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ABSTRACT This paper proposes a modified crow search optimizer (MCSO) for solving the combined
economic emission power flow (EEPF) problem. In the proposed approach, the local search ability is
enhanced into the crow search optimizer (CSO) and aggregated with a novel bat algorithm (NBA).
Close accord between CSO, NBA, and MCSO is employed for solving the single and multi-objective
frameworks. Moreover, the proposed MCSO incorporates external archive and dominance comparison to
handle multi-objective frameworks while the best compromise solution is extracted by using a fuzzy based
mechanism. The proposed MCSO, CSO, and NBA are developed and tested to on IEEE 30 bus and West Delta
power grid (WDPG) systems. Added to the that, the proposed methodology is tested on a large-scale power
system, IEEE 118-bus test system, for measure the scalability of the proposed method. Their output results
are compared with the reported algorithms in the literature to demonstrate the MCSO outperformance in
terms of solution quality and robustness. Significant economical solutions of the EEPF problem are achieved
with respecting the environment concerns at acceptable emission levels. Added to that, the multi objective
framework is assessed with hypervolume indictor that show the high capability of the proposed MCSO
compared with CSO.

INDEX TERMS Crow search optimization, economic emission power flow, fuel costs, novel bat algorithm,

valve loading effect.

I. INTRODUCTION

Power systems dispatchers operate the system with multi-
ple economic and environmental dimensions especially with
the increased penetration of renewable energy resources and
power electronics devices [1]. Thus, the combined EEPF
problem is one of the important issues in power system opera-
tion which finds out the optimal economic and environmental
emissions of power generations for the online units.

Within the recent decades, the combined EEPF problem
has been formulated as a very simplified mathematical opti-
mization problem to determine only the power sharing of
the generators with two main constraints which are power
balance constraint and generator output limits [2] The first
one is required that the total generated power has to meet the
load and transmission network losses, but Kron’s loss formula
is usually utilized to model as the network losses [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Siqi Bu

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

The main defect of this model is the absence of various
operational constraints which may be affected by the power
sharing of the generators such as the transmission capacity
constraint and the limits of the reactive power outputs of the
generators. Consequently, the combined EEPF problem could
be represented as an optimal power flow (OPF) problem,
which is modelled as a high dimensional, nonlinear, mul-
timodal, and multi-objective optimization problem [3]. The
OPF problem aims to simultaneously minimizing the fuel
cost and the emission level, and searches for the optimal set-
tings of power generation, generator voltages, tap settings of
transformers and reactive power sources outputs. The control
variables are generated and updated through the optimiza-
tion process and optimally specified without jeopardizing the
operational equality constraints of the power flow balance
and the inequality constraints of generator capability, line
flow limit, and voltage profile of load buses.

A wide variety of classical optimization techniques have
been applied to solve the OPF problem counting a single
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objective function, such as gradient projection method (GPM)
[4], Newton-based techniques, second-order cone program-
ming [5], linear, nonlinear, and quadratic programming. But
they are very weak in handling multi-objective nonlinear
problems as they may also converge to a local optimum.

Through few recent years, modern optimization tech-
niques have been applied to solve the OPF problems such
as simulated annealing (SA) [6], hybrid Bernstein global
optimization algorithm [7], pathfinder algorithm [8], An
improved imperialist competitive algorithm [9], symbiotic
organisms search algorithm [10], tabu search (TS) [11],
genetic algorithms (GA) [12], enhanced GA [13], [14],
adaptive GA with adjusting population size [15], refined
GA [16], evolutionary programming (EP) [17], improved
EP [18], efficient evolutionary algorithm (EEA) [19], par-
ticle swarm optimization (PSO) [20], fuzzy-based hybrid
PSO [21], modified DE algorithm (MDEA) [22]-[25],
chaotic self-adaptive differential harmony search algorithm
(CSDHSA) [26], evolving ant direction DE [27], [28], impe-
rialist competitive algorithm (ICA) [29], [30], gravitational
search method (GSM) [31], Black hole-based optimiza-
tion algorithm (BHBOA) [32], improved moth-flame opti-
mization (IMFO) [33], and improved electromagnetism-like
optimization algorithm (IEOA) [34].

The continuous development in the era of optimization
methods allow power system planners and operators to seek
about the best method that has the capability to achieve the
system requirements. CSO and NBA are two recent algo-
rithms designed to find the optimal solution of real-valued
optimization problems. They are inspired from the fascinat-
ing behavior of two types in the birds’ family, crows, and bats,
respectively. CSO is a novel population-based meta-heuristic
algorithm, firstly proposed by Askarzadeh, which has very
simple structure [35]. Bat algorithm is a novel meta-heuristic
algorithm which is firstly pro-posed by Yang [36]. It mimics
the echolocation process of bats where they fly randomly
with automatic variation of their velocities to search for their
food. With this fascinating characteristic, they can adapt their
flight by adjusting the pulse rates of emission and loudness
based on the closeness of their targets. It has been carried
out to solve various power system problems. The bat inspired
algorithm has been applied to combined economic environ-
mental dispatch (EED) problem without security constraints
of the transmission lines [37]. Also, it has been aimed to
minimize the fuel costs of generation units as single objective
EED problem based on the B-coefficient for losses compu-
tation without handling security constraints [38]. Moreover,
it has been utilized for finding optimally the power system
stabilizer parameters as in Refs [39], [40]. Despite the various
applications of the bat algorithm, further improvements have
been consolidated to improve its search capability that can
avoid trapping into local optima and improve its conver-
gence performance [41], which is addressed NBA. In NBA,
the bat’s frequency has been modified by an adaptive com-
pensation considering the Doppler Effect in echoes. Added
to that, quantum behaviour in updating the bat’s velocity has
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been included where a selection operator has been used to
choose between the quantum behaviour and the mechanical
behaviour. It has been carried out effectively to solve twenty
benchmark and four engineering problems [41].

