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ABSTRACT The deep learning technique has proven to be effective in the classification and localization
of objects on the image or ground plane over time. The strength of the technique’s features has enabled
researchers to analyze object trajectories across multiple cameras for online multi-object tracking (MOT)
systems. In the past five years, these technical features have gained a reputation in handling several
real-time multiple object tracking challenges. This contributed to the increasing number of proposed deep
learning methods (DLMs) and networks seen by the computer vision community. The technique efficiently
handled various challenges in real-timeMOT systems and improved overall tracking performance. However,
it experienced difficulties in the detection and tracking of objects in overcrowded scenes and motion
variations and confused appearance variations. Therefore, in this paper, we summarize and analyze the
95 contributions made in the past five years on deep learning-based online MOT methods and networks that
rank highest in the public benchmark. We review their expedition, performance, advantages, and challenges
under different experimental setups and tracking conditions. We also further categorize these methods and
networks into four main themes: Online MOT Based Detection Quality and Associations, Real-Time MOT
with High-Speed Tracking and Low Computational Costs, Modeling Target Uncertainty in Online MOT,
and Deep Convolutional Neural Network (DCNN), Affinity and Data Association. Finally, we discuss the
ongoing challenges and directions for future research.

INDEX TERMS Deep learning, detection quality, high-speed tracking, multi-camera object tracking,
real-time tracking.

I. INTRODUCTION
In the past five years, deep learning-based online multi-object
tracking (MOT) paradigms have been inferior to sparse prin-
cipal component analysis [1], [2]. The emergence and expan-
sion of convolutional neural networks (CNNs) to DCNNs
strengthened DLMs and tracking-by-detection (TBDs), thus
contributing to discernible progress in online MOTs [3]–[7].
The DCNN features and neural layers were used to detect
and track countless objects that move on the streets and
public spaces [8], [9]. In contrast, the TBD is used to opti-
mize the tracker’s discriminative model, locate the target in
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the next frame based on detection results, and then gen-
erate and link object tracklets accordingly [3], [10]. This
improved and strengthened the detection and tracking pro-
cesses to address the challenges of online MOTs using
multiple cameras. It also gradually expanded deep learning
approaches in real-time MOTs based on the single-camera
tracking technique. However, the approaches implemented
with the single-camera tracking technique seemed more
effective for offline MOT [11], [12] and harmed many
algorithms due to the view angle. The view angle had lim-
itations and could not provide multiple angles, hence mak-
ing the single-camera technique’s algorithms susceptible to
velocity variations and vulnerable to misdetections, occlu-
sions, and fragmentations [13] due to both camera and object
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movements [14], [15]. This ineffectively localized multiple
objects, extracted features, created bounding box regres-
sion detections, generated tracklets, and contributed to inap-
propriate matching or mapping of the specific appearance
information [6], [16], [17].

Currently, researchers [5], [11], [18], [19] have summa-
rized only the multi-object tracking literature predicated
on general visual tracking and detection techniques based
on experimental studies rather than concentrating on deep
learning methods based on online MOT. In the past five
years, several proposed approaches have shown a signifi-
cant performance enhancement in real-time MOT and were
able to approximate human vision. They have impressively
promoted tracking performance by reducing the misdetec-
tion rate with the integration of a tracking-by-detection
paradigm [20]–[24]. This led to the emergence of vari-
ous efficient and robust algorithms with minimum real-
time tracking challenges and complications in video data
processing [1], [5]. Therefore, it is important to summa-
rize and analyze the existing DLMs and network-based
online MOTs to pave the way for further studies. Hence,
the present paper presents a systematic review of progress,
challenges, and future research opportunities on DLM-based
online multi-object tracking applications. It further compares
and discusses how they enhanced the performance in online
MOTs with various public datasets in various environmental
setups. It then discusses the main functionalities and imple-
mentation strategies in detail.

This paper is organized as follows: Section I provides a
brief background on online multiple object tracking (MOT)
and problem formulations. Section II presents the method-
ology for gathering relevant works. Section III discusses
the extensive literature by considering deep learning-based
onlinemulti-object trackingmethods’ advantages and persist-
ing challenges. Section IV discusses the effectiveness of deep
learning based on categorized themes: deep learning towards
online multi-object tracking based on detection quality and
associations online MOT-based detection quality and asso-
ciations, real-time MOT with high-speed tracking and low
computational costs, modeling target uncertainty in online
MOT, convolutional neural networks (CNNs), and affinity
and data associations. Section V concludes the study.

A. ONLINE MULTI-OBJECT TRACKING (MOT) PROBLEM
FORMATION
Online multi-object tracking (MOT) is the variation of prob-
lem estimations based on the given input video sequence with
several moving objects in frames [21]. It plays an essential
role in video surveillance applications by locating moving
objects in the video frames taken by either a single cam-
era or multiple networked cameras. It forms the process of
detecting, locating, associating, and tracking objects over a
period by collecting the observations from the initial frame
until the last-end frame. Then optimizes the sequential states
by modeling the maximum posterior estimation from the
conditional for all sequential states of all objects from the

first frame to the last frame [25]. Wen et al. [26] capital-
ized on this theorem by creating CLEAR MOT evaluation
metrics that have been implemented in neoteric work on
deep learning-based real-time MOT methods, multi-camera
tracking techniques (MCTs), and DCNNs with the tracking-
by-detection (TBD) approach to track objects across mul-
tiple frames [19], [26]. These evaluation metrics enabled
the standard calculations and presentation of multiple object
tracking results on false positive (FP), false negative (FN),
false alarm (FA), fragments of target trajectories (FM), multi-
object tracking accuracy (MOTA), and multi-object tracking
precision (MOTP) of public datasets created based on both
single camera and multi-camera video capturing on differ-
ent environmental scenes. Therefore, it was necessary for
Wen et al. [26] to further benchmark and define the CLEAR
MOTmetric formulas for both MOTA and MOTP as follows:

MOTA = 1−

∑
v
∑

t
(
FNv,t + FPv,t + IDSv,t

)∑
v
∑

t GTv,t
(1)

where FNv,t and FPv,t denote false negatives and false posi-
tives, respectively. Then, IDSv,t represent identity switches of
trajectories, and GTv,t is the number of ground truth objects
at time index t of sequence v. Then, MOTP metrics as the
average dissimilarities between true positives and ground
truth:

MOTP =

∑
i,t d

t
i∑

i ct
(2)

where ct denotes the number of matches in frame t and d ti is
the bounding box overlap per frame target with its assigned
ground truth objects.

B. TRADITIONAL SINGLE-CAMERA MULTI-OBJECT
TRACKING
The single-camera tracking (SCT) technique, as illustrated
in Fig. 1, is a cost-inefficient traditional technical method
used to detect multiple views of different objects. It enables
the enhancement of trackers to track multiple objects in a
video frame sequence based on the detection quality [27].
However, it provides a one-sided view and cannot provide
multiple views due to its limitations in handling rotations,
scaling, affinity distortions, quick movements, similarities,
and occlusions [28], [29]. These limitations led to degraded
overall detector performance, and Lee and Hong [30] incor-
porated separate detectors and classifiers for several dif-
ferent viewpoints to improve the detector performance.

