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ABSTRACT With the development of artificial intelligence technology, robotic arm picking and path finding
based on AI technology has attracted more and more attention. How to use the path search algorithm in a
relatively short time is a huge challenge in the optimization of robot picking path. Most of the existing path
finding methods based on the A∗ algorithm have the problems of long search time and non-optimal path.
Most of them achieve poor results in the optimization of robotic arm picking paths. This paper proposes an
AI intelligent path finding method based on differential evolution and improved A∗ algorithm. The method
mainly achieves fast path search by accurately filtering abnormal conditions to achieve a higher convergence
rate. The experimental results show that the method proposed in this paper has faster search speed and
better path selection than the existing methods. The AI intelligent path finding method based on differential
evolution and improved A∗ algorithm for robotic arm picking is feasible and effective.

INDEX TERMS Artificial intelligence, A∗ algorithm, differential evolution, intelligent path finding.

I. INTRODUCTION
With the development of artificial intelligence (AI) tech-
nology, more and more industries have combined with
artificial intelligence to produce better landing application
effects, such as path planning, computer vision, service
robots, etc., [1]–[3]. Among them, the intelligent path finding
method has received more and more attention due to the
maturity of artificial intelligence algorithms, and has become
a current research hotspot.

With the rapid development of aerospace technology,
space robots play an important role in space exploration
and on-orbit services due to their ability to perform satellite
component assembly, space target capture, and on-orbit main-
tenance tasks in complex environments.. For the space redun-
dant manipulator system, for a given operation task, path
planning is the first problem that needs to be solved [4].When
considering the free-floatingmode, the angular momentum of
the space manipulator system is not integrable, and the entire
system has incomplete characteristics. At this time, even if
the angular motions of all joints are the same, when different
closed paths are selected, the end pose of the manipulator
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will not be integrated. the same. In addition, the generalized
Jacobian matrix of the inter-manipulator system is not only
related to the kinematic parameters, but also closely related to
the dynamic parameters, and dynamic singularities will occur
during the solution process. Therefore, the path planning of
the free-floating spacemanipulator is very complicated due to
the characteristics of nonholonomic constraints and singular
dynamics [5]. In addition, during the actual operation, there
may be obstacles in the working space of the robotic arm,
such as space debris, space cabin peripheral test devices,
external truss structures, antennas, solar panels, etc., which
will prevent the end of the robotic arm from reaching the
feeder. Set the target point, which requires the ability to plan
a safe, collision-free motion trajectory of the robotic arm.
Therefore, it is of great significance to study the obstacle
avoidance planning of the free-floating space manipulator
system.

At present, there are three kinds of solutions for dynamic
singular avoidance path planning of free floating space
robots, which are singular point elimination method [6],
singular problem transformation method [7], and singularity
avoidance path method [8]. All of them can effectively realize
dynamic singular avoidance, but obstacle avoidance is not
considered in the study of such problems.Many scholars have
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also studied the obstacle avoidance planning of manipulator.
The methods used can be divided into three categories: geo-
metric model method, artificial potential field method and
polynomial interpolation method. Geometric model method
mainly has A∗ algorithm, fast extended random tree, C space
method, etc. The A∗ algorithm [9] is a global optimal plan-
ning algorithm, but it requires a lot of scene information and a
huge amount of calculation, and the general path planning is
not optimal. The fast extended random number method [10]
is suitable for multi degree of freedom trajectory planning.
It is a step-by-step algorithm based on random sampling.
However, this method has some shortcomings, such as poor
repeatability, unsmooth path planning, difficult adjustment of
planner parameters, and lack of systematic theoretical analy-
sis of the algorithm. The main idea of C-space method [11]
is to divide the manipulator workspace into two subspaces:
obstacle space and free space, and then use heuristic search
algorithm to find a collision free path in the self space of
the manipulator. However, it is necessary to reconstruct the
C-space for the new working environment, which is difficult
to meet the requirements of real-time and universality of the
manipulator. Artificial potential field method [12] is a kind of
obstacle avoidance method which can be applied in various
fields, but its search amount is large, and when there are many
gravitational and repulsive fields in Cartesian space, some
regions are affected by multiple potential points, resulting
in local minima and singularity. Polynomial interpolation
method [13] mainly uses the method of finding the middle
point to ensure that the end effector avoids obstacles, but does
not consider the obstacle avoidance of joints and connect-
ing rods. Although these planning methods can realize the
obstacle avoidance planning of manipulator, each has its own
shortcomings, and the planning results may not be optimal.