Various studies have been introduced in solving the OPF
topic considered such as efficient fitness-based DE optimizer
with a constraint handling technique [42]. In that paper,
a population similarity that is dependent on the fitness values
was employed to select one of two mutation strategies to
create the new mutant individuals. In [43], a memory-based
DE optimizer with a dynamical crossover has been carried
out. In this work, a repair constraint technique has been
utilized for treating the constraints of generation capacity,
units’ ramp-rate and power balance. In [44], a hybrid multi-
objective optimizer between PSO and DE has been presented
where PSO were dedicated for exploration features and DE
were designed to exploit the sub-space with sparse solutions.
In [45], a bare-bones multi-objective PSO (BBPSO) has been
applied where the particles’ position is randomly picked from
the Gaussian distribution with the mean of the personal and
global best positions. In [46], BBPSO has been combined
with a directionally chaotic search where it was applied as
tuning operator for locating optimal solution. Despite the
great effectiveness of these studies [42], [43], [44], [45], [46].
Several practical items in power systems were completely
ignored such as the constraints of voltage nodes, the reactive
power capability through the system, and the power flow
through the lines.

In the current paper, a modified crow search optimizer
(MCSO) is proposed for solving the combined EEPF prob-
lem. It is applied on three test systems with different sizes
and objective functions.

The salient features of this paper can be concluded as:

o A parametric analysis of the CSO algorithm is executed
for minimizing the fuel generation costs to extract its
best values.

e A proposed MCSO incorporates the enchanting
feature of the NBA of their local search ability into
the CSO.

« A comparative study is executed for handling single and
bi-objective functions.

o The proposed MCSO is evolved incorporating external
archive and dominance comparison to handle the
multi-objective EEPF formulations.

o The hypervolume indicator is added to check the
Multiobjective approach capability.

o The proposed optimizer is developed and tested to
solve the EEPF problem on the standard IEEE 30 bus
and a practical Egyptian West Delta power grid
(WDPG).

o The scalability of the proposed method is validated on
the IEEE 118-bus test system.

o The simulation results are compared with other previous
reported algorithms which demonstrate the outperfor-
mance of MCSO in terms of its solution quality and
robustness.
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Il. FORMULATION OF THE COMBINED EEPF PROBLEM

Generally, the combined EEPF problem represents the simul-
taneous optimization of bi-objective functions related to the
fuel generation costs and emissions while maintaining dif-
ferent equality and inequality constraints. Here, the inde-
pendent/decision variables arethe active power outputs of
the generators (Pgy, Pgo, ...... Pgng), generator voltages

Vg1, Vgo, ..o , Vgng), transformer tap settings (Tapy,
Tapa, ...... , Tapny), and reactive power injection of switched
capacitors and reactors(Qcy, Qco, ...... , Qcng) where, Ng,

Nt, and Nq are the number of generators, the number of
on-load tap changing transformers, and the number of the
VAR sources, respectively.

On the other side,the dependent variables are generally
load bus voltage magnitudes (VLq, ...... , VLnpQ), generator
reactive power outputs of the generators (Qgi, Qga, ....... ,
Qgng), and transmission line loadings (SFy, ...... , SFNF)
where, NPQ, and NF are the number of load buses, and the
number of the transmission lines, respectively.

A. PROBLEM MATHEMATICAL REPRESENTATION
The mathematical representation of the combined EEPF
problem is detailed as:

Min F = {J1(x,y),J2(x,y).....Jm(X,y)} €))]
Subject to :

gxy) =0 (2)
h(x,y) <0 3)

where, F is the considered vector of m objectives; X is the
independent/decision variables; y is the dependent variables.

B. PROBLEM OBJECTIVES

Two types of objective functions are considered. The first
objective aims at reducing the fuel costs. The second type is
the emission minimization. The mathematical formulation of
these two types is represented as:

1) MINIMIZATION OF FUEL GENERATION COSTS
The fuel generation costs can be represented by simple
polynomial quadratic cost curve as follows:

Ng
1= aPg +biPg +c; (4)

i=1

where, J1 refers to the fuel generation costs in $/hr; Pg; is the
MW active power output of each generator i; aj, b;, and c; are
the corresponding cost coefficients.

Considering the valve point loading effect that is charac-
terized and accompanied with multiple ripples, as in practical
power system, much more complex, nonconvex and nonlinear
in the fuel cost of each generating unit is presented. In view
of this regard, costs of fuel generation can be modeled as the
polynomial quadratic costs in addition to rectified sinusoids
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and it is expressed as:
Ng
12=")"aiPgl + biPg; + ci + lei( sin fi(Pg; in-Pg) )| (5)
i=1
where, J2 refers to the fuel generation costs with valve
point loading effect in $/hr; Pg; min is the lower limit of the

active power output; e;, and f; are the valve point loading
coefficients.

2) MINIMIZATION OF EMISSIONS OF THE POLLUTANTS
Fossil-fueled generators are the key source of atmospheric
contaminants in electrical power systems where sulphur
oxides (Sox), second carbon oxide (CO;) and nitrogen
oxides (NOx) are released. The total ton/hr emissions (J3) of
these pollutants, in terms of the output power can be mod-
eled as the exponential and quadratic function summation as
follows:

Ng
3= (Pg} + iPg + )/100 + gie* P& (6)
i=1
where y;, Bi, a4, &, and A; are the emission coefficients of the
atmospheric pollutants.

C. SYSTEM CONSTRAINTS

The previous objective functions are subjected to two set of
constraints: equality and inequality constraints. The equal-
ity constraints represent the active and reactive power bal-
ance constraints while the inequality constraints represent
the operational bending constraints. The formulation of these
constraints is expressed as:

1) EQUALITY CONSTRAINTS

The load flow balance equations are usually taken as the
equality constraints as follows:

Np
Qg; — QL; + Qc; — Vi Y _ Vj(Gyjsindyj — Bijcostyj) = 0,
=1
i=1,2,..NPQ (7)
Np
Pg; — PL; — Vi ) _ Vj(Gjjcostj + Byjsintl) = 0,
j=1
i=1,... Ny — slack (8)

where, 0;; is phase angle differences between bus i and j;Np
is the number of buses; PL and QL represent the active
and reactive power demand, respectively; Gj; and Bj; are
mutual conductance and susceptance between bus i and j,
respectively.

