 13-15. The identification and accuracy rates of var-
ious emitter individuals are shown in Table 2. It can be
observed from Figs. 13-15 that curve fitting algorithm basi-
cally completes the classification of specific emitter source
signals. The identification performance is better when the

FIGURE 10. The ideal result of curve fitting algorithm for environment 1.

FIGURE 11. The ideal result of curve fitting algorithm for environment 2.

Doppler frequencies are far away from each other. On the
contrary, there will be misclassification where the Doppler
frequencies are closer to each other, i.e., different curves
may be incorrectly connected. By comparing the green curve
in Fig. 13 and the curves in Fig. 10, it can be seen that the
left and right sides, separated by the intersection of the green
curve and the red curve, actually belong to different curves.
Besides, it can be observed from Figs. 11 and 14 that there
are also misclassification points in the areas where the red
and purple points are close. To solve these problems, neural
network classification is introduced on the basis of curve
fitting classification.

2) FEEDBACK CLASSIFICATION RESULTS
In order to overcome the limitations of curve fitting, the neu-
ral network with static parameters is carried out in the sim-
ulations. The identification results of feedback classification
algorithm (i.e., Algorithm 3) in the three environments are
demonstrated in Figs. 16-18, where different colors represent
different categories. The identification and accuracy rates
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TABLE 2. Identification performances of the curve fitting algorithm.

TABLE 3. Identification performances of the feedback classification algorithm.

FIGURE 12. The ideal result of curve fitting algorithm for environment 3.

of feedback classification algorithm are given in Table 3.
It can be found that by the secondary classification, the global
accuracy rates can achieve 99.9%, 98.23% and 99.85% in
the three environments, while they are 91.49%, 95.83%
and 92.08%, respectively, in Table 2, and the identifica-
tion rate in each category is also improved. This is because
the neural network makes full use of the information con-
tained in static features to further distinguish different emitter
individuals.

FIGURE 13. The practical result of curve fitting algorithm for
environment 1.

3) THE IMPROVED K-MEANS CLASSIFICATION RESULTS
In our simulations, samples are generally divided into 4 or
5 categories. For environment 1, the results when K = 5
and K = 4 are shown in Figs. 19 and 20, respectively.
The corresponding identification and accuracy rates of the
improved K-Means algorithm are shown in Tables 4 and 5.

Observing the results in Tables 4 and 5, we can see that
when the value of K calculated by the improved K-Means
algorithm is greater than the actual number of classes,
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FIGURE 14. The practical result of curve fitting algorithm for
environment 2.

FIGURE 15. The practical result of curve fitting algorithm for
environment 3.

FIGURE 16. The identification result of feedback classification algorithm
for environment 1.

a certain category is wrongly divided into two categories.
Meanwhile, the identification rates are basically consistent

FIGURE 17. The identification result of feedback classification algorithm
for environment 2.

FIGURE 18. The identification result of feedback classification algorithm
for environment 3.

FIGURE 19. The identification result of the improved K-Means algorithm
for environment 1(K = 5).

with the proposed algorithm, but the accuracy rates are much
lower than the feedback classification algorithm proposed in
this paper.
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FIGURE 20. The identification result of the improved K-Means algorithm
for environment 1(K = 4).

TABLE 4. Identification performances of the improved K-Means
algorithm (K = 5).

TABLE 5. Identification performances of the improved K-Means
algorithm (K = 4).

By comparing the proposed feedback classification algo-
rithm and the improved K-Means algorithm, it is found the
identification performance of the improved K-Means algo-
rithm is very poor when the value of K calculated by the
improved K-Means algorithm is not correct. Even if K is
correctly calculated, the identification and accuracy rates of
the improved K-Means algorithm are still slightly lower than
the feedback classification algorithm proposed in this paper.
This is because there are some points whose distances away
from the centers are almost the same in different categories.

Therefore, by fully exploiting themoving state of a specific
emitter source, the number of specific emitter individuals can
be further determined. Combined with the static and dynamic
features of emitter individuals, the feedback classification
algorithm proposed in this paper can accomplish the mobile
SEI with more stable and effective performances.

VI. CONCLUSION
In this paper, we have proposed a method for mobile SEI
when there is no prior knowledge. Novel moving state

features and classification algorithm have been employed.
Firstly, considering the differences in the inherent fea-
tures and moving states of different emitter individuals,
the Doppler frequency was adopted as dynamic features, and
the envelope feature parameters and SNR was considered as
static features to construct the signal fingerprint set. Secondly,
the feedback classification algorithm composed of curve fit-
ting and BP neural network was employed to accomplish
the identification of signal fingerprints. Finally, simulation
results in three different environments have shown that the
proposed method can complete the identification of mobile
specific emitter sources in the unsupervised state with high
identification and accuracy rates.
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