In order to solve the problem that A∗ algorithm faces in
the path finding of robot arm picking, this paper proposes an
AI intelligent path finding algorithm based on differ-
ential evolution and improved A∗ algorithm. The algo-
rithm eliminates redundant operations by pruning the
A∗ algorithm [8], [9], so as to achieve real-time requirements
and improve the overall global optimization ability through
differential evolution algorithm.

II. RELATED THEORIES
A. DIFFERENTIAL EVOLUTION ALGORITHM
Differential evolution algorithm [14] is shown in table 1.
Differential evolution algorithm is an effective global opti-
mization method, which is mainly based on population
search, and then through crossover, mutation, selection and
other operations to obtain the final optimal solution.

B. A∗ ALGORITHM DEFINITION
A∗ algorithm [15] is one of the most effective methods
to find the shortest path in robot picking. It uses direct
search [16]–[18] and uses heuristic function to calculate the
minimum cost between the end point and the starting point.

TABLE 1. Differential evolution algorithm.

A∗ algorithm is not only used in robot picking and routing,
but also in the shortest path planning of intelligent robot and
the best route planning of closed scene truck [20]. Estimation
function is the most important step in A∗ algorithm.
Definition 1: V = {vi| i ∈ 1, 2, . . .} represents the set of

path nodes passing through the starting point and the end
point of the picking point of the manipulator, and represents
a node in the picking start point to the end point of the
manipulator.
Definition 2: for node a, its cost function B can be defined

as follows:

f (vn) = σ (vn)+ ρ (vn) (1)

where σ (vn) is the actual cost between the starting point and
the current node, and ρ (vn) is the estimated cost between the
current node and the end point.

According to definition 2, cost function f (vn), also known
as distance function, is a kind of heuristic function. In robot
picking and routing, cost is distance. The closer the estimated
cost ρ (vn) is to the real value, the stronger the function of
the cost function is. When ρ (vn) = σ (vn), the A∗ algorithm
is changed to Dijkstra algorithm, that is, by increasing the
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number of horizontal nodes to improve the path finding abil-
ity of the algorithm. At the same time, with the increase of
horizontal nodes, its running speed will also slow down, yes,
the overall efficiency of the algorithmwill slow down. So how
to determine the weight of actual cost σ (vn) and estimated
cost ρ (vn) in the total cost function f (vn) is very important.
ρ (vn) must satisfy the principle of cost authenticity and

cost consistency. Cost authenticity means that the value of
ρ (vn) cannot exceed the real cost of the current node from the
target node. The cost consistency principle requires ρ (vn) to
satisfy the conditions shown in formula (2):

ρ (vi+1)+ κ (vi, vi+1) ≥ ρ (vi) (2)

where κ (vi, vi+1) is the real cost between node vi and the next
node vi+1, and ρ (vi+1) is the estimated cost between the next
node vi+1 and the final node.

If ρ (vi) ≤ ρ (vi+1) + κ (vi, vi+1), then all the paths
f (vn) from the final node are monotone cost increasing
functions.

Suppose vi+1 is the next target node of vi, then

f (vi+1) = σ (vi+1)+ ρ (vi+1)

= σ (vi)+ σ (vi, vi+1)+ ρ (vi+1)

≥ σ (vn)+ ρ (vn) (3)

A∗ The algorithm is a classical solution to the path finding
problem, but when it is applied to the robot arm routing
problem, its efficiency and accuracy have a certain conflict,
and cannot be controlled by effective means to produce better
path planning under low delay. Therefore, this paper proposes
an AI intelligent routing algorithm based on differential evo-
lution and improved A∗ algorithm Path algorithm is used to
solve this problem.