2) INEQUALITY CONSTRAINTS
Moreover, the choice of control variables must respect the
following operational constraints as follows:

Pg‘mln S l:)gl S Pglrnax s 1 = 1, 2, ....... Ng (9)
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Vgt < Vg < Vg™ i=1,2,...Ng (10)
Qg™ < Qg < Qg™ ,i=1,2,...Ng (1D
Tap™™ < Tap, < Tap™™ ,k =1,2,..... Nt (12)
QeM™ < Qcy < QeM™*, g = 1,2,...... Ng (13)
VIR <V S VPR Li= 1,2, NPQ (14)
ISe| < SP™ L =1,2,....Nf (15)

where the “min” and ‘“max” superscripts indicate the
minimum and maximum limits, respectively.

IIl. PROPOSED HYBRID SEARCH OPTIMIZERS

A. CROW SEARCH ALGORITHM

The salient feature of crows lies in their intelligence behavior
of storing the excess food in hiding positions and retrieves it
when it is needed. Therefore, the crows are searchers for dif-
ferent positions (solutions) in the environment (search space)
in order to find the best food source (the optimal solution of
optimization problems) [35].

The CSO is initialized step after identifying the population
size (flock size) of crows and maximum number of iterations.
Their initial positions over the d-dimensional search space are
randomly scattered. The memory of each crow is initialized
at their initial positions since the crows initially have no expe-
riences where they have hidden their foods. After evaluating
the fitness function of each crow, new position (x“‘“) of each
crow (i) is generated where it randomly selects another one
(j) of the flock crows and follows it to discover the position
of the foods hidden by this crow. The new position of crow
(i) is updated as follows:-

i _ { U LM (mextY if I > AP (16)

a random position otherwise

where 1 and rj represent random numbers between 0 and 1,
t represents the present iteration number, fI'! represents the
flight length, and AP?! is the awareness probability of crow
(j) at iteration (t). It is set to constant value of 0.1 through the
iterations. After that, the bounds of the new position of each
crow are checked and if there is a violation, the crow moves
to a new position randomly within the search space. Then,
the new fitness function is computed. The memory (mbt+1)
of each crow (i) is updated as follows:

ml,H- 1
Xl,t+ 1
ml,t

Thus, the crow updates its memory by the new position if
its new value of fitness function is better than its concerned
value of the memorized position. This process of updating
the crows’ positions and memories are repeated until the
maximum number of iterations is reached.

CSO is easier to implement as it has few parameters to be
adjusted which are awareness probability and flight length.
They effect on directing and controlling the search space into

if fitness (x"™1) is better than fitness (x*')
otherwise
(17)
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local search and global search areas during the consecutive
iterations. The probability of searching around the neigh-
borhood of the current good solutions increases with higher
values of the awareness probability where the probability
of searching on a global scale increases by decreasing it.
Added to that, the values of flight length control most of
the directions and the added increments of the discrimination
between the best memorized position and the last position in
each generation.

B. CONSTRAINTS HANDLING AND FITNESS FUNCTION
EVALUATION

For handling the combined EEPF problem, two types of
constraints are generally considered which are the equality
constraints and the inequality constraints as explained before.
In this study, the load flow balance equations of the electric
power system, which represented the equality constraints, are
handled inherently by solving the load flow problem using
Newton Raphson method since it converges to a solution only
if the load flow balance equations are achieved.

The Newton-Raphson (NR) load flow dependent tool is
used in this paper to ensure the achievement of the power
balance equations (7) and (8). Power flow computing, which
defines the steady state of a system, is a main technique
for network operators. The load flow is used to determine
whether the power network can work adequately for the
specified consumption and generation. Also, load flow equa-
tions are fulfilled in electrical network planning, control and
operation [47].The load flow is the problem of calculating
the voltage magnitudes and the angles for all buses of the
power system where the power generation and consumption
are achieved. Thus, the balance equations of the power gen-
eration and consumption for all buses and consequently the
whole system is performed. Over the years, different control
flow solution methods have been used. The NR method
considers 2 distinct mismatch components: power and current
balance equations and 3 distinct coordinate forms of complex,
polar and cartesian. This results in six separate variations
of the NR method. The NR tool is very effective to add
to three-phase power flow problems and can be applied in
MATPOWER [48].

For the other constraints related to the operational limits
in the power system, they can be divided into the constraints
of the control and dependent variables. The control variables
begin to satisfy their limits but if any of them is outpaced
during the iterations, it is regenerated randomly within the
acceptable range below. On the other hand, using quadratic
penalty terms, the dependent variables constraints in the con-
sidered fitness function are augmented. The solution in the
next iteration, on this basis, which causes any violation in the
constraints of the dependent variables, could not be chosen.
Thus, the fitness function (F) is mathematically expressed as
follows:

F=J+9yy Y AVi +vq ) AQg +¥sk »  ASE

NVV NVQ NVSF

(18)
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where, AVL, AQg, and ASF are expressed as follows:

AV — VIin _ vy if Vi < vinin "
L= ymax _ v if vV y/max (19)
L L1L VL > Vi
Qg — | Q™" —Qeif Qg < Qg™ 20)
Qg™ — Qgif Qg > Qg™
ASp = S _ Sgif Sp > SP* (21)

C. MODIFIED CROW SEARCH ALGORITHM

By remarking the update process of the CSO in Eq. 16,
the new positions of the crows are generated based on the
multiplied difference between the memorized position and
a selected position of a randomly followed. Although this
update process achieves good diversity in the solutions,
kindly convergence, and global search ability, it suffers from
the lack of local search capability. The CSO incorporates the
enchanting NBA’s feature of their local search ability [41].
In order to improve the CSO, its update process (Eq. 16) is
modified by supporting the local search around the global
best position (x&) and so the new position (x+1) of each crow
(i) is produced as follows:-

Xi,t—H
it Lt it it F jot
x4 ri.fl1 . (m-x") if rj> AP
5 xrand . .
=1 x84+ e xU=xb) if < AP"and rand > rand
1000
a random position otherwise

(22)

where x" and xV are the lower and upper limit of the crow’s
position which are specified related to the control variables
at iteration (t). Using the proposed MCSO, the local search
ability around the global best position (x#) is incorporated and
so the CSO performance is improved.