FIGURE 1. Single Camera Multi-Object Tracking Overview [19].
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However, the combination could not produce satisfactory
detection results due to difficulties in handling occlusions
and misdetections on each detector and classifier [5]. Then
Fajardo et al. [32], Azad and Misbahuddin. [31] further con-
tributed to enhance the detector’s performance by labeling
the objects on the output of the maximal classifiers. They
stretched and reinvigorated the algorithm by estimating the
object distance and detection with tracking-by-detection in
a deep convolutional neural network (DCNN). They utilized
the network layers to extract features from the input video
frame sequences with learnable filters and added biases from
the parameters of each layer. Then, these filters and biases are
represented by w =

∑k
i=1 wi and

∑k
i=1 bi, respectively. The

generated feature mapwas represented byXk and used to pass
the results to the next layer as an element of σ repeatedly on
each convolutional layer.

X tk = σ
(
W t−1
k · X t−1 + bt−1k

)
(3)

The approach successfully overcame tracklet loss by han-
dling multiple object new identities (IDs) and reassigning
issues [14]. However, the rotation and one side view in
the single-camera technique [33] contributed to the lack
of robustness and difficulties in handling long occlusions.
This resulted in high fragmentation, velocity changes, and
appearance changes [24]. The challenges caused the splitting
of camera object tracking into two tasks, i.e., (SCT) and
inter-camera object tracking (ICT) [23]. Then, SCT is used
to obtain multi object trajectories in a single camera view
connected across multiple camera views through ICT [14].
Therefore, this laid a solid foundation for DLMs with MCT
techniques based on online MOT [34], [35].

C. MULTI-CAMERA FOR MULTI-OBJECT TRACKING (MCT)
The technique has capitalized on the foundation laid with
SCT approaches [35]. It uses ICT, as shown in Fig. 2,
to capture the object across each camera on different angle
views despite the velocity and appearance variations [14].
The object detection from different camera views is

FIGURE 2. Multi-Camera for Multi-Object Multicamera for Multi-object
Tracking (MCT) Overview.

associated with trajectory objects and tracked independently
on each camera view [36]. Then, the velocity and position of
object features are computed by grouping trajectories into one
cluster that enables the connection among the camera views to
handle variations in motion, speed, and direction [37]. How-
ever, the multi-camera multi-object tracking technique needs
to maintain the identity consistency of each target across mul-
tiple views and struggles when there is an object similarity
appearance [38], [95]. In this case, the current most deep
learning-based online MOT systems introduced the DCNN
and tracking-by-detection (TBD) paradigm to solve the prob-
lem of associating a target with multiple potential views [39].
They are designed in an end-to-end deep neural network to
learn the association between tracks and detections, statement
updates, initialization, and termination of tracks [40]. They
are further employed in the real-time tracking framework
so that the associations between tracklets and detections are
cascaded from high-confidence tracklets to low-confidence
tracklets [41].

II. METHODOLOGY
We performed two systematic electronic searches in Google
Scholar and Web of Science according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [42]. An extensive database search
was conducted via expression with most essential terms
such as ‘‘Multi-Object Tracking’’, ‘‘Real-time Multi-Object
Tracking’’, ‘‘Deep Learning Object Tracking’’, ‘‘Online
Multi-Object Tracking’’, ‘‘High-Speed Tracking’’, ‘‘Deep
Convolution Neural Network’’, and ‘‘Target Detection and
Tracking’’ over the last 5 years, from 2015-2020. The final
search in these databases was performed on the 25th of
July 2020 and was restricted to peer-reviewed documents,
such as journals and conference papers. Then, 80 duplicates
within the retrieved articles in the databases were removed.

As depicted in Fig. 3, we initialized the search expression
with the diverse coalescence of key terms such as ‘‘Multi-
Object Tracking, Target Detection, Tracking, and Real-time
Multi-Object Tracking ‘‘ that were used on Web of Science
and Google Scholar and this returned 5000 articles. We fur-
ther intensified the search expression by adding ‘‘Online
Multi-Object Tracking’’ and 1,500 articles with duplicates
were returned. We further restricted and reinvigorated both
the search expressions and filter by adding the ‘‘Deep Convo-
lutional Neural Network (DCNN), High-Speed Tracking and
publications’ range period (2015-2020) and screened the out-
comes (180 articles) to eliminate duplicates while ensuring
authenticity and competency. Therefore, the study reviewed
95 peer-reviewed papers published within the past five years
and supported the DLM-based online MOT, tracking-by-
detection, and DCNN.

III. EVALUATIONS OF DEEP LEARNING METHODS BASED
ONLINE MOT
In this section, we explore the DLM-based MOT framework
and proven records. The deep learning framework effectively
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FIGURE 3. The approach used to extract articles predicated on the diverse coalescence of
keys on a search expression.

improved the tracking performance from various tracking
predictions and data associations [43], [44]. It automates the
capacity learning of appearance features via DCNN to pro-
mote discrimination and robustness for occlusion handling in
online tracking optimization strategies [45], [46]. Therefore,
this has made DLMsmore resourceful in promoting the accu-
racy of motion prediction and the performance of bipartite
matching between tracklets and detection [1], [10], [47].
Thus, in Fig. 4, we categorized the approaches into four main
themes based on the capabilities and objectives in dealing
with various challenges in real-time MOT.

A. DEEP LEARNING TOWARDS ONLINE MULTI-OBJECT
TRACKING BASED ON DETECTIONS QUALITY AND
ASSOCIATIONS
The detection quality is significant to improve the tracker’s
capabilities in handling the object’s appearance similari-
ties, generating and associating the tracklets, reducing false
object detections, calculating, grouping the similarity trajec-
tories, and drifting [74], [75]. The TBD and most advanced
DLMs primarily rely on the quality of detections to gen-
erate and associate the tracklets effectively, as depicted
in Fig. 5 [3], [5], [6].

In this section, we used Table 1 and showed an overview
of the DLMs that are integrated with CNN to increase
the detection quality rate by breaking input video into
frames [18], [47]. We further analyzed the anterior work on
the deep learning technique towards real-time MOT.

Xiang et al. [47] proposed a multiple online object
tracking decision-making strategy using template tracking,
optical flow, and data association to strengthen a tracking-
by-detection technique by handling the target dynamics and
association history. They modeled the objects’ similarity
function by combining the different cues, appearance, loca-
tion, and motion. This triplet loss-based CNN learned the

distance metric between trackers and detections and used
the long short-term memory (LSTM) prediction module to
terminate the object in the next frame. However, the algorithm
relied heavily on optic flow with template matching and
resulted in poor detections and target data association history.
It considered only motion features and omitted appearance
features; hence, it experienced low detection quality (25.3%)
and tracking results (30.3%) on the real-time MOT dataset
(MOT2015). To overcome these shortcomings in detection
quality, Milan et al. [16] extended the RNN and introduced a
joint tracking and segmentation approach to estimate the state
of the tracked object by strengthening the detector response.
The network treats the states of objects, current observations,
their matching matrix, and existence probabilities as inputs.
Then it outputs the predicted states, updated results, and ter-
minates the object based on new existence probabilities. The
proposed algorithm further computes the matching matrix
and groups the designed LSTM-based networks to model
the matching process between one object’s state and cur-
rent observations. It then uses low-level image information
and super-pixels to specify a target as background. This has
enabled them to capitalize on the advantages of both high-
level spatial information and low-level motion cues to cre-
ate a unified graphical model for multi-object tracking and
motion segmentation. It strengthened the algorithm to mea-
sure the object distance, size, location, and velocity through
the implementation of the conditional random field (CRF)
model. The strategy used a super-pixel procedure to assign
labels to all pixels belonging to the semantic object on the
video sequence. It assigned unique IDs to each detection at a
super-pixel level in the input video. However, the approach
improved the detection quality rate (76.0%) and struggled
to accurately associate the target history in crowded scenes.
Consequently, better tracking results (65.3%) were recorded
in a real-time MOT evaluation of a dataset (PETS2015).
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FIGURE 4. A framework of the DLM based MOTs investigated and categorized papers.