C. A∗ ALGORITHM PRINCIPLE
The A∗ algorithm is an ordered search algorithm. It searches
for the node with the least cost at each step through the
function xf)( to find the pathwith the least cost. Generally, it is
necessary to construct two tables: OPEN table and CLOSED
table. OPEN table is used for storage For nodes that have
been evaluated but have not yet been expanded, the CLOSED
table is used to store the expanded points that do not need
attention [21]. The A∗ algorithm cannot determine the final
result in the search process. For the path, each node needs to
be searched and evaluated and the intermediate value stored
in order to finally select the optimal path.

The specific simulation steps are as follows:
Step1:Define two lists namedOPEN andCLOSED;OPEN

table is used to store valid nodes required by the search path,
and CLOSED table is used to store useless nodes;
Step2:A is the starting node, B is the target node, the initial

state of the CLOSED table is set to empty, and the starting
node A is placed in the OPEN table;
Step3: Look at the point n adjacent to point A (n is called

the child node of A, and A is called the parent node of n),
the passable points are added to the OPEN table, and

their F, G and H values are calculated. Move point A into
the CLOSED list;
Step4:Determine whether the OPEN table is empty, if it is,

it means the search has failed, if not, proceed to the next step;
Step5: Remove the point n from the OPEN table and add

it to the CLOSED table, and judge whether n is the target
node B. If it is, it means the search is successful and the
algorithm operation ends;
Step6: If not, then expand the search for the child nodes of

n: If the child node is not passable or in the CLOSED table,
ignore it. If the child node is not in the OPEN table, it will
be added to the OPEN table, and the current point is set as
its parent node, and the F, G and H values of the point are
calculated.
Step7: Jump to Step4;
Step8: Save the node after finishing. Find the path from

the end point along the direction of the parent node to the
start point, which is the optimal path.

The A∗ algorithm flow chart is shown in Figure 1.

FIGURE 1. Algorithm flow of A∗ algorithm.

III. COMBINATION OF DIFFERENTIAL EVOLUTION
AND IMPROVED A∗ ALGORITHM
Based on the research of A∗ algorithm, this paper uses
the differential evolution method combined with improved
A∗ algorithm to generate the optimal robot picking path.
The main reason is that in the actual application scenario,
theNPC of themanipulator picking is real-time changing, and
the role online cannot completely determine the unique path
according to the initial path planning method. It is necessary
to try to detect the dynamicmaximum of the distance between
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the current path point and the end point Therefore, this paper
establishes a replanning algorithm to determine the best path
of the game, and considers the optimization of the path and
the real-time of the re planning. Because A∗ algorithm takes a
long time and cannot be used as a real-time path re planning
algorithm, in order to avoid useless intermediate steps and
nodes in the algorithm search space, A∗ algorithm is pruned,
which is called improved A∗ algorithm. First of all, this paper
designs the following cost function of improved A∗ algo-
rithm. The improved A∗ algorithm is similar to A∗ algorithm
and needs to design the actual cost and the estimated cost at
the same time. As follows:
ρ (vn) is the estimated cost of role P at the selected node of

manipulator:

ρ (vn) = w1 ∗ 0 (P) (4)

where, W is the weight coefficient of the actual cost of
character P, and is the sum of the distances between adjacent
tracks. 0 can be calculated as follows:

0 =
∑N−1

i=0
Si.i+1 (5)

where Si.i+1 is the distance between two adjacent nodes.
σ (vn) is the actual cost of character P at the robot picking

node vn. in this paper, it is set as the Euclidean distance
between the current node vn and the target node vm.

