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ABSTRACT Optimal management of demand-side flexibility in buildings is important for properly integrat-
ing large amounts of intermittent generation from windmills and photovoltaics. This paper proposes a novel
EnergyManagement Agent (EMA) concept that can optimize building’s energy costs with respect to external
prices while at the same time allow building’s flexibility to be used via explicit demand response. The EMA
combines Artificial Neural Networks (ANN) and model predictive control for modelling and optimization
of building’s flexibility. It continuously manages building’s flexibility with respect to external prices and
provides forecasts of the load and available flexibility for a defined time window. A proof-of-concept (PoC)
of the EMA is implemented for controlling a heat pump in an apartment, located in Oulu, Finland. Two
ANN-based models were implemented for modelling the energy consumption of the heat pump and the
indoor temperature of the apartment. Monte Carlo Tree Search based planning and control was implemented
for finding optimal control policies with the ANNs. The EMAPoCwas evaluated in 16-week period between
11 November 2019 - 1 March, 2020. When compared to a fixed setpoint control strategy, the EMA achieved
14.8 % lower costs under Nord Pool spot prices for Finland. At the same time, it was also able to accurately
follow the 24h load plans (NRMSE was 0.050) and activate the offered flexibilities (NRMSE was 0.074).

INDEX TERMS Demand response, artificial neural network (ANN), optimal control, model predictive
control (MPC), optimization of HVAC system.

I. INTRODUCTION
The power generation of renewable energy sources (RES)
such as photovoltaics (PV) and windmills is volatile and
cannot be controlled in the same way as in traditional power
plants. The growing penetration of these type of RES makes
demand-side an essential part of power grid management.
In this situation, residential consumers have an important role
as they control a large share of flexible resources that can be
used for balancing the power grid.

Demand response (DR) programs focusing on residential
consumers have been studied extensively [1]–[6], but there
is still a lack of solutions that properly integrate small-scale
consumers and prosumers as core components of smart grid
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management. There are three key challenges that need to be
properly addressed by the consumer flexibility management
systems. First, the consumer flexibility management needs to
be fully automated and it needs to adapt to end-user behavior
and preferences so that they do not have to be bothered with
the daily operation. Second, the DR solutions addressing
consumers and prosumers need to bemore predictable at finer
level of granularity in order to properly manage distributed
energy resources (DER) within distribution networks. Third,
demand-side flexibility management solutions need to sup-
port both implicit and explicit demand response programs at
the same time. This is because fluctuations in the generation
and demand are typically only visible in the global electricity
market prices and optimizing flexibility only based on these
prices (i.e., implicit demand response) can cause bottlenecks
within the distribution network. Therefore, the demand-side
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flexibility management system should provide aggregators
and Distribution System Operators (DSO) with means to
directly activate the available flexibility (i.e., explicit demand
response) as long as the consumer is properly compensated.

Buildings are major consumers of energy (constitute
roughly 40% of the total energy consumption in the EU1) and
typically have large thermal mass that can be used for storing
energy for short time periods. Therefore, buildings and their
heating, ventilation and air conditioning (HVAC) systems are
good source for demand-side flexibility. However, buildings’
HVAC systems have complex non-linear dynamics with long
feedback cycles caused by the thermal mass of the building.
This makes it challenging to design controllers that can utilize
the available flexibility in an optimal way.

Different type of approaches for automated and optimal
energy management in buildings have been proposed in the
literature. A popularmethod for learning optimal control poli-
cies in buildings is model-free reinforcement learning (RL),
which has been demonstrated to improve energy efficiency
and reduce costs when compared to traditional rule-based
control strategies [7]–[9]. However, model-free RL has two
significant limitations, which make it non-ideal solution for
consumer flexibility management. First, RL is sample ineffi-
cient making it difficult to apply in the real world as it requires
a lot of trial and error learning. Second, model-free RL
methods do not natively provide means for explicit demand
response, because without a model of the system there is no
way for forecasting the building’s load profile and available
flexibility nor predicting the response of HVAC systems to
explicit demand response events.

A model-based approach such as optimal control can,
at least in theory, properly address the above-mentioned chal-
lenges. Optimal control requires an accurate model of the
building and associated energy systems. There are tools for
creating very accurate physical models of buildings such as
Energy Plus2 and Revit.3 However, these types of models
can be impractical due to the modelling effort and their
unsuitability for real-time optimization.

To address these limitations there is a need for more
lightweight approaches that can learn models automatically
from data (or learn some of the model parameters of an
otherwise physics-based model). These type of approaches
could be classified either as optimal control with learned
model dynamics or model-based reinforcement learning as
they nicely bring together the science from optimal control
theory and machine learning communities.