However, this result is not very convincing because the train-
ing samples were insufficient to learn an optimized model at
once.

To manage these problems, Sanchez-Matilla et al. [51]
used multiple detectors with high-end and low-end confi-
dence values to improve tracking performance. They used
weak (low confidence score) detections to support an exist-
ing track when robust detections were missing. Then,
a perspective-dependent sampling mechanism is introduced
to create newborn particles depending on their distance from
the camera. They further used the probability hypothesis
density particle (PHDP) framework to collect outputs from
detectors. However, their approach failed to discriminate
against a target in close range, resulted in low detection

quality (14.0%) in real-time MOT evaluations of public
datasets (MOT2015 and MOT2016), and could not improve
the tracking accuracy (38.8%).

Kutschbach et al. [49] presented an application of the
Gaussian mixture probability hypothesis density (GMPHD)
filter for multi-object tracking in video data. They extended
both the kernelized correlation filters and GMPHD to use the
fast scale space tracking (FSST) scheme and two separated
models for estimating target translation and scaling. The algo-
rithm extracted the HOG feature from a region of 2.5 times
its size and weighted it by a cosine window to highlight the
target in the center and to avoid boundary issues. To asso-
ciate detections with the tracks, the birth covariance was set
to a significant value in every possible direction. However,
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TABLE 1. Overview of deep learning methods used for online MOT based on detections quality and associations.
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their extended GMPHD on the dataset (UA-DETRAC) could
not handle the large birth covariance of the first track and
resulted in preventing the initialization of new tracks. This led
to delayed track extraction and lower tracking performance
(14.5%) with a moderate detection quality rate (63.4%).

To improve the detection module ability to detect and
extract the tracks in a timelymanner Zhao et al. [50] proposed
a compressed DCNN feature-based correlation filter and used
semantic information [78] inherited from the detector. The
approach integrated the two modules for the online MOT
approach and enhanced the ability to reidentify (ReID) the
tracked object once it is lost. It also generated proposals for
small objects in deep layers with semantic information and
hence reduced the false detection rate. However, the approach
failed to crop the target’s region of interest (ROI) in the
detection stage and left the small object proposal generated
in the shallow feature layers. This resulted in low computa-
tional complexity, a high misdetection rate that caused a low
tracking accuracy (32.7%), and a moderate detection quality
rate (57.2%) in a real-timeMOT evaluation of a public dataset
(KITTI). Then, Scheidegger et al. [14] proposed usingDCNN
and a PoissonMulti-Bernoulli Mixture (PMBM) filter to pro-
duce trajectories of the detected object in a world coordinate
system. Their approach used a deep neural network to detect
and estimate the distance of objects from a single input image.
It fed the detections from the sequential images into a Poisson
multi-Bernoulli mixture (PMBM) filter. Then, the existing
single-short multi-box detector (SDD) was incorporated to
strengthen the detection of small objects on deeper layers
rather than shallow layers. This played a significant role in
building a multi-scale object detector that effectively detected
small objects with fewer false negatives on datasets (KITTI).
Consequently, it improved the tracking accuracy (80.0%)
and detection quality rate (91.0%) with a brawny estimation
function that effectively calculated distances between objects.

The non-static surface gives the impression that motion in
the background pixels affects the detection quality [3], [12],
[29]. Hence, Ray and Chakraborty [12] used foreground
detection and recent dissimilarity frames to strengthen the
detector and track associations in a variable background. The
approach separates background and foreground information
and then removes flickering background or noise by analyz-
ing the pseudo-motion-compensated on the current frame and
preceding frames. It uses the estimation function to predict
the state of an object and the Kalman filter to track the
object. This solved the associations’ issue under occlusions
by refining the target region. Although the proposed approach
increased the target detection and association across the video
frames, it failed to track and differentiate small objects [79]
with similarities under complex scenes on a real-time MOT
dataset (VOT2016 and MOT2016) and achieved moderate
tracking accuracy (51.2%) with a high detection quality
rate (86.0%).

Extending the work on the detector and unique identifica-
tions of the target, Zhang et al. [52] introduced multi-camera
multi-object tracking by hierarchical clustering into a Fast

R-CNN framework. The approach implemented the hierar-
chical clustering algorithm tomerge trajectories and proposed
solving the object similarities via the appearance feature
extraction process. However, it was too slow to track objects
in a real-time evaluation of a dataset (DukeMTMC) due to
hierarchal paths and hence failed to handle appearance varia-
tions with more frequent object identity changes. This led to
a moderate performance in both tracking accuracy (54.1%)
and detection quality rate (55.0%). Then, Li et al. [53] incor-
porated template branch and bounding box regression into
a Siamese regional proposed network (SRPN) to improve
the detection speed. The distance between tracklet pairs is
learned via the extended Siamese network. The extended
network extracted features for each detection in tracklets
and transferred these features to bidirectional gated recur-
rent unit (GRU) networks. Then, the algorithm generated the
tracklets and split them into short sub-tracklets according
to the local distance between bidirectional GRU outputs.
The sub-tracklets are reconnected to the long trajectories
using similarities between temporal pooling global features.
This helped jettison the outliners via a cosine window and a
scale range. Consequently, it improved the detection quality
rate (83.0%) with weak associations that led to a moder-
ate performance on tracking accuracy (49.6%) in real-time
MOT datasets (OTB2015).

Sun et al. [48] suggest tackling object appearance and
data association issueswith tracking-by-detection via DCNN.
The approach combined appearance modeling, affinities, and
networks to compute reliable trajectories and object associa-
tions on the current frame based on detections from multiple
previous frames. The target appearances and affinities in a
pair of video frames were jointly learned in an end-to-end
fashion. This enabled the softmax layer of the network to
separately look forward and backward in time for unidenti-
fiable objects in the frame pairs. It also contributed to han-
dling the appearance and disappearance of multiple objects
between video frames. However, the approach’s overall net-
work did not make assumptions for the input frame pairs
to appear consecutively in a video. Although this promoted
robustness against object occlusions, it could not cope very
well with the data association of object fashion in real-time
MOT evaluations of datasets (MOT15, MOT17, and UA-
DETRAC) with similarities in the frames that were at close
locations in the scenes. Consequently, it degraded the detec-
tion quality rate (41.1%) with a better tracking performance
(52.4%). To address this problem, Ren et al. [77] proposed
a deep prediction-decision network in a collaborative deep
reinforcement learning (C-DRL) method that simultaneously
detected and predicted objects under a unified network via
deep reinforcement learning. To solve target associations and
location problems, the approach considered each object as
an agent and tracked it via the prediction network. It further
sought the optimal tracked results by exploiting the collabora-
tive interactions of different agents and environments via the
decision network. The network learned the object movement,
size, speed, and direction [80] and predicted the next step of
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the target on the frame very well on real-time public datasets
(MOT2015 andMOT2016). However, it becomes sensitive to
appearance features and fragmentation, especially under long
occlusions and heavy interactions. Hence, in some videos
with high sampling rates, the approach experienced a high
number of object losses for relatively more frames due to
occlusion that led to a high number in IDS. This degraded
both the tracking performance (47.3%) and detection quality
rate (30.4%).