σ (vn) =
√
(xn − xm)2 + (yn − ym)2 (6)

where (xn, yn) is the abscissa and ordinate of current node vn,
and (xm, ym) is the abscissa and ordinate of target node vm.
Therefore, the overall cost function f (vn) of the improved

A∗ algorithm in this paper is as follows:

f (vn) = w1 ∗ 0 (P)+ w2 ∗ σ (vn) (7)

where w2 is the weight coefficient of the actual cost function.
The algorithmflowof improvedA∗ algorithm is as follows:
According to the process of improved A∗ algorithm,

the specific improved A∗ algorithm is shown in table 2:
The improved A∗ algorithm can find the optimal path bet-

ter, and can be better reprogrammed in the face of any sudden
situation. However, in the process of robot arm picking and
routing, if the cost of neighbor paths in both directions is
greater than the local optimal path, then the improved A∗

algorithmwill fall into the local optimal situation It is difficult
to find the global optimal path of the manipulator, so we
introduce the differential evolution algorithm to optimize
the improved A∗ algorithm. By combining the differential
evolution with the improved A∗ algorithm, it overcomes the
defect that the differential evolution method cannot re plan in
the path finding, and also enhances the ability of the improved
A∗ algorithm in finding the global optimal path. The fol-
lowing is the AI intelligent path finding algorithm based on
differential evolution and improved A∗ algorithm, as shown
in algorithm III:

FIGURE 2. Flow of improved A∗ algorithm.

TABLE 2. A∗ Algorithm.

IV. SIMULATION RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT CONFIGURATION
In order to verify the effectiveness and applicability of the
robot arm routing method proposed in this paper, we select
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TABLE 3. A∗ Algorithm.

mountain terrain and urban building complex terrain to sim-
ulate the algorithm and the original improved A∗ algorithm.
Table 4 shows the hardware platform and software environ-
ment used in this experiment.

TABLE 4. Hardware platform and software environment.

B. SIMULATION EXPERIMENT
In this paper, the proposed algorithm is simulated on moun-
tain terrain. Firstly, we set the starting point and end point of
NPC in the experiment, where the starting point of manipula-
tor picking is (0, 0, 0), and then we set the end point of manip-
ulator picking to (100100). In the experiment, we assume
that the NPC is moving forward at a constant speed
of 3m / s. Fig. 3 and Fig. 4 show the performance of improved
A∗ algorithm in picking and routing ofmanipulator, which are
displayed on 2D plane and 3D actual plane respectively.

In this paper, the improved A∗ algorithm is simulated on
mountain terrain. Similarly, the starting point in the map is
(0, 0, 0), and the ending point is also set to (100). Fig. 5 and
Fig. 6 show the path finding of the algorithm in this paper,
which are the display on the 2D plane and the 3D actual plane
respectively.

In this paper, the algorithm is better than the algorithm A∗

in the case of improved mountains, and it can be seen that the
algorithm A∗ is better than the algorithm A∗ in the case of
improved mountains.

FIGURE 3. Performance of improved A∗ algorithm on mountain
terrain (2D).

FIGURE 4. Performance of improved A∗ algorithm on mountain
terrain (3D).

FIGURE 5. The representation of this method on mountain terrain (2D).

In this paper, the improved A∗ algorithm is simulated on
the terrain of urban buildings. Figure 7-10 shows the perfor-
mance of the improved A∗ algorithm and the algorithm in this
paper, which are respectively displayed on the 2D plane and
the 3D actual plane.

As can be seen from figure 7-10, compared with improved
A∗ algorithm, this method can avoid urban buildings earlier
in the case of more urban buildings, so it has better path
planning.
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FIGURE 6. The representation of this method on mountain terrain (3D).

FIGURE 7. Performance of improved A∗ algorithm on urban complex
terrain (2D).

FIGURE 8. Performance of improved A∗ algorithm on urban building
complex terrain (3D).

Next, this paper compares the performance of the proposed
algorithm with the improved A∗ algorithm. Table 5 shows
the performance comparison between the proposed algorithm
and the improved A∗ algorithm. It can be seen that the path
distance planned by this method is shorter and the total cost
is smaller.

FIGURE 9. The representation of the method in urban complex
terrain (2D).

FIGURE 10. The representation of this method on the terrain of urban
complex (3D).

TABLE 5. Performance comparison between the proposed method and
improved A∗ algorithm.

C. CONSTRACT EXPERIMENT
The purpose of the experiment design in this article is to
verify that the improved A∗ algorithm is better than the
traditional A∗ algorithm. The simulation environment is a
preset grid map. The specific simulation process: first draw
a rectangular grid map with matlab tools; Then, the path
search is performed through the traditional A∗ algorithm and
the improved A∗ algorithm; finally, the two parameters of
the number of access nodes and the time consumption are
compared for analysis.