Neural networks (NN) are powerful function approxima-
tors, which have been shown to provide state of the art results
in building energy modelling and load forecasting [10], [11].
Neural network based model-predictive control (MPC)
have also been demonstrate to provide good results on

1https://www.odyssee-mure.eu/publications/policy-brief/buildings-
energy-efficiency-trends.html

2https://energyplus.net/
3https://knowledge.autodesk.com/support/revit-products

energy-efficient control of HVAC systems [12]–[14]. Edge
architectures to support ANN-based MPC (i.e., ANN-MPC)
have been also proposed in the literature [15]. However, there
are still some limitations in the existing work. In particular,
the current work on ANN-MPC focuses on energy-efficiency
and implicit demand response, and to the best of our knowl-
edge, there are no ANN-MPC approaches that provide both
implicit and explicit DR capability.

In this paper, we propose a novel approach for intelligent
agent based energy and flexibility management in buildings.
A central concept in the approach is Energy Management
Agent (EMA) that automates and optimizes consumer flex-
ibility management. EMA is not only designed to optimize
energy with respect to external signals (i.e., implicit demand
response), but also contribute to power grid management in
two ways. First, EMA provides interface for relevant stake-
holders (e.g. e.g. DSOs, TSOs, aggregators) to receive infor-
mation about the load profile it plans to follow. EMA will
also provide estimate of the building’s flexibility at different
time periods in the future and execute explicit DR actions by
activating these flexibilities.

In addition to the general EMA framework, a key contri-
bution of the paper is a proof-of-concept (PoC) implementa-
tion of the EMA for an apartment located in Oulu, Finland.
We use neural networks to learn dynamics of the apart-
ment heating and utilize Monte Carlo Tree Search (MCTS)
for planning and control. MCTS is a simulation-based tree
search technique that has become popular in game play-
ing. Most well-known examples are the AlphaGo [16], and
AlphaZero [17] that combine MCTS with deep reinforce-
ment learning to provide superhuman and state-of-the-art
performances in Go, Shogi and Chess. We demonstrate the
approach in context of heat pump control and show that it
is possible to simultaneously optimize energy consumption
with respect to external prices while providing accurate load
forecasts and DR responses.

The rest of the paper is structure as follows. Section II
represent the general EMA concept, including the functional
architecture and the overall approach for modelling and con-
trol. Section III describes the PoC implementation of an EMA
designed for optimizing heat pump control under spot prices.
Section IV presents the validation of the PoC implementation.
Section V concludes the paper.

II. ENERGY MANAGEMENT AGENT
A. CONTEXT VIEW
The Energy Management Agent optimizes energy within
a site by controlling flexible resources to maximize con-
sumer benefits. The consumer benefits are represented as a
cost/reward4 function that can be customized based on the
end-user preferences. End-user comfort is typically repre-
sented as constrains (e.g. temperature limits), but can be
also be included to the cost function. In section 3.C we

4Whether reward or cost function is used depends on the optimization
algorithm.
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FIGURE 1. Context view of the energy management agent.

introduce the specific cost function used for the EMA PoC
implementation.

The interaction between EMA and relevant external sys-
tems is presented in FIGURE 1. EMA follows the idea of
bottom-up based flexibility management [18] where a build-
ing informs an aggregator both about the load profile it plans
to follow and the flexibilities available at different time peri-
ods. This approach allows the aggregator to explicitly activate
the flexibilities available at different time periods.

There is a wide variety of market structures, incentives,
aggregation methods and DR programs between countries
and geographical areas in the world. Energy sector is also
under transition and new concepts such as Peer-to-Peer (P2P)
trading and Virtual Power Plants (VPP) that change the
dynamics of energy markets are becoming more popular.
Because of this, EMA is designed to provide common func-
tionality and interfaces that can be easily customized for
different market structures and aggregation methods. Con-
ceptually, this integration and customization is done within
the Demand response interface component which provides
external stakeholders such as utilities, retailers and aggrega-
tors with standard (e.g. IEC 62746 / OpenADR2.0b) interface
to interact with EMA. This component is also responsible
for possible price forming, and trading activities required
in the given setting. As presented in FIGURE 1, Demand
response interface component is not part of EMA and is thus
outside of the scope of this paper. A logical description of
the flexibility management interface provided by EMA is
presented in TABLE 1.

In addition to the Demand response interface, relevant
external systems for EMA include Building and home
automation systems, Power market data services, and Mete-
orological services. EMA interfaces with building and home
automation systems in order to 1) collect necessary data about
the building environment and energy consumption, 2) and to
control flexible resources. Weather forecasts are fetched from

TABLE 1. EMA flexibility management interface.

FIGURE 2. Functional view of the energy management agent.

meteorological services and electric price data from Power
market data services such as the one offered by Nord Pool.

B. FUNCTIONAL VIEW
The Energy Management Agent consist of two type of func-
tional components as illustrated in FIGURE 2.
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The Energy Planner is responsible for planning and opti-
mizing the energy usage within the site at all times. The
functionality of the Energy Planner can be divided into five
main parts:

1. Once a day, before the day-ahead market closes,
the Energy Planner sends a Load plan message to the
DR Interface. The details on how the load plan is opti-
mized in practice is presented in section 3.C.