Wei et al. [13] developed the learning framework to address
the issues in tracking and misdetections under heavy object
interactions. They used temporal-spatial information to deter-
mine the trajectory confidence in each frame. The approach
divides this process into a local and global association to
associate the trajectories with high confidence with the detec-
tion result of the current frame to the local association and
the one with low confidence with the detection results of
the current frame that are not matched to the global associ-
ation. This combination of spatial and temporal models of a
public dataset (PET2009) enhanced the tracklet association
and midsection in real-time object tracking. Compared to
Ren et al. [77], the proposed algorithm improved the tracking
accuracy by 9% with a low detection quality rate (17.0%).

Ning et al. [21] introduced a spatially recurrent convolu-
tional neural network (SR-CNN) by extending the spatial and
temporal work to learn visual features of the past frame by
examining the historical locations. The approach tried to learn
from historical visual semantics, detections, and tracklets by
enabling automatic learning onto a tracker. It incorporated
LSTM and enforced an end-to-end spatial-temporal regres-
sion with a single evaluation to enhance efficiency and effec-
tiveness [81] by spatially glimpsing on various regions and
regressing on the heat maps. However, the approach could not
accurately link the tracklets and had hardly reidentified (RID)
objects under prolonged occlusions. Consequently, it resulted
in poor tracking accuracy (43.0%) and detection quality rate
(17.0%) in a real-time MOT evaluation with a public dataset
(OTB-30). Then, to locate and handle misdetection on a
similar object, Fagot-Bouquet et al. [15] formulated a multi-
frame data association process based on a sliding window
and minimized energy sparsity that represented all detec-
tions. The technique implemented the TBD paradigm based
on the sliding window and estimated trajectories for best
associating object detections. However, when the number
of frames increased on the sliding window, the appearance
model suffered. Consequently, this led to a failure for the
proposed approach to associate detection effectively. It also
had trouble handling object tracking under crowded scenes
on datasets (2DMOT2015 and MOT2016) and resulted in a
deteriorated overall tracking performance.

B. DEEP LEARNING METHODS IN REAL-TIME MOTS WITH
HIGH-SPEED TRACKING AND LOW COMPUTATIONAL
COST
The slow algorithm tends to lose track of many tracked
objects with speed variations. The object’s speed assumptions

seemed to be a common issue that mostly led to unsat-
isfactory overall tracking performance. Therefore, in this
section, the deep learning methods in real-time MOTs with
high-speed tracking and low computational cost presented
in Table 2 are analyzed.

Zamir et al. [60] proposed an algorithm to solve data
association issues via generalized minimum clique graphs by
finding the detections that correspond to one particular object
in different video frames. The approach has expanded the
node definition for clustering by grouping the nodes of an
input graph into disjoint clusters. It searches for a subgraph
set of nodes that requires the minimum cost for the complete
graph to be produced. This required the authors to introduce
the hypothetical nodes technique that handled the exit or
entry problem and long-term occlusion occurrences during
the tracking process. However, the assumptions made on
object velocity over a short period caused the algorithm to
struggle in modeling the motion of one person over the long
run without knowing the destination structure of the scene
and especially when people were heavily interacting. To con-
struct a hypothesis tree for multiple hypothesis association
and tracking, Kim et al. [61] extended the MHT framework
with appearance features using a multi-output regularized
least square method. Their approach exploited high-order
appearance information by incorporating long-term appear-
ances via appearance feature extractions and deep neural
networks. The appearance features are dimensionally reduced
from deep dimensional features to handle appearance and
motion variations during tracking. These features boosted the
approach in handling exit-entry issues and long occlusions
with high computational costs [44] and a high tracking-speed
rate (0.9 seconds/frame) in the real-time dataset (TUD Cam-
pus) but failed to model the motion of an object for an
extended period. Then, Tang et al. [54] introduced subgraph
decomposition to improve the motion model for multiple
object tracking through a finite set of hypothesis detections.
Their subgraph multi-cut model had the property of jointly
addressing the spatial issue (within-frame) and temporal
(across-frame) associations. This gave the advantage of using
the minimum cost subgraphmulti-cut to link and cluster plau-
sible detections jointly across space and time. Although the
proposed approach enhanced performance on both tracking
speed (0.86 seconds/frame) and tracking accuracy (80.9%)
on the public benchmark dataset (TUD campus), it could not
efficiently track objects with motion variations and hence
incurred high computational costs. Ruchay et al. [23] pro-
posed an algorithm to track targets based on local adaptive
correlation filters and enabled object tracking with motion
variations in high-speed scenes. The adaptive procedure is
applied for a typical scene background and multiple com-
posite filters. The impulse responses of optimum correlation
filters are used to synthesize composite filters for distortion
invariant object tracking. This is employed via a predic-
tion scheme that uses composite correlation filters to track
multiple objects with invariance to poses, occlusion, clutter,
and illumination variations. However, it has consequently
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TABLE 2. Overview of deep learning methods in real-time MOTS with high-speed tracking and low computational cost.

improved the speed tracking and led to high-speed tracking
(0.56 seconds/frame) with difficulties in handling illumina-
tion variations and prolonged occlusions. It also contributed
to a deteriorated tracking performance (53.3%) with moder-
ate computational costs.

To increase tracking accuracy while preserving processing
speed, Shin et al. [46] incorporated three functional modules,
including tracking failure detection, re-tracking using multi-
ple search windows, motion vector analysis, and a preferable
search window onto a kernelized filter (KFC)-based tracking

method. The technique uses detection failure to analyze the
peak and average of neighboring correlation values. It fur-
ther re-tracks the target using tracking failure and calcu-
lates a motion vector of the target by selecting the preferred
search window during tracking failure detection. Although
the proposed approach registered a high rate of both track-
ing accuracy (70%) and tracking speed (1.9 seconds/frame),
its retracking process required an additional computational
load for multiple search windows on a public dataset (Visual
Tracker Benchmark). This led to a high rate of motion
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direction prediction and target losses during the tracking
process in crowded scenes.

Sharma et al. [24] proposed an approach that minimizes
the computational costs by estimating motions on rough
frames based on odometry and implemented features on the
background. It adopted the tracking-by-detection paradigm
and took input from the monocular video frame sequence.
It further used the target information beyond the bounding
box image pixels to estimate the 3D shape and posing. The
approach illustrated pairwise costs disambiguating across
track viewpoint variations and relative target movements but
suffered from IDS and fragmentations due to motion varia-
tions in a real-time MOT evaluation of a public benchmark
dataset (KITTI). Therefore, it resulted in moderate computa-
tional costs and high tracking speed (1.6 seconds/frame) with
satisfactory tracking accuracy (84.2%).

To model object motion, Keuper et al. [57] and Chen and
Ren [58] proposed a motion segmentation technique that
combined bottom-up motion segmentation with top-down
multiple object tracking. It grouped point trajectories through
clustering of bounding boxes to improve tracking accuracy
on small dense objects. It then used a supervised CNN to
minimize the computational cost and a Faster R-CNN tracker
to obtain detections in a video sequence without knowing
the object’s category and interest. To enhance the tracking
accuracy, the detections from the Faster R-CNNdetector were
trained in real time using the MOT 2016 public dataset. How-
ever, the technique enabled the approach to track objects at
high speeds (1.8 seconds/frame), but it experienced moderate
computational costs [34], complexity, difficulties in handling
motion variation and annotated objects that are caused by
over-segmentation in real-time MOT evaluations of public
datasets (MOT2016 and MOT2017). This led to a deterio-
rated overall tracking performance (47.1%).