In order to verify the ideality of the simulation results,
a total of 100 sets of experiments were carried out when
designing the experiment. In order to reflect the effectiveness
of the collected data, the experiment was repeated 5 times,

154418 VOLUME 9, 2021



L. Chen, H. Sun: Picking Path Optimization of Mobile Robotic Arm Based on Differential Evolution and Improved A∗ Algorithm

and then the average value of the 5 simulation data was
obtained. Difference test results. In view of the large amount
of data, 10 sets of data were selected for comparison and
analysis from 100 sets of data. For the A∗ algorithm before
and after the improvement, the corresponding experimental
data will be obtained for each path finding. The improvement
effect is analyzed by selecting the data related to the number
of access nodes and the consumption time, and it is concluded
that the improved A∗ algorithm is effective to realize the path
finding design. Table 6 is the traditional A∗ real algorithm
path finding test data.

TABLE 6. Traditional A∗ algorithm path finding experiment data table.

In order to test the performance of the algorithm under
dense and sparse historical trajectories, this paper first divides
the road network into dense trajectory areas and sparse trajec-
tory areas according to the distribution of vehicle trajectories,
and then selects 10 pairs of starting nodes and 10 pairs of
starting nodes and Target node pair (OD pair for short). The
10 OD pairs from the dense trajectory area are numbered
from 1 to 10 in the order of the distance between them,
and the other 10 OD pairs from the sparse trajectory area
are sequentially numbered from the shortest to the longest
distance. ∼20 number. In the experiment, 20 OD pairs are
used as the input of three path planning algorithms, and then
the accuracy, length and travel time of the return path of each
OD pair are compared with each algorithm.

1) COMPARISON OF HEURISTIC RESULTS
When traditional A∗ algorithm uses Euclidean distance
formula as heuristic function, it will visit useless nodes
many times. This paper proposes differential evolution and
improvedA∗ algorithm to solve this problem. In the improved
heuristic function of angle cosine, we can choose appropri-
ate weights to reduce the number of invalid nodes in the
search process of A∗ algorithm. In the simulation experiment,
theweights of 5 and 12 are selected to test, and the experimen-
tal data as shown in Table 6 are obtained.

From the experimental data in Table 7, the angle cosine
can be further analyzed as a heuristic function, as shown
in Figure 4.

TABLE 7. Units for magnetic properties.

FIGURE 11. T Comparison of angle cosine as heuristic function.

From the comparison results in the above table, it can be
seen that the traditional A∗ algorithm has a large number
of nodes to visit in the routing process, while the A∗ algo-
rithm with improved heuristic function based on angle cosine
significantly reduces the number of nodes to be visited in
the routing process regardless of the value of weight, and
improves the searching efficiency compared with the tradi-
tional A∗ algorithm.

2) COMPARATIVE ANALYSIS OF COMPREHENSIVE
IMPROVEMENT RESULTS
This papermainly improves the traditional A∗ algorithm from
three aspects: firstly, the minimum heap storage structure
is used to optimize the data structure of the open table,
which effectively improves the efficiency of extracting the
minimum F value node; secondly, the hash table is used to
optimize the index of the open table, which can reduce the
membership judgment complexity of the open table elements
from O (n) to 0 (n) Finally, the angle cosine function is
used to improve the heuristic function, which effectively
avoids the search of useless nodes under the premise of using
appropriate weights, and thus improves the search efficiency
of A∗. By comparing the traditional A∗ algorithm with the
comprehensive improved A∗ algorithm, the comparison is
shown in table 7 Experimental data.

Through the analysis of table 7, we can get the
comparison chart of the number of access nodes and the
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TABLE 8. Units for magnetic properties.

routing consumption time after the comprehensive improve-
ment of A∗ algorithm as shown in Figure 12.

FIGURE 12. T Comparison of A∗ algorithm before and after
comprehensive improvement.