2. Continuously during the day, the Energy Planner pro-
vides the DR Interface with information about the flex-
ibility potential of the site.

3. Whenever a Load profile request is received the Energy
Planner optimizes a new load plan with the given con-
strains and returns it in a response message.

4. Whenever a Change to load plan message is received,
it will perform the same operation as in step 3, but this
time the new load profile is activated and sent to the
Controllers.

5. Continuously, the Energy Planner monitors and plans
the site overall load profile and assigns individual load
profiles for each Controller. This is done continuously
to be able to adapt to DR events and other unexpected
changes in the planned load profile.

Logically, there is a Controller component for each flexible
resource type within a site. Each Controller component is
responsible for controlling a flexible resource according to
the plan provided by the Energy Planner. The length of the
time series is configurable and depends on the length of
the overall load plan. Details on the Energy Planner and
Controller are provided in section II.C.

C. NEURAL NETWORKS FOR PLANNING AND CONTROL
The approach for implementing the functional components
of the EMA can be classified either as model-based rein-
forcement learning or optimal control where the mod-
els are learned from data with neural networks. FIGURE
3 presents a block diagram illustrating how neural net-
works and optimization methods are utilized in the EMA
framework.

The Energy Planner utilizes ANN-based optimization for
finding an optimal control policy for each flexible resource
from the space of possible load profiles. The optimality of
the load plan is measured by a reward or cost function,
which varies depending on the end-user and incentivemodels.
In addition to the flexible resource models, the Energy Plan-
ner can utilizemodels for inflexible loads and RES generation
in the load plan optimization. In generic-level, the objective
of the Energy Planner in making the load plan is presented
in (1). A concrete example of this objective function, tied to
spot-price optimization, is presented in section III.C (4).

max
a1,...,aT

∑T

t=1
r (st , at)

s.t. st = ff (st−1, at−1)+ fg
(
st−1,

)
+ fd

(
st−1,

)
smin ≤ st ≤ smax , (1)

FIGURE 3. Model predictive control for building flexibility management.

where r is the reward function, st is the state of the system,
and at is the action. The smax and smin represent possible
constrains such as the minimum and maximum values for
indoor temperature. The ff , fg and fd represent ANN mod-
els for flexible resources, power generation and inflexible
demands, respectively. In practice, each of the functions
ff , fg and fd can be represented with one or more ANN
models and there is a wide variety of ANN architectures
studied in this context, including Feed Forward Neural
Networks (FFNN) [19], [20], Long short-term memory
(LSTM) [21], [22], Factored Conditional Restricted Boltz-
mann Machine (FCRBM) [23], Convolution Neural Network
(CNN) and Stacked Booster Network (SBN) [11], and Recur-
rent Inception Convolution Neural Network (RICNN) [24],
to name a few.

EMA approach does not enforce any particular non-linear
optimization methods to be used for making the load
plan. In fact, it is still an open research question to find
the most suitable methods for ANN-based optimal con-
trol. The optimization methods can be roughly classified
either as derivative-based methods or gradient-free meth-
ods. Derivative-based methods are more efficient, but it has
been traditionally difficult to apply them in ANN-based con-
trol due to exploding and vanishing gradient problems [25].
These problems can be mitigated with computationally
heavy methods exploiting second derivatives such as the
Newton-Raphson method [26] and the Interior-point opti-
mization [14], [27]. Additionally, there is recent work that
shows how more lightweight first order methods based on
Tensorflow can be used for ANN-based planning, but the
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approach does not support additional constrains making it
infeasible for typical EMA applications [28]. Gradient-free
methods such as Genetic Algorithms (GA) [29], [30] and
Particle Swarm Optimization (PSO) [31], [32] have been
so far more popular for ANN-based energy optimization in
buildings. The PoC implementation of the EMA, presented in
section 3, utilizes also a gradient-free method, called Monte
Carlo Tree Search (MCTS) [33] for planning and control.

The Energy Planner can utilize either an open loop or
closed loop control such as MPC for making the load plan
by adjusting how often a new load plan is made. In MPC new
load plan is made at every time step whereas in open loop
control a plan is made once per length of the load plan. This
design choice is a trade-off between the accuracy of the load
plan and optimality of the energymanagement that minimizes
the cost function. That is, with MPC a plan is optimized at
every time step with the latest information which leads to
more optimal control but less predictable long term plans
when compared open loop control.

It should also be noted, that optimization can be also
utilized for planning the flexibilities (i.e., optimizing a max-
imum flexibility for a period where it is likely that the
price for flexibility is the highest). However, the current
approach for evaluating flexibilities is based on forecasting
the loads with maximum and minimum control values for
every single time period separately and assumes that all of the
other time periods are executed according to the current load
plan.