Fig. 1 demonstrates the major stages of the proposed
MCSO for handling the single objective EEPF. From this
figure, the MCSO framework can be summarized in the
following steps:

Step 1: Specifying the parameters of the optimization
method as: N, fl, AP and iter ™%,

Step 2: Initializing the crows’ positions are randomly
scattered over the d-dimensional search space.

Step 3: Checking the boundary limits of the crows’
positions.

Step 4: Evaluate each crow fitness function of as Eq. (19).

Step 5: Updating the crows "'memories as Eq. (17).

Step 6: Extraction of the best position.

Step 7: Checking the maximum number of iterations. If it
is reached, print the output results. Else, go to the next step.

Step 8: Updating the crows’ positions as Eq. (22) and go to
the step 3.

D. MULTI-OBJECTIVE MODIFIED CROW SEARCH
ALGORITHM

To validate the proposed MCSO in handling the multi-
objective combined EEPF Framework, the proposed MCSO
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| Start |

S/
Specify the flock size (N), maximum number of iterations
(iter™™), flight length (fl) and awareness probability (AP)

v
Imitialize randomly the position of a flock of N crows in
the search space and the memory of each one,j =1
v

Check their feasibility and randomly re-generate the
violated variable within the following appropriate range

'

Run Load Flow and Determine AVL, AQg, and ASF (Eqs 19-21) ‘
' v

‘ Evaluate the obj ective function (Eq. 19)

v

i=itl Update memory (Eq. 17) ‘

F 3 +

Find the best solution which
achieves the minimum objective

P J—u’ End |
o \ Y,
< Checkj <iter™™ =

No

—

Yes x&

Generate new postions (Eq. 22 ‘

FIGURE 1. Proposed MCSO for handling the single objective EEPF.

is evolved incorporating external archive and dominance
comparison. The Pareto dominance is utilized in two phases.
The first one is the evolution of crow’s memory where each
crow compares the new position with its memorized one as
follows:

mi L it it+1
it

. dominates x
ml,H—l _

. (23)
otherwise

Added to that, an external archive is established to keep
the non-dominated solutions. In each iteration, the updated
memorized positions are added to the archive and they are
compared to remove the dominated solutions. If the archive is
oversized, some of them is deleted based on the most crowded
portions [49]. Moreover, the update of X&' in Eq. (22) can
be taken from the archive to support the lowest crowded
portions.

For the multi-objective combined EEPF problem, two
minimization objectives are considered which are the fuel
generating costs and environmental emissions. The fuel
generating costs is formulated with the simple quadratic
model and the sinusoid valve-point loading as expressed
in Egs. (4) and (5), respectively whereas, the environmen-
tal emissions are modeled as in Eq. (6). Thus, the pro-
posed MCSO will give a set of pareto optimal solutions.
In order to extract the best compromise solution, a member-
ship function (u;) can be assigned for each objective function
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| Start )'

Specify the flock size (N), maximum number of iter ations

(iter™™), flight length (fl) and awareness probability (AP)
¥

Initialize randomly the position of a flock of N crowsin
the search space and the memory of each one, j =1

v

Initialize em pty archive of the non-dominated solutions

v

Check their feasibility and randomly re-generate the
violated variable within the following appropriate range

v
Run Load Flow and Determine AVL, AQg. and ASF (Egs. 19-21) ‘
¥
Evaluate the objective function (Eq. 19) ‘
¥
i=i+l ‘ Update memory (Eq. 23)
7y v
‘ Find Pareto crow’s memory and update the archive ‘

v

‘ Remove some solutions if the archive becomes full ‘

¥

Find the best solution which

achieves the minimum obj ective )
Extract thebest
* compromise
— T (Eqs 24-25)
<~ Checkj<iter™™ —|
. — No
‘v es ﬁ/ ) )
Generate new positions (Eq. 22) ‘ (\ L] /"
FIGURE 2. MCSO for handling the multi-objective EEPF.
as follows: -
min
1, Ji<T
max_y.
i 1 min . max
wid) = S g S <3 (24)
i i
max
0, Ji = I

Then, a distinguished solution is excerpted using a fuzzy
based mechanism which acquires the maximum membership
(n9) as follows: -

> i@
i=1

W= (25)

> Y udh

q=1i=1

where, q, m, and n refer the output solution related to the non-
dominated Pareto set; number of objectives, and number of
compromise solutions, respectively. Fig. 2 demonstrates the
major stages of the proposed MCSOfor handling the multi-
objective EEPF. From this figure, the MCSO framework for
handling the multi-objective EEPF can be summarized in the
following steps:

Step 1: Specification of N, fl, AP and iter™®*,

Step 2: Initializing the crows’ positions are randomly
scattered over the d-dimensional search space.
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TABLE 1. Cost coefficients for the IEEE 30-bus test system.

Bus a b c e f

1 0 0.00375 18 0.037
2 0 1.75 0.0175 16 0.038
5 0 0.0625 14 0.04

8 0 3.25 0.00834 12 0.045
11 0 3 0.025 13 0.042
13 0 3 0.025 13.5 0.041

TABLE 2. Emission coefficients for the IEEE 30-bus test system.