To extend the task of online MOT on segmenta-
tion tracking with the creation of dense pixel-level
annotations and semi-automatic annotation procedures.
Voigtlaender et al. [82] proposed a new baseline method
that jointly addressed object detection and segmentation
with a single convolutional neural network (SCNN). The
approach implements the TrackR-CNN tracker as a baseline
to address all aspects of multi-object tracking and segmenta-
tion (MOTS) duties in real-time MOT evaluations of public
datasets (MOT2016, KITTI, and MOT19). It further extends
TrackR-CNN to Mask R-CNN [11] with 3D convolution
layers to incorporate temporal information and tracklet asso-
ciations over time. Then, the TrackR-CNN masked-based
detections together with association features are used as
input to a tracking algorithm to decide which detections
to select and link with bounding boxes. Although this led
to a highly satisfactory tracking speed (0.5 seconds/frame),
it has also contributed to the algorithm’s failure to han-
dle the segmentation of speedy objects. Hence, the overall
tracking performance (47.1%) experienced deteriorations.
Bochinsk et al. [2] suggested a tracking-by-detection
paradigm to track targets with high speedwithout using image

information. The approach also incorporated a simple IOU
tracker to track targets by associating detections with the
highest intersection over union (IOU) to the last detections in
the previous frame. It rooted out the short tracks to improve
the algorithm’s sensitivity towards false positives. This con-
tributed to a high tracking speed (0.4 seconds/frame), but
more detections on the tracker have caused many mispredic-
tions of detections in real-time evaluations of the DETRAC
and MOT16 datasets. Therefore, the approach resulted in
a high number of target losses and achieved an unsatisfac-
tory tracking performance (25.3%) with high computational
resources.

Real-time object tracking with speed tracking is a crucial
technology for visual analysis, object detection, and motion
variation handling [2]. Redmon et al. [56] and Ren et al. [76]
proposed the regional proposal network for object proposals
and shared the regional classification through convolutional
layers and Fast R-CNN. The technique used Fast R-CNN
to produce local proposals with optimized classification and
bounding box regression tasks. It enhanced the processing
speed by using CNN fully connected layers for region propos-
als without handcrafted features. However, the approach was
complex with noisy detections and suffered from overfitting
and false detections in real-time MOT evaluations of public
datasets (Picasso and MOT2016). Therefore, it resulted in a
high tracking speed (0.01 seconds/frame), a moderate rate of
both computational costs and tracking accuracy (57.9%).

Weng and Kitani [22] tried to minimize the computa-
tional costs and system complexity for multiple online object
tracking. They proposed an approach that combined two
filters with CNN to improve data association and object state
estimation. The approach incorporated a vast space of the
Kalman filter into a full 3D domain to handle 3D location,
size, velocity, and object orientation to minimize the compu-
tational cost and system complexity [10]. It succeeded with
high tracking speed (39.4%) to reduce the computational
costs and system complexity but suffered from high false
object detections due to the lack of appearance feature extrac-
tions in the real-time MOT evaluation of a public dataset
(MOT2016). This contributed to a negative overall track-
ing performance (39.4%). Then, Wang et al. [59] combined
temporal and appearance features to form a unified frame-
work to reduce the computational cost by grouping track-
lets together based on similarities. The approach extended
the first architecture of the Siamese network to learn the
associating affinities between tracklets. It further combined
the appearance model with CCN features and improved the
tracking speed (0.5 seconds/frame) and tracking accuracy
(56.1%) through clustering and assigning unique individual
identities. However, the framework suffered from drifting,
object interaction, and occlusions in real-time MOT evalu-
ations of public datasets (MOT2016 and MOT 2017).

To solve computational efficiency, drifting, and occlu-
sions in online multi-object tracking, Chu et al. [55] propose
an object-specific particle filtering framework for real-time
MOT evaluations. The approach tracked each object with
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TABLE 3. overview of deep learning methods on modeling target uncertainty in online MOTS.

two constructed CNN-based classifiers. To handle occlusion
between objects, it learned spatial attention features based
on the visible map using convolution and fully connected
layers. Then, the spatial attention map weight features were
used to promote the accuracy of the classifier. It reduced
time-consuming computation by sharing the CNN feature
maps. Then, a single object tracker was incorporated into the
spatial-temporal attentionmechanism (STAM) procedure and
enabled target searching in the next frame. It has enhanced
the tracking-speed (0.5 seconds/frame) and handled the inter-
actions very well but could not uniquely differentiate targets
that appeared similar in real-time MOT evaluations of public
datasets (MOT2015 and MOT 2016). This led to high false
alarm and misdetection rates under heavily dense scenes and
resulted in unsatisfactory tracking accuracy (46.0%).

C. DEEP LEARNING METHODS ON MODELING TARGET
UNCERTAINTY IN AN ONLINE MOT
Online MOT uncertainty is mainly caused by ineffectiveness
in associating targets with relevant tracks. This affects the per-
formance of many algorithms in handling object discrimina-
tion and direction predetermination processes. In this section,
we explain the deep learning methods based on modeling
target uncertainty in online MOTs, as shown in Table 3.

Bewley et al. [65] used the merits of single object track-
ing [83] to integrate the Kalman filter features with the
Hungarian algorithm to find the association in visual tracks.
The approach used CNN-based detection and Faster Region
CNN (FR-CNN) in an end-to-end fashion. The FR-CNN
shared parameters between two stages to create an efficient
framework for detections. However, the approach focused
more on efficiency and reliability to handle common frame-
to-frame associations than robust detection errors. This led

to a failure in handling objects’ appearance variations [2],
[23], [58] and high IDS (7,318) with a low tracking accu-
racy (33.4%) under heavy interaction in a real-time MOT
evaluation of a public dataset (MOT2016). To increase
discrimination, Wojke et al. [62] employed the deep fea-
ture extraction technique based on a wide residual net-
work (WRN) for the person re-identification process. They
normalized the I2 and 128-dimensional features before the
cosine softmax classifier layer [22]. Then, the cosine and
emotional Mahalanobis distances are used to fuse dissimi-
larities. The approach incorporated the Kalman filter to find
the movement and appearance features of the target. It further
extracted the appearance feature through DCNN and tracked
the target individually. Although it has improved tracking
performance (61.4%), it struggled to handle target track-
ing under crowded, distanced views, drifting, and prolonged
occlusions. Consequently, this led to high-frequency changes
in object IDS rate (12,862) during a tracking process in a real-
time MOT evaluation of a public dataset (KITTI).