As can be seen from FIGURE 3, the Controller also uti-
lizes ANN-based model predictive control. In contrast to the
Energy Planner where it is possible to configure between
MPC and open loop control, the Controller will always utilize
MPC since there is no tradeoff to be made in this case.
As presented in section II.B, the objective of the Controller
is to follow the individual load plan assigned by the Energy
Planner. The objective of the Controller can be thus presented
as follows.

min
a1,...,aT

∑N

t=1

(
Et − Êt

)2
s.t. st = ff (st−1, at−1)

smin ≤ st ≤ smax

Êt ∈ st, (2)

where Et is the energy in the load plan, Êt is the energy
consumption predicted by the model ff , and st is the state
of the system including the energy consumption and user
comfort.

Controller only requires model(s) of the flexible resource
it is controlling. Same model as used by the Energy Plan-
ner can be typically used for control. It should be also
noted, that if the flexible resource dynamics are simple
and there are no long delays it is also possible to utilize
rule based logic or proportional-integral-derivative (PID)
controller instead of NN-MPC. However, NN-MPC is the

preferred option with flexible resource that have non-linear
dynamics and/or delays as it has been shown to outperform
these more classical control strategies in building HVAC
control [12], [14].

III. PROOF-OF-CONCEPT IMPLEMENTATION
The Energy Management Agent PoC implementation was
implemented with Python. Tensorflow 2.0 with Keras API
was used for implementing the ANNs for heat pump and
heating dynamics modelling. The interface between EMA
and the DR interface, was implemented on top of MQTT
with Eclipse Paho Python client. The messages, presented in
TABLE 1, are serialized with JSON. Weather forecast data
is read from Finnish Meteorological Institute (FMI) open
APIs5 and electricity price data from Nord Pool Power Data
Service.6

Section III.A briefly introduces the apartment where the
EMA was deployed and describes the relevant interfaces.
Section III.B presents how the apartment’s flexible resource
(i.e., a heat pump) is modelled with ANNs and section III.C
describes how the planning and control were implemented
with MCTS.

A. INSTANTIATION AT APARTMENT HEATING
The EMA instance was developed and deployed for test
apartment located in Oulu, Finland. The apartment’s floor
area is 72m2 and it has three rooms and sauna. The apart-
ment is equipped with a variety of sensors (e.g. temperature,
humidity air pressure and CO2) of which the temperature
sensors located in the living room, kitchen and outside of the
building are used for this case study. Sensor information is
received via Bluetooth Low Energy (BLE) in 1-minute reso-
lution. The apartment is also equipped with energy meters to
monitor the energy consumption of the whole apartment and
various submetering points such as the heat pump in 1-minute
resolution.

The apartment is equippedwith a heat pump (ToshibaDigi-
tal RAV-SM307KRTP-E indoor unit and RAV-SM304ATP-E
outdoor unit) that acts flexible resources for the case study.
The output temperature of the heat pump can be con-
trolled by modifying a setpoint via a Modbus7 interface.
We did not have access to the internal sensors and con-
trol logic of the heat pump, which makes it challenging
to accurately control it. Moreover, the requested setpoints
do not fully match with the temperatures measured within
the apartment (i.e., the room temperatures are typically
1-2 ◦C higher than the requested setpoint). For this reason,
a simple wrapper layer was implemented that controls the
heat pumps so that the requested setpoints better reflect the
actual temperatures within the apartment. The simple logic
of the control wrapper is presented below as python-like
pseudocode.

5https://en.ilmatieteenlaitos.fi/open-data-manual-time-series-data
6 https://www.nordpoolgroup.com/historical-market-data/
7https://modbus.org/
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FIGURE 4. Feed forward neural network for temperature dynamics modelling.

FIGURE 5. Feed forward neural networks for heat pump energy consumption modelling.

def control_wrapper(setpoint,
temperature,
last_setpoint,
threshold = 0.25):

if setpoint-threshold<= temperature< set_point+ threshold:
setpoint = last_set_point

elif temperature < set_point − threshold:
setpoint = setpoint

else:
setpoint = 18.0

return setpoint

B. HEATING MODELLING WITH NEURAL NETWORKS
The apartment’s heating dynamics and the heat pump power
consumption are modelled separately with Feed Forward
Neural Networks. The sampling time for the modelling is
chosen to be 15-minute since the temperature of the apart-
ment does not change rapidly and there can be long delays
in the heat pump control. The selected sampling time is also
fine enough granularity for energy management and demand
response since the current markets operate at 60-minute
resolution.

The first model, architecture presented in FIGURE 4, fore-
casts the indoor temperature of the living area (average of the
living room and kitchen temperature measurements is used)
over the next sampling time. The inputs of the model include
indoor temperatures from eight past sampling periods, out-
door temperature for eight past sampling periods (weather
forecast are used for long horizon forecast in online mode),
the setpoint of the last sampling period, and the next sampling
period’s setpoint (i.e., the period for which the temperature
forecast is being made). Longer than 15-minute forecasts
are performed by calling the model iteratively and using the
indoor temperature forecast of the previous iteration as input
for the next.