Bus T B a & A

1 4.091 -5.554 6.49 0.0002 2.857
2 2.543 -6.047 5.638 0.0005 3.333
5 4.258 -5.094 4.586 0.000001 8

8 5.326 -3.55 3.38 0.002 2

11 4.258 -5.094 4.586 0.000001 8

13 6.131 -5.555 5.151 0.00001 6.667

Percentage Reduction of Cost (Pg)

01 . i

Awamess Probability AP

05 o
Flight Length

FIGURE 3. Effect of varying CSO parameters for minimizing the fuel
generation costs.

Step 3: Initializing an empty archive to store the
non-dominated solutions.

Step 4: Checking the boundary limits of the crows’
positions.

Step 5: Evaluating each crow fitness function of as
Eq. (19).

Step 6: Updating the crows "'memories via Eq. (23).

Step 7: Updating the archive to store the non-dominated
solutions.

Step 8: Remove some solutions from the archive if it
becomes full.

Step 9: Extraction of the best compromise position.

Step 10: Checking the maximum number of iterations. If it
is reached, go to step 12. Else, go to the next step.

Step 11: Updating the crows’ positions as Eq. (22) and go
to the step 4.

Step 12: Apply Egs. (24-25) to extract the best solution and
print the output results

E. PARAMETRIC ANALYSIS OF CSO

For CSO algorithm, two parameters are necessary to be
adjusted which are the awareness probability and flight
length. In this section, a parametric analysis of varying them
is studied for minimizing the fuel generation costs and thus
the optimal tuning of the awareness probability (AP) and the
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TABLE 3. Optimal results of CSO, NBA, and MCSO for Cases 1-3.

Variables Initial Case 1 Case 2 Case 3
CSO NBA MCSO CSO NBA MCSO CSO NBA MCSO
Pg, 99.24 177.9469 | 178.2412 | 177.3806 | 193.401 |193.06024 194.3064 63.45604 | 62.550345 | 63.797771
Pg, 80 47.96531 | 48.49051 | 48.37716 |46.83737 |44.379653 47.0069 69.03579 | 69.875461 | 68.023902
Pgs 50 20.96091 | 22.06557 | 21.06754 |19.11272 | 18.343681 19.99696 49.97946 | 49.732885 | 49.982801
Pgs 20 20.17398 | 18.00288 | 21.34746 |10.45844 | 15.402699 10.10781 34.88771 35 34.974457
Pgi 20 12.47427 | 13.43181 11.86799 | 11.6778 10.1836 10.13166 29.97441 | 29.999897 | 29.983921
Pgi3 20 12.74453 | 12.00308 | 12.07041 |12.15345 |12.075431 12.06438 39.9395 39.59735 | 39.996208
Vg, 1.05 1.099625 | 1.099991 1.099947 | 1.096869 | 1.0996183 1.099741 1.07693 1.0779587 | 1.079127
Vg, 1.04 1.085509 | 1.089153 | 1.085965 |[1.075388 |1.0776362 1.078755 1.067067 | 1.0763583 | 1.0793066
Vg s 1.01 1.05455 1.067514 | 1.056108 |[1.057434 |1.0375211 1.048548 1.03831 1.0665001 | 1.0537384
Vgs 1.01 1.061552 | 1.067956 | 1.067651 |1.054002 |1.0450355 1.059669 1.021921 1.06594 1.061507
Vg u 1.05 1.068338 1.09887 1.099433 ]1.095232 | 1.0986521 1.031474 1.054431 1.0743655 | 1.0591337
Vg i3 1.05 1.067791 1.089725 | 1.098362 |1.044548 | 1.097693 1.098908 1.017924 | 1.0489585 | 1.0312712
Tap 69 1.078 0.971298 | 1.049783 |0.9935341 |0.969594 | 1.0640091 1.00256 1.078954 | 0.9494958 | 1.0813739
Tap 610 1.069 1.044253 | 1.066483 | 0.9627101 |1.039099 |0.9133678 0.938854 0.967206 | 1.0772022 | 0.9546124
Tap 412 1.032 1.041707 | 1.071882 |0.9753389 |0.975999 |0.9781457 1.036122 1.041287 | 1.0424701 | 1.0465819
Tap 2527 1.068 0.976595 |0.9953713 | 0.9672678 | 0.981737 | 0.9833765 1.031202 0.924277 | 1.0379917 | 1.0180144
Qc 1o 0 3.357921 | 2.474448 | 4231311 |3.464998 |2.1315304 2.440953 1.793663 | 4.0261839 | 1.9395212
Qc 12 0 4.575399 | 1.869648 | 1.698412 |3.350395 |3.2021289 0.654319 2.026773 | 4.4230503 | 1.6217145
Qc 15 0 2.064652 | 1.414391 | 2.935065 |4.390435 | 1.2646539 3.621192 3.400612 | 1.0618252 | 3.4331457
Qc 17 0 2.86074 3.932666 | 3.687713 [0.894978 |0.5512738 1.130666 3.191422 | 0.5625221 | 0.9288512
Qc 2 0 1.985778 | 3.201136 | 4.063746 |2.861983 |2.3719301 3.173386 3.83256 4.9389171 | 2.6894673
Qc 0 2.085459 | 4.894799 | 3.050749 |[0.674316 | 0.4646686 2.999132 4.387908 | 2.9981094 | 0.7516873
Qc 23 0 3.142051 | 1.974769 | 2.246753 |1.138963 |3.3717978 4.026354 4.200116 | 2.1212593 | 0.8856497
Qc 0 3.553219 | 3.845593 | 3.685882 |4.493178 |3.7903701 2.53109 2.047322 | 3.7574729 | 2.2084581
Qc » 0 0.951617 2.98529 3.986623 [3.792734 |4.2568298 3.604695 1.73174 1.4291255 | 1.7932539
Time 0.279325 | 0.284566 0.27176 |0.271485 | 0.2858 0.2717 0.270679 0.286955 0.269853
(Sec)/iteration
J1 ($/hr) 901.96 799.8266 | 799.7516 | 799.3332
J2 ($/hr) 960.22 834.9663 | 835.19554 833.8211
J3 (ton/hr) 0.23909633 | Note: Bold value shows best values 0.2051355 | 0.2052063 | 0.2048911

flight length (f) is extracted. Various combinations of AP and
fl with different values is utilized and the CSO program is
run for each combination to minimize the quadratic model of
the fuel generation costs (Eq. 4) and the related percentage
reduction is evaluated as follows:-
Percentage reduction of fuel costs

Finitial _ Foptimal

=— x 100%

Finitial (26)
where, FoPtimal denotes the.o_p.timal value of the fuel costs that
acquired using CSO and F"al i the fuel costs respect to the

initial condition.