The experimental results show that the improved heuristic
A∗ algorithm is faster than the traditional A∗ algorithm, and
with the increase of the number of search nodes, the optimiza-
tion range is more obvious, which lays a good foundation for
the path planning service in the actual static environment.

D. PATH ACCURACY COMPARISON
The accuracy of the planned path P is defined as the similarity
between P and the real path P∗. The higher the similar-
ity, the better the accuracy of the path planning algorithm.
Use the path similarity function pSim (P, P∗) defined in the
literature [16] to calculate the similarity between the planned
path P and the real path P∗. The calculation formula is

pSim(P,P∗) = (
∑

e∈P
⋂
P∗
len(e))× (

∑
e∈P∗

len(e))−1. (8)

The path accuracy obtained by the three algorithms for 20 OD
pairs is shown in Figure 2. Among them: (A) is the accuracy

of the algorithm planning the path during peak time; (B) is
the accuracy of the algorithm planning the off-peak time.

It can be seen from Figure 13: 1) Regardless of peak time
period or off-peak time period, the accuracy of the 2P++
algorithm is basically the same in the trajectory dense area
(the first 10 OD pairs) and the trajectory sparse area (the last
10 OD pairs), A∗ The algorithm results are similar. It shows
that the A∗ and 2P++ algorithms are relatively stable and are
not easily affected by the distribution of historical trajectory
data. 2) The accuracy of the L2R algorithm in dense trajec-
tory areas is significantly higher than its accuracy in sparse
trajectory areas, indicating that the L2R algorithm is highly
dependent on the distribution of historical trajectories, which
is consistent with the essence of the L2R algorithm, that is,
when there is a trajectory between a pair of nodes When,
return to the path contained in the most popular trajectory.
At this time, the path obtained by the L2R algorithm must be
the most similar to the popular path. Therefore, the L2R has
the highest accuracy. When some trajectories between nodes
are not popular trajectories or there is no trajectory between
them, the L2R infers the paths between them through the
preference transfer learning method, and splices them with
some of the shortest paths between them, thereby reducing
the cost of the L2R algorithm. Accuracy of sparse trajectory
area. 3) On the whole, for all 20 OD pairs, the accuracy of
the L2R and 2P++ algorithms is higher than that of the A∗

algorithm, whether it is peak or off-peak hours, indicating that
the driving experience extracted from the historical trajectory
effectively guides the path Planning: For nodes from dense
trajectory areas, the L2R algorithm is more accurate than
the 2P++ algorithm; for nodes from sparse trajectory areas,
the 2P++ algorithm ismore accurate than the L2R algorithm.

FIGURE 13. Comparison of accuracy of three algorithms.

E. PATH LENGTH COMPARISON
Table 5 lists the average length of the return path of A∗,
the L2R and 2P++3 algorithms for 20 OD pairs during peak
and off-peak hours.

It can be seen from Table 1: 1) Because the historical
experience information is not considered, the path distance
of the A∗ algorithm during peak hours and non-peak hours is
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TABLE 9. Average path length of the three algorithms.

the same; the paths planned by the L2R and 2P++ algorithms
during peak hours are longer than those during non-peak
hours. People tend to choose detours during peak hours to
avoid road congestion. 2) Compared with the 2P++ and the
L2R algorithms, the path of the A∗ algorithm is the shortest,
The path length calculated by the L2R algorithm during

peak hours and off-peak hours is 12% and 7.6% longer than
the path length calculated by the A∗ algorithm, respectively.
The path length calculated by the 2P++ algorithm during
peak and off-peak hours is relative to the A∗ algorithm. The
calculated path lengths were extended by 7.4% and 4.1%.
This is because the L2R and 2P++ algorithms usually choose
empirical road sections, so the path is longer. However,
the path planned by the 2P++ algorithm is shorter than the
path calculated by the L2R algorithm. Compared with the
path calculated by the L2R algorithm, the 2P++ algorithm
performs better during peak hours and off-peak hours. The
path length has been shortened by 4. 2% and 3. 4%.

F. TRAVEL TIME COMPARISON
The travel time of the three algorithms for the planned route
of 20 OD pairs is shown in Figure 3. Among them: (A) is the
travel time of the three algorithms in the peak time period;
(B) is the three algorithms in the off-peak time period The
travel time of the planned route. The shorter the travel time
of the path, the better the algorithm.