Inflexible objects have been proven to cause object drift-
ing [29]. Then, Gan et al. [63] use the merits of [55] to
develop an online MOT approach to handle the drift and
identity (ID) switches caused by occlusions and integration
among targets. The approach used convolutional layers to
extract appearance features [47] and fully connected layers
to update a distinguished online target from the background.
It further used the interaction of appearance motion with the
interaction cues of the target and the online ID assignment
scheme based onmulti-level features to confirm the trajectory
of each target. This technique enhanced the model updates
and identity association of the appearance model with STAM
and CNN. It also contributed to the approach capabilities of
finding appropriate target detections in the previous frame

32660 VOLUME 9, 2021



L. Kalake et al.: Analysis Based on Recent Deep Learning Approaches Applied in Real-Time MOT

and the effectiveness of linking them to the current frame.
However, the similarities, long-term occlusions, and velocity
changes [85] on a tracked target mostly led to uncertainties
in real-time tracking. Therefore, these factors contributed to
the approach’s failure to differentiate targets, which led to a
high IDS (7,912), fragmentation, and unsatisfactory tracking
accuracy (44.0%) on public datasets (VOT and OTB) eval-
uations. Zhu et al. [41] and Liu et al. [76] tried to address
the problems by combining appearance and motion mod-
els. The technique integrated the models onto the Siamese
network to learn affinities for tracklets and replace previous
features from the IDLA. It further employed the online track-
ing framework to cascade associations between tracklets and
detections in two stages based on target confidence levels
(high-to-low). However, it could not track small objects in
motion that have similar appearance in real-time MOT evalu-
ations of public datasets (MOT2016 and MOT2017). There-
fore, it suffered from bearable IDS (1,871) and challenging
tracking accuracy (48.3%). Then, Wang et al. [66] tried to
learn and track small objects in motion by extending the first
architecture of the Siamese network to learn target detec-
tion, affinity associations between tracklets, and appearance
embedding in a shared model. The approach incorporated
the appearance-embedding model into a single-shot detector
for simultaneously outputting detections and corresponding
embedding. It further used those detections for localization
and tracking and then linked tracks onto the appearance
model for data associations. It achieved satisfactory tracking
accuracy (62.1%) in real-time MOT evaluations of public
datasets (MOT2016, MOT2017, and KITTI), but it could not
describe the dependencies between tracklets with a similar
appearance.

To effectively differentiate objects with a similar appear-
ance Fajardo et al. [32] proposed a deep appearance features
method to improve the object data association and affinity
in different frames that uniquely tracked targets through the
CNN framework based on motion and appearance informa-
tion [80]. The approach struggled to recognize the cropped
patches with limited information [86] and hence suffered
from false positives and misdetections in real-time MOT
evaluations of public datasets (MOT2016 and MOT2017).
Therefore, it resulted in moderate frequent object ID changes
(4,123) and high tracking accuracy (75.2%). This increased
the attention onto tackling the high uncertainty number val-
ues in real-time tracking [87]. Kampker et al. [64] pre-
sented a real-time framework for multi-object detection and
maneuver-aware tracking for 3D LIDAR applications to
tackle object uncertainty in cluttered urban environments.
It combined a sensor occlusion-aware detection method with
computationally efficient rule-based filtering and adaptive
probabilistic tracking to handle uncertainties arising from the
sensing limitation of 3D LIDAR and the complexity of the
targets’ movement. The technique used algorithm detection
as an input 3D point cloud and divided it into non-ground
and elevated measurements. This task was accomplished via
a slope-based ground removal approach and a subsequent

filtering process. It further generated the object hypothe-
ses for the tracking targets in a clustering process. Then,
the objects of interest were extracted by means of a subse-
quent feature-based bounding box fitting and rule-based fil-
tering. However, the technique handled prolonged occlusions
and improved the tracking accuracy (86.1%) with a remark-
able reduction in IDS (65) in real time MOT evaluations of
public datasets (MOT2016 and KITTI).

D. DEEP LEARNING METHODS WITH CNN, AFFINITY, AND
DATA ASSOCIATION IN ONLINE MOTS
The traditional CNN architecture uses the handcrafting of
cost functions that hinder the tracking performance in most
recent works. It is mostly expanded and integrated with
deep learning techniques, as illustrated in Table 4, to handle
object affinities and data associations. Hence, in this section,
we explore the deep learningmethods with CNN, affinity, and
data association in an online MOTs.

To enhance target tracklet associations, Schulter et al. [17]
proposed a formula that enabled the learning of arbitrary
parameterized cost functions for all variables with association
problems and enhanced the MOT in real-time applications.
They constructed an end-to-end deep learning min-cost net-
work flow and defined a loss function of the deep architecture
as the weighted I2 a distance of edge labels. The approach
further optimized the algorithm by building network flow
with its edges on multilayers to form a deep architecture
model. It has been able to track and re-identify the objects
under complex scenes in real-time tracking. It further handled
the long occlusions and accurately estimated the objects’
affinity scores. Therefore, this contributed to a good low IDS
rate (65) and high rate achievement in both mostly tracked
(58.3%) and tracking accuracy (67.4%) real-time MOT eval-
uations of public datasets (KITTI,MOT2015 andMOT2016).
Kumar et al. [67] constructed a complementary graph func-
tion to capture the spatial-temporal and appearance informa-
tion. They further constructed an exclusion graph function
to ensure that some detections that occurred simultaneously
do not share the same node labels. Then, the appearance
information is used to link detections into trajectories. How-
ever, this contributed to a high tracking accuracy and a
low IDS rate (5) achievement in real-time MOT evaluations
of public datasets (APIDIS, PETS-2009 S2/L1, MOT2015
(TUD Stadtmitte, and TUD Crossing)) but struggled to asso-
ciate objects effectively at crossing scenes.

To solve object association ambiguities in cluttered multi-
object scenarios, Scheel et al. [71] suggested implementing
the Monte Carlo algorithm with a multi-Bernoulli filter to
handle the association measurements between objects. They
extended the algorithm’s object filter to work directly on
the raw measurements and process multiple measurements
per object. Although the approach achieved high tracking
accuracy (74.4%) in a real-time MOT evaluation of a pub-
lic dataset (KITTI), it failed to calculate the association
measurements accurately and resulted in filter divergence.
Leal-Taixe et al. [68] extended the technique into the Siamese
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TABLE 4. Overview of deep learning methods with CNN, affinity, and data association in online MOTS.

network to learn matching features for MOTs and then deter-
mined the affinity score. Their approach used three types
of Siamese CNN topologies for computational cost, infor-
mation distribution, and the streaming of the data to form
inputs for CNN layers. It compares these three topologies
and uses the third architecture to extract the in-depth features.

It further used the deep features and motion information
with a gradient boosting algorithm to formulate the tracking
as a linear programming problem and solved it efficiently.
However, it struggled to detect and associate the object tracks
under a dense population. This contributed to the unsatisfac-
tory overall performance with tracking accuracy (29.0%) and
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moderate achievements in both the mostly tracked (48.4%)
and IDS rates (639) in a real-timeMOT evaluation of a public
dataset (MOT2015).

To overcome the detection association problem,
Son et al. [40] proposed using quadruplet CNN to learn
and associate detections across video frames using appear-
ance and motion cues. They extended the Siamese network
using quadruplets of image patches as inputs and extracted
these patches for three detections from one same object and
another different object. The approach further constructed
a loss function that temporally learned the smooth appear-
ance embedded with the motion-aware position for metric
learning. However, the proposed approach could not associate
detections very well under crowded scenes and resulted in
high IDS (745). This further resulted in a low mostly tracked
rate (14.6%) and tracking accuracy (44.1%) in real-timeMOT
evaluations of public datasets (2DMOT2015 and MOT2016).
Then, Lee et al. [72] used a CNN-based detector and
Lucas-Kande Tracker (LKT)-based motion to compute the
likelihood of foreground regions as the detection response of
different object classes. The technique separates the dynamic
motion model of a Bayesian filter into entity translations and
motion cues. Although this contributed to a better tracking
accuracy (62.4) and moderate rate for mostly tracked (31.5%)
objects in a real-time MOT evaluation of a public dataset
(MOT 2015), it left the proposed approach struggling to
associate the tracklets over a long tracking period in the heavy
interactive scenes and resulted in high IDS (1,394).