The second model, presented in FIGURE 5, forecasts the
energy consumption of the heat pump for the next sampling
period. The model consist of two FFNNs, which are trained
separately: themainmodel and the residual model. The inputs
of the main model include past 16 indoor temperature, out-
door temperature and setpoint samples, and a setpoint for
the next sampling period. It should be noted that the future
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values for indoor temperature are provided by the temperature
model presented in FIGURE 4. The residual model (b) was
developed to correct the forecast of the main model based on
residual information obtained from past forecasts. It utilizes
10 past residuals for correcting a forecast. When the model
(a) is called iteratively to perform a longer forecast, the same
correction provided by the model (b) is used in all iterations.

In all three FFNNs, Rectifier Liner Unit (RELU) activation
function is used for all neurons except the outputs which are
linear. Adam [34] is used as the optimization algorithm in
training of the models. All figures of the FFNNs were created
with Keras and the None in the input shape indicates that the
batch size is not fixed.

The models were trained and evaluated with a total
of 72 days of data collected during 2019. It should be
noted, that the 72 days were not consecutive, but instead
spread between 18th of October and 10th of November 2019.
The training set consisted of 43 days collected between
18th of October and 10th of November. The test set consisted
of 29 days collected between 11th of November and 28th

of February 2020 (there were some longer caps caused by
problems in the data collection).

Root-mean-square error RMSE (3) was used as the error
metrics in the model validation. The one-step prediction
errors for the temperature and energy models were 0.103 Cel-
sius degree and 0.023 kWh, respectively. When normal-
ized with respect to maximum and minimum values the
NRMSE (4) are 0.032 and 0.077 for the temperature and
energy consumption models, respectively.

RMSE =

√
1
n

∑n

i=1

(
ŷi − yi

)2 (3)

NRMSE =
RMSE

ymax − ymin
(4)

Figure 6 illustrates the autocorrelation function (ACF)
plots for the one-step ahead residuals. The dashed line and
the solid line correspond to the 99% and 95% confidence
intervals, respectively. The energy model residuals do not
show any significant correlation, but there are still some lag
values that go above the 95% and 99% confidence bands. The
temperature model residuals show stronger correlation that
cannot be fully explained as white noise. However, the corre-
lation is in general weak and modelling the residuals did not
help to improve the accuracy nor reduce the correlations.

C. PLANNING AND CONTROL WITH MONTE CARLO TREE
SEARCH
As presented in section II.C, EMA control is performed at
two levels. The Energy Planner makes a load plan for the
whole site, which includes load plans for individual flexible
resources. The role of the Controller(s) is then to follow the
plan (i.e., to minimize (2)). The control window N in (2)
was selected to be 4 (i.e., 60 min) and the size of the search
space was thus 54. We selected energy cost reduction as the
optimization target for the EMA PoC implementation under
hourly changing electricity spot prices. Comfort (i.e., indoor

FIGURE 6. Autocorrelation function plots for energy (left) and
temperature (right) one-step ahead forecasts errors.

temperature in this case) is included as a constrain to the
optimization problem presented as follows:

min
∑N−1

t=0
PtEt

sbt. Et = fE
(
at , at−1, . . . , at−δS ,T t ,Tt−1, . . . ,Tt−δE ,Ot ,

Ot−1, . . . ,Ot−δO
)

Tt = ft
(
Tt−1, . . . ,Tt−δE , at , at−1, . . . ,

at−δS ,Ot ,Ot−1, . . . ,Ot−δO
)

Tref − ε1≤ T t ≤ Tref − ε2
∀at ∈ {21, 22, 23, 24, 25}

∀t ∈ {0, 1, . . . ,N − 1} , (5)

where Pt is the hourly changing energy price, fE is the energy
consumption model, and ft is the indoor temperature model.
Tref is the indoor temperature reference value and the slack
variables ε1 and ε2 specify how much the temperature can
deviate from the reference setpoint.

The complexity of the planning was reduced in two ways.
First, the planning was done at 60 min resolution instead
of 15 min. This is reasonable approach in this case since
the Nord Pool day-ahead prices change hourly. Second,
the 24 h load plan was made in 24 parts and the length of
the sliding planning window was selected to be 8 hours.
Thus the search space of potential scenarios for each planning
window was 58.

The load planning and control in the EMA PoC imple-
mentation is based on the Monte Carlo Tree Search. MCTS
has not been yet widely studied in building energy optimiza-
tion or demand response. However, it provides a lightweight
alternative to derivative-based methods for planning and
control with ANN models. It is also a natural selec-
tion over derivative-based methods when the control inputs
(i.e., the heat pump setpoints in this case) are not con-
tinuous. There are many variants for MCTS. In our PoC
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implementation, the algorithm consist of four steps: selec-
tion, expansion, simulation, and backpropagation. Next these
steps and how they are implemented in EMA are briefly
presented.