It can be seen from Figure 14: 1) Whether it is peak time or
off-peak time, the travel time of the three algorithm planning
paths increases with the increase of the distance between the
starting point and the destination point. 2) For the off-peak

FIGURE 14. Comparison of travel time of three algorithms.

TABLE 10. Total travel time of three algorithms.

time period (Figure 3(B)), whether it is a node in a dense
trajectory area or a node in a sparse trajectory area, when
the distance between the starting point and the destination
point is short (OD pair 1-5), A∗ algorithm The travel time of
the planned route is less than that of the L2R algorithm and
the 2P++ algorithm. However, as the path length increases,
the A∗ algorithm tends to spend more travel time. This is
because during off-peak hours, there are fewer vehicles on
the road and relatively smooth, and the travel time is more
advantageous when the travel distance is shorter. 3) For the
peak time period (Figure 3(A)), whether it is a node in a dense
trajectory area or a node in a sparse trajectory area, except for
the ODs numbered 1, 2 and 11, on the other 17 OD pairs,
the L2R and 2P++ algorithms The travel time of both is
much better than that of the A∗ algorithm, and the travel time
of the return path of 2P++ and the L2R algorithm is similar.
In order to show more accurately the travel time

of the planned path obtained by the three algorithms,
Table 2 lists the total travel time of the 20 planned paths
obtained by the three algorithms. It can be seen from
Table 2 that both the 2P++ and THE L2R algorithms are
better than the A∗ algorithm, and the 2P++ algorithm is
slightly better than the L2R algorithm, no matter in peak or
off-peak hours. Comparing Table 1 and Table 2, it can be seen
that the shortest route does not necessarily have a faster travel
time. This is mainly because people tend to choose the route
with faster road conditions instead of the shortest route during
daily travel.

The above results show that in areas with sparse trajectory
data, the path accuracy of the 2P++ algorithm is better
than that of the L2R algorithm and the A∗ algorithm; in
areas with dense trajectory data, the path accuracy of the
2P++ algorithm is lower than that of the L2R algorithm and
higher than that of the A∗ algorithm; For the average path
length, the performance of the 2P++ algorithm is better than
that of the L2R algorithm, but lower than the A∗ algorithm,
whether in peak or off-peak hours. For the total travel time,
the 2P++ algorithm is better than the A∗ and the L2R algo-
rithms. Therefore, the 2P++ algorithm is more stable, and
its planned path has higher accuracy, shorter driving distance
and travel time.

In summary, in view of the problem that the existing
path planning methods cannot consider path length and
user preferences at the same time, this paper combines
the path planning method based on trajectory and the path
planning method based on the shortest path, and proposes
a new path planning method, namely 2P++ algorithm.
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The 2P++ algorithm first uses the LSTM model to train
the trajectory data and obtains the user’s travel preferences,
and then uses the MCMC sampling technology to add the
acquired travel preferences to the search process of the A∗

algorithm, so that the planned route can be more consistent
on the basis of a shorter distance User’s travel preferences.
Theoretical analysis shows that the time complexity of the
2P++ algorithm is the same as that of the A∗ algorithm.
Experimental results show that the 2P++ algorithm is more
stable, and its planned path has higher accuracy, shorter travel
distance and travel time.

V. CONCLUSION
In recent years, with the rapid development of artificial intel-
ligence technology, it has made important achievements in
all aspects. This paper aims at the problem that A∗ algorithm
is easy to fall into local optimum in the picking and routing
of manipulator, which leads to the failure to find the opti-
mal path. In addition, due to the problem that differential
evolution algorithm can’t re plan, this paper proposes a new
method of robot arm Picking Based on AI technology. This
method is based on the combination of differential evolution
and improved A∗ method, and has achieved good results in
robot arm picking and routing. The simulation results show
that the proposed algorithm has lower overall cost and shorter
path length than improved A∗ algorithm. Compared with the
existing methods, the method in this paper is more suitable
for the path finding of manipulator picking.
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