IV. SIMULATION RESULTS

A. TEST SYSTEMS

In this section, three test systems are considered to check the
capability of the proposed optimizers. These systems are: the
standard IEEE 30 bus, the West Delta power grid (WDPG)
as a portion of the Egyptian system and the large scale IEEE
118-bus test system. The IEEE 118-bus is considered to prove
the scalability of the proposed solution methodology.

The first system is the IEEE 30 bus which consists
of 30 buses, 41 lines, 6 generators, 4 on-load tap changing
transformers and 9 capacitive sources. The data for buses,
transmission lines, and the minimum and maximum limits
of reactive power generations are taken from [48]. The max-
imum and minimum values for the generator voltage are
1.1 and 0.95 p.u., respectively. The maximum and minimum
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voltages for the load buses and tap changing transformer
are considered to be 1.05 and 0.95 p.u., respectively. Cost
coefficients, emission coefficients are given in Tables 1 and
2. The VAR injections of the capacitive sources are limited by
5MVA. The 2™ system is the practical WDPG which consists
of 52 buses, 108 lines and 8 generators [50], [51]. The upper
and lower voltages equal 1.06 and 0.94 p.u., respectively. The
lower and upper boundaries for all generators are 10 MW
and 250 MW. The upper limit of Generator at bus 5 equals
375 MW.

The third test system is the large-scale power network
includes 54 generators, 118 buses, 14 Var compensators, 186
branches, and 9 transformers tap which means 130 control
variables. This system is tested to show the scalability degree
of the proposed approach.

The simulation runs were performed for CSO, NBA, and
MCSO with NP = 50, and maximum of 300 iterations. The
archive size equals 100 nondominated solution. The proposed
MCSO, CSO, and NBA are developed MATLAB environ-
ment. Appendix A reports the parameters of various tested
methods.

B. CASES STUDIED
Single and Multiobjective cases are considered as:

Case 1: aims at minimizing the quadratic fuel costs,

Case 2: aims at minimizing the non-smooth sinusoidal
fuel costs. The effect of the valve point loadings of thermal
generators is considered as Eq. 5.
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FIGURE 4. Convergence characteristics of CSO, NBA and MCSO for Case 1.

TABLE 4. Comparison results for minimizing the fuel costs (Case 1).

Method J1 ($/HR)  METHOD J1 ($/HR)
Proposed MCSO 799.3332 FEA[19] 800.0831
SA [6] 799.45 CSDHSA [26] 801.5888
Enhanced GA [13] 799.56 ICA [29] 801.843
NBA 799.7516  DHSA [26] 802.2966
CSO 799.8266  MDEA [25] 802.376
AGAPOP [15] 799.8441 EP [17] 802.62
BHBOA [32] 799.9217  GPM [4] 804.853
IGA [52] 800.805 EADHDE [27] 800.1579
IEOA [34] 799.688 Enhanced GA [14] 802.06
EADDEA [28] 800.2041 TS [11] 802.2900
PSO [20] 800.41 Improved EP [18] 802.465
IMFO [33] 800.3848  Refined GA [16] 804.02

Case 3: aims at minimizing the pollutant emissions,
the summation of quadratic and exponential function in terms
of the output power (Eq. 6) is considered which represents the
total ton/hr emissions of these environment pollutants.

Case 4: Bi-objective minimization of quadratic fuel costs
(J1) and environmental emissions (J3) are simultaneously
optimized together.

Case 5: Bi-objective minimization of fuel costs with
sinusoids (J2) and environmental emissions (J3) are
simultaneously optimized.

C. PARAMETRIC ANALYSIS OF CSO

Fig. 3 displays the effect of utilizing different values of AP
and f1 for minimizing the fuel costs where AP is varied from
0 to 0.4 with step 0.05, and simultaneously fl is varied from
0 to 3 with step 0.5. As shown, the optimal tuning of both AP
and fl to be within the ranges [0.2-0.4] and [1.5-3], respec-
tively in solving the EEPF problem. From this conclusion,
the control parameters for CSO can be taken simply with AP
=0.3 and fl = 2.

D. SIMULATION RESULTS FOR IEEE 30 BUS SYSTEM

1) RESULTS OF SINGLE OBJECTIVE CASES

In the first case, the minimization of the quadratic model of
the fuel generation costs (Eq. 4) is considered. The proposed
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FIGURE 6. Convergence characteristics of CSO, NBA and MCSO for Case 3.

MCSO, CSO and NBA have been run for Case 1 and the
optimal results are tabulated in Table 3. In addition, the con-
vergence characteristics related to them for this objective
over iterations is shown in Fig. 4. Table 3 and Fig. 4 evince
that the minimum fuel cost is obtained using the proposed
MCSO that the fuel costs of generation units is reduced from
901.96 $/hr to 799.3332 $/hr compared with the initial case.
On the other side, the fuel costs of generation units using
CSO and NBA is minimized to 799.8266 $/hr, and 799.7516
$/hr compared with the initial case. Also, the outperformance
of the proposed MCSO over various reported techniques for
minimizing the quadratic model of the fuel generation costs
is demonstrated in Table 4 since the obtained value using
the proposed MCSO (799.3332 $/hr) is quite competitive and
better than most of reported techniques that are previously
cited.

In the second case, the non-smooth cost curve of the
fuel generation costs is considered which introduces more
nonlinearity in the fitness function. The effect of the valve
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FIGURE 7. Pareto solutions attained by the proposed MCSO for Case 4.