1) SELECTION
Starting from the root node (i.e., current state of the system)
select successive child nodes (i.e., possible states that can be
reached from the current state) until a leaf node is reached.
A leaf is any node that has a child node from which no sim-
ulation has been executed. Upper Confidence Bound applied
to Trees (UCT) [35] (6) is used as the evaluation function to
balance exploration-exploitation trade off.

Vi = xi + C

√
ln
(
np
)

ni
, (6)

where xi is the empirical mean value of the node i, C is a
constant used for balancing between exploitation and explo-
ration, and np and ni are the number of times the parent of
node i and the node i have been visited, respectively.

2) EXPANSION
Unless the leaf node is the last time step on the planning
or control window, create new child node and choose one
of them by taking a valid action from the leaf node state.
Child nodes are possible states that can be reached from
the leaf node by taking a valid action (i.e., setpoint allowed
with respect to the forecast indoor temperature of the state).
In practice, the action is taken by predicting the next (child)
state with the ANN models presented in section III.A.

3) SIMULATION
Complete a rollout from the selected child node until the end
of the planning or control window is reached. The purpose
of the simulation is to evaluate the value of the current state.
Typically, random policy is used but EMA uses fixed policy
instead where the simulation is performed with a fixed set-
point (i.e., the desired temperature of the apartment). Fixed
setpoint policy is used as the simulation policy, because it is
more likely policy than random sampling in this setting and
provides thusmore accurate estimate for the value of the state.
Similarly to the expansion phase, the simulation is performed
by utilizing the ANN models presented in FIGURE 4 and in
FIGURE 5.

4) BACKPROPAGATION
Use the result of the simulation to update the values of all
nodes on the path from the child node to the root node (i.e.,
current state). The value of a node is the total reward that has
been reached from a node divided by the amount of visits to
the node. The equations (2) and (4) cannot be directly applied
in MCTS as the score function however. This is because the
MCTS is typically applied in two player games, where scores
are −1, 0, 1 for loss, draw and win, respectively. This means
the score of a node is therefore typically within [−1, 1]. The

problem here is that if the score values differs significantly
from this range, the typical value (i.e., 1

√
2
) for the constant C

in (6) is not feasible. A solution to this issue is to modify (2)
and (4) so that score values remain close the range [−1, 1].
Another option would be to find a value for C so that it is
feasible for the new score range. We used the first approach
in our case study. In practice, the minimum and maximum
values needed for scaling the rewards were first evaluated
by running a fixed setpoint policy with historical data and
updated with better estimates during the simulations.

IV. EVALUATION
The goal of the EMA concept is to realize an intelligent
software agent that can optimize consumer’s energy locally
(e.g. with respect to external price signals) while at the same
time contribute to power grid balancingwithmore predictable
load profiles and flexibility offers. To this end, the aim of the
evaluation was to answer following questions:

1. Howmuch EMA is able to reduce costs when compared
to a baseline control strategy?

2. How accurately EMA is able to follow the load plans
during and outside of explicit DR events?

The evaluation was divided into two scenarios. The first
scenario, presented in section IV.A, targeted to answer the
first question by comparing EMA to a fixed setpoint (FSP)
controller in local energy optimization with hourly changing
electricity prices (i.e., implicit demand response). The second
scenario, presented in section IV.B, extends the first scenario
with explicit DR events and evaluates howwell the EMAPoC
is able to follow the day-ahead load profile both during and
outside of the DR events.

A challenge in the evaluation was to credibly compare the
control strategies. This is not straightforward since weather
influences the energy consumption and the energy prices vary
dynamically, making it impossible to replicate the exact same
conditions for EMA and the baseline control. Moreover, it is
also important to collect data from long enough period. In the
literature simulations have been typically used in similar set-
tings [12], [13], [30]. However, if we would directly simulate
with the models represented in section III, the results would
be too optimistic as the accuracy of the models used in plan-
ning and control would be perfect. To tackle this problem and
make the setting as realistic and fair as possible, errors were
sampled from the empirical error distributions obtained dur-
ing the validation of the models. As presented in section III.B,
the ACF showed only were weak correlations and it is thus
possible to sample the errors independently from each other.
With temperature model there is also no dependency between
the error and the model inputs or outputs. With the energy
model there was a natural correlation between the errors and
themeasured energy consumption. This correlationwas taken
into account in the error sampling by restricting the error
so that the energy consumption remains between zero and
maximum power of the heat pump. This way the models used
by EMA have the same accuracy as with real apartment and
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FIGURE 7. Measured outside air temperature and corresponding
electricity spot price for the evaluation period.

the whole concept can be evaluated in as realistic setting as
possible.

The evaluation period was 16 weeks and it was executed
between 11 November 2019 - 1 March, 2020. FIGURE 7
presents the outside air temperatures and the Nord Pool
Elspot electricity prices for Finland in the evaluation period.
The simulations were conducted on Intel Core i5 with
16 GB RAM.