Kieritz et al. [36] capitalized on the established embedded
target appearance process and proposed an online learning
appearance model. Their technique combines the appearance
model with a simple motion model to estimate the change in
position and smooth the trajectory. It used a classifier based
on integral channel features to detect persons in each frame.
It further used the detector that uses LUV color channels,
a histogram of oriented gradients with several bins, and the
gradient magnitude to formulate fast detection over every
channel. However, the approach experienced deceptive
appearances over long track periods and switching between
active and inactive states of the trajectories with a low num-
ber of associated detections. This hindered an overall per-
formance and resulted in a challenging tracking accuracy
(27.1%), a low mostly tracked rate (6.4%), and a moderate
IDS rate (1,490) in a real-time MOT evaluation of a public
dataset (MOT2015).

Vo et al. [86] implemented a multi-sensor generaliza-
tion labeled multi-Bernoulli (GLMB) filter with two sen-
sors to reduce uncertainty about object existence and state.
Zou et al. [89] used the established platform to update
appearance information based on template matching rather
than the learning-based approach. However, these approaches
experienced frequent occlusions under heavy interactions
and failed to handle appearance variations. This resulted in
detached detections in real-timeMOT evaluations. Huang and
Zhou [69] proposed an online multi-object tracking approach
and used a recurrent convolutional neural network (R-CNN)

to solve detached detections. To address the data association
problem in the paradigm, the technique discarded all the
unused data in the video sequence. It reduced the data to
a few single measurements per frame and ran the detector.
Then, tracklets are associated with each measurement of a
corresponding target. This led to considerable target loss due
to misdetection and tracks associations in crowded scenes.
It also contributed to a high IDS rate and a very low track-
ing performance in a real-time MOT evaluation of a public
dataset (MOT2015).

Wu et al. [27] applied a single-camera tracking (SCT)
technique to associate detached detections into tracks. They
further used the tracks on multi-camera tracking (MCT) to
re-identify each track to form trajectories. However, their
MCT base technique could not associate the tracks of dif-
ferent cameras and resulted in illumination changes, view
angle variation, and object appearance inconsistency. Though
this contributed to a satisfactory mostly tracked (51.8%)
result, it could not efficiently associate detections and tracks
across cameras, hence resulting in poor tracking accuracy
(9.65) in a real-time MOT evaluation of a public dataset
(MOT2016). To strengthen the target data association across
cameras, Le et al. [37] proposed the use of Markov deci-
sion processing (MDP) to collaborate object tracking with
the camera network. The approach extended the MDP to a
multiple views framework. Then introduced a novel target
association method across cameras. It further collected and
associated the tracking outcomes on each camera onto target
tracks. This contributed to the effectiveness in handling the
appearance similarities [90] under crowded scenes. However,
it also led to a low IDS (240) with better overall performance
in terms of mostly tracked (62.0%) objects and tracking accu-
racy (69.8%) in real-time MOT evaluations of public datasets
(PETS09-(S1 L1 and S2 L2)).

Houssineau et al[9] proposed a new online scheme for
evaluating ReID algorithms for object tracking aiming to
improve the target ReID process within a camera at dif-
ferent times. The approach considered several issues, such
as the open set, dynamic, small gallery set, and multiple
camera configurations. However, it could not efficiently cap-
ture the scenarios of online tracking for camera networks,
open sets, and the dynamic nature of the gallery set due to
its limitation on considering only camera scenarios. Then,
Tesfaye et al. [88] used a constrained domain set and three
hierarchical layers to enhance tracking of individual object
appearances in each camera. The approach splits the video
into small segmentations and generates tracklets. It then
merged the detection boxes into consecutive frames [92] and
applied fast constrained domain sets (FCDS) in the first layer.
In the second, it merged the tracklets into a routinewith FCDS
in each camera-across. It finally organized all tracks together
in the third layer and built a graph of tracklet matching
across cameras to verify whether a person appears in one
or more cameras across. However, the proposed approach
achieved better performance in tracking accuracy (56.6%)
and recorded high performance of mostly tracked objects in a

VOLUME 9, 2021 32663



L. Kalake et al.: Analysis Based on Recent Deep Learning Approaches Applied in Real-Time MOT

FIGURE 5. Object Tracking based on Quality Detections [76].

FIGURE 6. Analysis of Deep Learning Algorithms based on Detection Quality and Associations in real-time MOTs.

real-timeMOT evaluation of a public dataset (MOT2015), but
failed to handle the similarity appearances, could not asso-
ciate tracklets across cameras, and resulted in most frequent
changes in IDS (1,637) under crowded scenes. It also suffered
from re-tracking and ReID due to fragmentation.

In ensuring efficient target tracking and data associations
in camera networks, Sharma et al. [93] used a camera selec-
tion policy to select the candidate camera where the target
is likely to appear by fording the ReID queries during the
target transition. However, the approach brought affinities
and computational complexities. Yoon et al. [70] designed
an appearance matching network for robust online multiple
object tracking to solve the computational bottleneck and
affinity issues. The proposed network utilized the structural
constraint information to represent the relative information

portions and velocity differences between objects and track
missed objects under heavy collusion with the aid of the
ReID process. Then, Ristani and Tomasi [4] suggested reduc-
ing the computational complexity by incorporating standard
hierarchical reasoning and sliding temporal techniques onto
a tracker. These approaches reduced the IDS rate, but they
could track the objects for an extended period. This resulted
in poor tracking accuracy in real-time MOT evaluations of
public datasets (MOT2015 and MOT2016).

Jiang et al. [8] analyzed object trajectories across mul-
tiple cameras to allow synthesis data and security analy-
sis of images in various scenarios. Their approach used a
multi-camera system without turning parameters from the
ground truth and constructed a graph from 2D observa-
tions of all camera pairs with no network configuration.
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FIGURE 7. Analysis of Deep Learning Algorithm-based Real-time MOTs with High-Speed Tracking and Low computational Costs.

FIGURE 8. Analysis of Deep Learning Algorithms based on Modeling Target Uncertainty in MOTs.

The proposed approaches could not efficiently associate the
tracklets, especially when they had the samemotion and simi-
larities in size and appearance. This resulted in unsatisfactory
tracking performance in real-time MOT evaluations of public
datasets (PETS09-(S1 L1 and S2 L2)). Then, Chen et al. [73]
proposed handling unreliable detections by collecting candi-
dates from outputs of both detection and tracking processes.
Their approach presented a novel scoring function based on

a fully convolutional neural network that shares most com-
putations on the entire image. It further adopted a deeply
learned appearance representation to improve the identifica-
tion ability of a tracker. It also presented a hierarchical data
association strategy that utilizes the spatial information and
deeply learned person re-identification features to compare
tracked objects with their historical features to decidewhether
the same target was previously identified. However, the
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FIGURE 9. Performance on handling the affinity and associations with CNN integrated DLMs.

proposed approach tracker generated more fragmentations
when the target suddenly speeds up and affected the target
data association. This contributed to a degraded overall per-
formance with vast target losses that led to the unsatisfactory
rate for mostly tracked (15.2%) objects and tracking accuracy
(47.6%) in a real-time MOT evaluation of a public dataset
(MOT2016).

IV. DISCUSSION
In this systematic review, we provide an overview of the
different DLMs for online MOTs in various environments,
scenes, and datasets. Based on previous studies, we catego-
rized the proposed approaches into four themes (1. Online
MOTs based on detections quality and associations,
2. Real-timeMOTs with high-speed tracking and low compu-
tational cost, 3. Modeling target uncertainty in online MOTs,
and 4. CNN, affinity, and data association in online MOTs).