TABLE 5. Extracting the best compromise solution based on fuzzy based
mechanism (Case4).

Solution  J1 ($/hr) J3 (ton/hr) nd1) nd3) pd

No. (9)

1 799.7369 0.37024 1 0 0.011764
2 799.79233  0.36929856 0.99963 0.0000599  0.01176
17 804.16313  0.320676192  0.969931  0.300042 0.014949
28 8143 0.2837 0.90094  0.523945 0.016763
70 873.28744  0.2220005 0.4996 0.89842 0.01644
100 946.7386 0.20507 0 1 0.011764
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FIGURE 8. Pareto solutions attained by the proposed MCSO for Case 5.

point loadings of thermal generators is considered as Eq. 5.
Table 3 shows the optimal control variables of the pro-
posed CSO, NBA, and MCSO for Case 2, and Fig. 5 plots
the regarding convergence characteristics for minimizing the
sinusoidal fuel costs over iterations. It can be noticed from
Table 3 and Fig. 5 that the best fuel costs are obtained
using the proposed MCSO that the fuel costs of generation
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TABLE 6. Statistical results for Cases 1-3.

Initial Average STD STE
MCSO 799.614 0.153765 0.028074
Case 1 CSO 800.281 0.378754 0.069151
NBA 800.4961 0.523783 0.095629
MCSO 835.102 0.834367 0.152334
Case 2 CSO 837.185 1.356164 0.2476
NBA 838.119 2.350478 0.429137
MCSO 0.20518219  1.18E-04 2.16E-05
Case 3 €SO 0.20578510  5.73E-04 1.05E-04
NBA 02083627  3.45E-03 6.30E-04
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FIGURE 9. Optimal J1 attained by the compared optimizers for Case 1.

TABLE 7. Hypervolume indicators of CSO and MCSO for Cases 4 and 5.

CSO Proposed MCSO
Case 4 0.194 0.1956
Case 5 0.1477 0.1619

units is reduced from 960.22.96 $/hr to 833.8211$/hr com-
pared with the initial case. On the other side, the fuel costs
of generation units using CSO and NBA is minimized to
834.9663 $/hr, and 835.19554 $/hr compared with the initial
case.

In the third case, the summation of quadratic and exponen-
tial function in terms of the output power (Eq. 6) is considered
which represents the total ton/hr emissions of these pollutants
in the environment. Table 3 shows the related results of
the proposed CSO, NBA, and MCSO for Case 3 and the
convergence of this objective is depicted in Fig. 6. As shown,
the acquired results using the proposed MCSO algorithm
outperforms the above CSO and NBA. This confirms the
effectiveness and potential of the proposed MCSO in solving
the EEPF problem.

The computational burdens of CSO, NBA, proposed
MCSO for Cases 1, 2 and 3 are measured in Table 3.
They are estimated via the taken seconds per each itera-
tion along with the NR load flow tool. It indicates that
the operating times for the applied algorithm is not con-
siderably different whereas the developed MCSO provides
the least time by 0.27176, 0.2717 and 0.2698 seconds for
the three cases respectively. This is key to the opportunity
to target the quest for the right candidate in the previous
iteration.
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TABLE 8. Optimal results of CSO, NBA, and MCSO for minimizing the fuel costs (Case 1).

Min  Max _Initial SSA NBA CSO ISHO GWO | mcso
Pg, 10 250  85.69 199.957 189.6562 188.6092 190.457 188.8009 188.6438
Pg; 10 250 1574 10.99513 10.0011 10.0769 1255756 10.10499 10.0027
Pg; 10 250 13931 208.9112 217.6427 2124916 213.0466 211.9435 2142164
Pg, 10 250 113.69 171.4405 175.6998 185.001 178.6136 185.0775 182.4447
Pgs 10 375 166.48 10.80346 10.4021 10.0163 10.22916 10.18727 10.0295
Pgs 10 250 3171 245.1195 2242499 236.1791 232.5844 241.5001 233.9896
Pg; 10 250 92 58.68968 59.5161 53.3116 55.84246 54.93508 51.3972
Pgs 10 250 12249 20.78929 39.3715 32.2604 33.80792 25.32619 36.7826
Vg, 094 106 1 1.06 1.06 1.0587 1.06 1.059923 1.06
Vg, 094 106 1 1.06 1.06 1.0595 1.06 1.059333 1.0592
Vg 5 094 106 1 1.059953 1.0562 1.0596 1.06 1.058511 1.0599
Vg, 094 106 1 1.059016 1.0556 1.055 1.06 1.058678 1.0576
Vg s 094 106 1 1.058172 1.054 1.0505 1.06 1057554 1.0598
Vg 094 106 1 1.055967 1.0476 1.0561 1.06 1.05531 1.0571
Vg, 094 106 1 1.041037 1.0311 1.0436 1.04593 1.04314 1.0409
Vg s 094 106 1 1.048812 1.0455 1.0484 1.050413 1.047502 1.0497
J1 ($/hr) - - 25098.7  22965.59 22960.81 22959.36 22958.78 22957.72 22955.55
Loss (MW) - - 19.015 36.95583 36.7895 38.1969 37.38872 38.12547 37.75

2) RESULTS OF BI-OBJECTIVE COMBINED EEPF
OPTIMIZATION

Bi-objective combined EEPF optimization problem is han-
dled considering simultaneously two objectives. The pro-
posed MCSO (Fig. 2) are applied where the archive size is
fixed at 100 nondominated solutions. In Case 4, the pro-
posed MCSO are carried out for minimizing the quadratic
model of the fuel generation costs (J1) and the environmental
emissions (J3). Therefore, Pareto solutions are attained by
running the proposed MCSO as depicted in Fig. 7. As shown,
the contour of the improvements in the Pareto solutions are
declared from one-third to full maximum iterations. It can be
noticed that the obtained solutions have good diversity which
demonstrate wide possible operating points to the power
system operator.