A. IMPLICIT DEMAND RESPONSE
In this scenario, EMA is providedwith the next day electricity
prices and it optimizes energy costs by controlling the heat
pump. The performance of EMA is compared to a baseline
controller with fixed setpoint at 23.0 ◦C. The slack variables
ε1 and ε2 in (5) were set to 0.5 and 2.0, respectively.
Since the electricity costs are reported at one hour reso-

lution the planning window for the EMA was 24 time steps
long. On average, the Planner used 4minutes (roughly 10 sec-
onds for each hour) to make a load plan. As presented in
section II, the Controller follows the original plan provided
by the Energy Planner and tries to maximize (2). Control was
executed at 15-minute intervals and the control window was
60 minutes (4 time steps) long. One-second time was given to
the Controller for searching the optimal control at each time
step.

FIGURE 8 and FIGURE 9 present the daily and cumu-
lative electricity costs for the baseline (i.e., FSP) and EMA
controllers.

FIGURE 8. Daily electricity costs for baseline (blue) and MCTS (orange)
based control.

FIGURE 9. Cumulative electricity costs for baseline (blue) and
MCTS (orange) based control.

During the 16-week validation period the electricity cost
of the EMA controller was 14.8% lower than with the base-
line controller with a fixed setpoint. It should be noted
that roughly half of the costs reduction originated from
reduced energy consumption instead to spot price optimiza-
tion. Although the main goal was not to reduce energy con-
sumption, EMA found a way to reduce the costs by keep-
ing the temperature closer to the minimum value (i.e., 22.5
Celsius degree). It should be also emphasized that evalua-
tion focused only to the electricity prices, which constitute
roughly 1/3 of the total price in Finland (the other 2/3 comes
from the network free and taxes).

FIGURE 10 and FIGURE 11 illustrate snapshots of heat
pump loads and indoor temperatures for the EMA controller
during the validation period. The data is represented in 15-
minute resolution. FIGURE 10 illustrates a period between
2019-12-29T16:00 and 2019-12-31T:06:00 with two clear
drops in the electricity price during the nights. As can be seen
from the figure, the EMA exploits these low price periods for
extra heating. FIGURE 11 shows a high peak in the electricity
spot price at 2020-01-23T:07:00. As can be seen, the EMA
pre-heats the apartment in order to avoid heating during the
high price periods. In general, the EMA controller also used
much shorter heating cycles than the FSP in order to keep the
temperature close to the minimum value.
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FIGURE 10. Heat pump loads (above) and indoor temperatures (below)
between 18:00 2019-12-29T16:00 and 2019-12-31T:06:00.

FIGURE 11. Heat pump loads (above) and indoor temperatures (below)
between at 2020-01-23.

B. COMBINED IMPLICIT AND EXPLICIT DEMAND
RESPONSE
In the second part of the validation, the implicit demand
response optimization (i.e., scenario 1) is extended with daily
demand response events to evaluate how well the EMA
implementation can support explicit and implicit demand
response at the same time.

There can be many reasons for aggregators and utilities
for utilizing explicit DR in order to deviate the consumer
from their normal load profile. In this evaluation, the explicit
DR events were selected to occur during low price periods

in order to simulate local bottlenecks in the distribution net-
work. That is, the explicit DR events were selected to occur
during the hour of the lowest price for each day to follow
the assumption that majority of the consumers would be
optimizing energy within a substation causing a peak load in
that area. The duration of each DR event was 60 minutes and
a total of 112 DR events were executed during the validation
period (i.e., one event per day).

In similar way as in scenario 1, EMA makes the initial
load plan by optimizing the heating with respect to Finnish
Elspot prices and sends the Load planmessage to theDemand
response interface. The Load plan message contains the
estimated load of the heat pump for every hour of the day.
At 60-minute intervals EMA also forecasts the up and down
flexibility for each remaining hour in the current market
window (i.e., current day) and sends the Flexibility Potential
message to the Demand response interface. Only the first
flexibility offer of the day (i.e., 24h forecast) was used in this
case study. From the first Flexibility potentialmessage of the
day, the down flexibility for the hour with the minimum price
was activated by sending the Changes to load plan message
to the EMA. EMA then made a new plan taking the activated
flexibility into account. It should be noted, that exactly the
same control strategy as in scenario 1 was executed and
the only difference was that the flexibility was activated for
the highest price period.

Following two indicators were used for validating the suit-
ability of the EMA PoC for explicit DR:
1) Accuracy of the original load plan without DR

events: The accuracy of the original load plan measures
howwell EMA is able to follow the planned load profile.
In practice, it is measured by calculating the RMSE
(eq. 3) between the Load plan and the actual measured
load. This is an important metric for two reasons. First,
the load plan provides the aggregator a forecast on the
load profile which the aggregator will use for planning
the DR actions. Second, all flexibility is compared to
this baseline so errors in this baseline make it also more
difficult to validate the flexibility.