In the methodology, the real-time MOTs based on deep
learning techniques were less frequently accessible. For the
performance evaluation, the main challenges were the avail-
ability and quality of the evaluation results to include all
parameters as per the new standardized MOT evaluation
benchmark suggested by [26].

The tracking accuracies of deep learning techniques varied
between 14.5% and 86% in video processing under several
complex real-world problems [2]. The lowest tracking accu-
racy of 14.5% was achieved where the distance between
the object detected in the first frame and its detection in
the next frame increased [49]. This is identified on target

detections and tracklets associations in video frames that have
complexities in detecting objects with motion variations [37].
It increased the number of problems encountered due to weak
data associations and appearance similarities.

DLMs such as [12]–[16], [21], [47]–[53], [77] were
combined to construct features and to learn appearance
similarities between objects to improve detection quality
and associations. In contrast [2], [22]–[24], [46], [54]–[61],
[82], classified and assessed the matches between detec-
tion and tracklets to quickly track the targets. However,
the density of uncertainty in the real-time MOTs persisted.
Then [32], [41], [62]–[66], emerged to learn the control of
the problem through graphic models and flow optimizations
but experienced difficulties in handling the affinities. They
used a data-driven mechanism by [8], [17], [27], [36]–[38],
[40], [67]–[73], [89], [90] to learn the affinity models for
data association and replaced the handcrafted features with
a real-time MOT framework, such as Siamese CNN. This
contributed to the remarkable progress seen in deep learning
techniques based on online MOTs and reduced the num-
bers of most lost (ML) targets by enforcing a strong fore-
ground and motion differentiation for all moving objects.
The performance outcomes of the previous studies have
shown that the deep learning approach is the most popular
paradigm applied by most researchers in real-time MOTs.

In Table 5, we developed general comparisons and sum-
marized the limitations and strengths of approaches based
on each theme. For example, in online MOTs based on
detection quality and association, detection and trajectory
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FIGURE 10. Illustration of the detections and feature learning with DLM-based online MOTs. (a). Insufficient detections (poor quality detections) in
MOT2020 enter/exit stadium; (b) sufficient detection in PETS09-S211 sequence; (c)Real-time high-speed tracking with a mono-camera in KITTI and
(d) multi-person tracking results, color features in deep learning.

construction are based on both current frame information and
the previous frame. The proposed deep learning approaches
have successfully located detections that correspond to one
particular object in different frame sequences. They also
proved that low-level detectors are the main factors that
thwart the capability of a tracker to estimate the state of
the target from ambiguous observations. This is supported
by the results of a considerable number of detached detec-
tions that could not be associated and hence degraded detec-
tions’ quality response [2], [22], [23], [54]–[56], [59], [60].
However, background subtraction and feedback detections in
each frame could be utilized to improve the tracking per-
formance in deep learning techniques that follow the TBD
paradigm. The strategy could also be extended to other DLMs
and make them more effective when nearby objects with
similar appearances occlude each other in video frames.

Second, real-time MOTs with high-speed and low com-
putational costs and common restrictions, such as making

assumptions on surfaces, objects’ speed, and directions, led
to blurred image capture when objects suddenly sped up. This
slowed down the detection rate and led to poor detections
that degraded the overall tracking performance. However,
the implementation of DCCN, faster R-CCN, filters, and
segmentation with DLMs enabled high-speed object tracking
with low computational costs, but the methods experi-
enced difficulties in associating the tracks more, espe-
cially when the estimated uncertainty was at a low level
(lower pixel).

Third, in modeling target uncertainty in online MOTs,
the proposed methods had difficulty capturing objects from
a mono-camera for online MOTs. This has blurred images
and increased uncertainty issues. Then, the independent
self-motion that emerged with GLMB reduced the uncer-
tainty about the object’s existence state but could not disam-
biguate between objects and uncertainty due to insufficient
data association.
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TABLE 5. Strengths and limitations of various deep learning methods based on online MOTS.

Last, in the context of affinity and data association, differ-
ent techniques are applied to enhance CNN for object associ-
ation. Their affinity computation in multiple frame sequences
could not distinguish objects with similar appearances or
pedestrians wearing the same attires. This contributed to the
skipping of the detections for small objects distantly captured
in the images to be suppressed. It also caused difficulties
in target tracking and data association issues across multi-
ple cameras [94], whereby each camera scene needed to be
merged in with those of the different cameras on the network.

DLMs had trouble learning the incoming tracks
and differentiating various detections, as shown in
Figs. 6, 9, and 10(b)-(d), but they signified promising
progress towards real-time MOT systems in handling the
object observation formulation, affinity, and data association
problem. They used the detectors to enable the pass over of
the generated detections onto the trackers as the input for data
associations. This compensated for the missing detections
shown in Fig. 10(a) but struggled with weak detections
and a lack of tracklet association for small objects. This
caused a high volume of mistrust and detached detections
that degraded tracking accuracy, as depicted in Fig. 9. The
approaches struggled to handle objects’ appearance varia-
tions and ReID; they could also not learn the appearance fea-
tures very well under crowded scenes and motion variations.

However, the proposed approaches could differentiate var-
ious detections and effectively learned the incoming tracks,
as shown in Figs. 6 and 10(b)-(d). The strategy improved

the quality of detection and tracking performance. The
approaches with low-quality detections could not maintain
the object appearance features and yielded a poor tracking
performance. The advocacy is well presented in Fig. 7, where
high-speed trackingmethods tend to skip the objects traveling
slowly and struggle to handle objects’ appearance variations
and motion variations. The detection accuracy inconsistency
caused a failure for the approaches to make decisions on
which targets are true incomers or leavers. This affected
the overall tracking accuracy rate compared to that with
low-speed tracking.

The complexity and uncertainty in these approaches can
be seen in Figs. 8 and 10(a), where the multi-camera view
calculations of the motion trajectories from entering and
exiting the views lie in multifarious aspects. The mistrusted
detections crowd the tracking accuracy performance.

Although there is noticeable progress, it is important to
note that this review reports only on deep learning techniques
based on real-time MOTs, as categorized in Fig. 4.

The DLMs have not been implemented thoroughly to solve
real-world problems. Thus, many challenges persist, and
more studies need to be conducted to include a broadened
scope on vehicles and top-viewmultiple object tracking using
drones

For further research, it would be advisable to com-
pare the traditional CNN with DCNN techniques based on
experimental evaluations. It would also be important to
include other techniques, such as deep convolutional
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generative adversarial networks (DCGANs), for a robust
algorithm to handle the challenges that have been reported
under complex environments.

V. CONCLUSION
This review paper analyzes and summarizes the latest
progress and challenges in real-time MOTs. We analyzed
several papers on deep learning techniques used in real-time
multiple object tracking. We further described and discussed
the best results for the four main themes: online MOTs based
on detections quality and associations, real-time MOTs with
high-speed tracking and low computational cost, modeling
target uncertainty in online MOTs, and CNN, affinity, and
data association. For each theme, several papers are consid-
ered to illustrate the main challenges of the most popular
solutions proposed by the authors.

Until now, there has been no review of the various recent
DMLs for online MOTs. Deep learning strategies are already
widely used in real-time MOTs. Our analysis shows that
DLMs improve the handling of multiple object detections
and trajectory associations across sequential frames under
challenging environments. The results could be used for fur-
ther improvement of the solutions’ efficiency and robustness
on surveillance security management systems. They can also
be used for further studies in real-time MOT algorithms
to promote the sustainable development goal (SDG) 16 by
contributing to adequate and timely decision-making by com-
mittees and justice institutions that protect and save lives in
smart cities.
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