2) Accuracy of the original load plan during the DR
periods: This indicator measures how accurately the
EMA is able to activate the offered flexibility. In prac-
tice, it consists of following interlinked tasks which
cannot be measured separately: accuracy of the flexi-
bility forecasts and ability of the controller to follow
the adjusted load profile. RMSE (eq. 3) is used as the
metric for the accuracy of the load plan during the DR
event. The RMSE is calculated for the hours (112 events
in total) where explicit DR events where executed by
comparing the modified load plan (i.e., the original Load
plan modified with the flexibility activated from Flexi-
bility potential message) to the measured load.

TABLE 2 presents the RMSE and NRMSE metrics for the
abovementioned indicators obtained during the validation.

The EMA was able to follow the load profile accurately
both during and outside of the DR events. The NRMSE for
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FIGURE 12. Examples of heat pump load profiles during the validation period. Blue line (with square markers) depicts the load plan
before flexibility activation. Red line (with circle marker) presents the updated load plan after the flexibility offer for the hour with the
lowest price was accepted. Green line (with triangle markers) depicts the actual measured load during for each hour. The data is
represented in 60-minute resolution.

TABLE 2. Error metrics.

the load plan outside of the DR events was 0,050 which is
even lower than the one-step energy model accuracy (0.077)
presented in section III.B. The main reasons for this are that
the 1) RMSE is measured in 60-minute resolution instead
of 15-minute, and 2) that the Controller tries to fulfill the
daily load plan (i.e., forecast) by controlling the setpoint in
15-minute intervals. With NNRMSE of 0.074, the accuracy
of the load plans is slightly worse during the DR events. A
reason for this that the indoor temperature during these events
drops typically closer to the minimum value and even small
errors in the temperature model forecasts are significant for
the load profile forecasting. Nevertheless, the error is still
small and the validations show that the heating behavior of
the apartment is highly predictable.

FIGURE 12 illustrates the original load plans (in blue with
square markers), the actual load plans with flexibility activa-
tion for the lowest price hour (in red with circle markers) and
the measured loads (in green with triangle markers). In con-
trast to the scenario 1, the load profile data is represented
in 60-minute resolution, which is the actual resolution of
the Nord Pool power markets. This resolution was selected
instead of the control resolution (i.e., 15-minutes) to properly
visualize how well the EMA controller is able to follow
the load plan. The six days visualized in FIGURE 12 were
selected randomly among 18 days with the lowest hourly
price.

The DR events were activated for following time periods:
2019-12-09T02:00, 2019-12-11T03:00, 2019-12-30T03:00,
2019-12-31T03:00, 2020-01-03T03:00, 2020-02-23T03:00.
As can be seen, there is a roughly a 500-600Wh delta between
the original (blue) and updated (red) load plans. The actual
load (green) also follows the load plan (red) accurately during
these DR events.

V. CONCLUSION
This paper presented a novel concept and implementation of
a consumer flexibility management solution, called Energy
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Management Agent. A key idea in EMA is to learn building’s
HVAC dynamics with ANNs and utilize model-predictive
control for finding optimal control policies. This way EMA
can fully automate consumer flexibility management, as well
as, reduce the efforts needed for modelling. Another key
idea in EMA is to provide support for implicit and explicit
demand response at the same time. This is important so that
the flexibility available in the consumer-side can be seam-
lessly utilized for the most critical need at any given time
(e.g. a bottleneck in the distribution network) while making
sure that the consumer is properly compensated. The EMA
utilizes implicit DR for planning a load profile for a given
period (e.g. day). It then follows the load profile by utilizing
model predictive control with ANN-based models. On fixed
intervals, it advertises the up and down flexibilities, which
can be activated by an aggregator. This way the aggregator
has a good view on the consumers load profile and available
flexibilities, and hasmeans to directly activate the flexibilities
when needed.

To evaluate the EMA concept in implicit and explicit
demand response scenarios, a prototype was designed and
implemented for controlling a heat pump in a test-apartment
located in Oulu, Finland. The heat pump control was executed
by modifying a temperature setpoint via a Modbus interface.
The energy consumption of the heat pump and the indoor
temperature of the apartment were modelled with separate
ANNs. MCTS-based planning and control was implemented
for searching optimal control policies with the ANNs.

The validation period was 16 week long and was executed
between 11 November 2019 - 1 March, 2020. The validation
consisted of two scenarios that were simulated with the mod-
els validated against real data. The focus in the first scenario
was on implicit demand response. EMA was compared to
fixed setpoint control strategy and it achieved 14.8 % lower
costs under Nord Pool spot prices. In the second scenario
the setting was extended with explicit DR events and the
accuracy of the load plans, as well as, flexibility offers and
activations were measured. EMA was able to follow the 24h
load plan accurately both outside (NRMSE was 0.050) and
during (NRMSE was 0.074) the explicit DR events.
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