The best compromise is extracted by fuzzy based mecha-
nism with fuel cost and environmental emissions of 814.3 $/hr
and 0.2837 ton/hr, respectively. For this case, Table 5 shows
the methodology of extracting the best compromise solution
based on fuzzy based mechanism. As shown, the maximum
values of the fuel costs and the emissions are 946.7386
$/hr and 0.37024 ton/hr, respectively. Based on these values,
the evaluation of the membership values for each objective
and each solution is carried out. Then, the best compromise
solution is extracted that has the maximum membership (uq)
of 0.016763.

In Case 5, the fuel costs considering the valve point load-
ings (J2) and the environmental emissions (J3) are simulta-
neously considered as bi-objective functions. The procured
Pareto set for this case is illustrated in Fig. 8. As shown,
the improvements in the Pareto solutions are guaranteed with
good diversity to validate wide possible operating points
to the power system operator. The best compromise can
be extracted by fuzzy based mechanism with fuel cost and
environmental emissions of 857.5 $/hr and 0.2974 ton/hr,
respectively.
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3) STATISTICAL COMPARISON

To analyze the robustness performance of the proposed
MCSO, CSO and NBA. They have been run for Cases 1,
2 and 3 for 30 times and an assessment via the acquired
average value, the standard deviation (STD) and the standard
error (STE) are calculated in Table 6. The acquired average
of the proposed MCSO is always the minimum where it has
the lowest STD and STE. Additionally, Fig. 9 displays the
obtained optimal objectives for Case 1. As shown, the pro-
posed MCSO has greater stability and outperformance over
CSO and NBA as it is always capable to find the minimum
value.

Hypervolume is one of the most popular indicators in
evaluating the comprehensive performance of MCSO for
Cases 4 and 5. Table 7 illustrates this indicator to investi-
gate the quality of the Pareto-optimal solutions obtained by
CSO and MCSO for Cases 4 and 5 considering a reference
point of 1000 $/hr and 100 ton/hr. As shown, the proposed
MCSO declares better performance than CSO for both cases.
The proposed MCSO has the highest value of hyber volume
indicators of 0.1956 and 0.1619 whereas the CSO obtains
hyber volume indicators of 0.194 and 0.1477 for Cases 4
and 5, respectively.

E. SIMULATION RESULTS OF WDPG

1) COMPARATIVE RESULTS

The second system is the practical WDPG which consists
of 52 buses, 108 lines and 8 generators [50], [51]. The
maximum and minimum values for the generator voltage are
1.06 and 0.94 p.u., respectively. For this system, the mini-
mization of the quadratic model of the fuel generation costs
(Eq. 4) is considered. The proposed MCSO, salp swarm
algorithm (SSA) [49], NBA, CSO, GWO [53], and improved
spotted hyena optimizer (ISHO) [54] have been run and the
optimal results are tabulated in Table 8. In addition, the con-
vergence characteristics related to them is shown in Fig. 10.
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TABLE 9. Statistical results for minimizing the fuel costs (Case 1).

Min Mean Max Std

MCSO  22955.55 22961.88 22969.013 3.6574

CSO 22959.37  22964.5633  22972.5594 3.5200
NBA 22960.81 22969 22983.4436 5.5289

SSA 22965.59 22981.13 23003.56 10.59803
GWO  22957.72 22961.77 22966.76 2.233786
ISHO  22958.78 22961.49 22963.71 1.321819
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FIGURE 11. Power flow through the lines versus the maximum limits.

Table 8 and Fig. 10 evince that the minimum fuel cost is
obtained using the proposed MCSO that the fuel costs of
generation units is reduced from 25098.7 $/hr to 22955.55
$/hr compared with the initial case. In addition, the assess-
ment of their statistical comparison in Table 9 shows
that the capability of the proposed MCSO in finding
the minimum compared to the others with a small STD
value.

2) DISCUSSION ON THE VIOLATION OF THE CONSTRAINTS

For all applied algorithms, the power flow through the lines
versus the maximum limits are displayed in Fig. 11. Added
to that, Fig. 12 depicts the per unit voltages of the buses
versus the considered limits. Also, Fig. 13 shows the gen-
erated reactive power outputs versus the considered limits.
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From these figures, it is clear that there is no violation
in the constraints for all applied algorithms. This elu-
cidates the high effectiveness in obtaining high quality
solutions.

F. SIMULATION RESULTS OF IEEE 118 BUS SYSTEM
In this section, the third system called IEEE 118-bus test sys-
tem is used to prove the scalability of the proposed method.
The CSO, NBA and the proposed MCSO are applied to
minimize the fuel costs and the regarding outputs are tabu-
lated in Table 10. Also, their convergence characteristics are
displayed in Fig. 14. From Table 10 and Fig. 14, the minimum
fuel cost is obtained using the proposed MCSO that the fuel
costs of generation units are minimized to 129873.6 $/hr com-
pared to 130175.7 $/hr by the CSO, and 130328%/hr by the
NBA. Table 11 illustrates a comparison between the obtained
costs based on the proposed MCSO and other reported results.
As shown, great effectiveness of the proposed MCSO in
finding the least costs.

Finally, the improvement of the CSO can be highlighted
as:

« For single objective EEPF, its update process is sup-
ported via the local search ability around the global best
position. While for multi-objective EEPF, the update
process is supported via dominance preference in the
evolution of crow’s memory.

43117



IEEE Access

A. M. Shaheen et al.: MCSO for Solving Non-Linear OPF Problem With Emissions

TABLE 10. Output results for minimizing the fuel costs for IEEE 118 bus network.

CSO NBA MCSO CSO NBA MCSO CSO NBA MCSO
Vg, 0.98214 0.984316 0.987777 Vgso 1.018337 1.018447 1.031935 Pgs; 9.10121 10.45845 7.142893
Vg, 1.007729 1.004224 1.017287 Vgss 0.981609 0.986966 1.017302 Pgs, 18.62236 15.14445 17.6243
Vg 0.995501 0.992887 1.008043 Vg 1.011508 0.99116 1.017006 Pgss 6.427886 4.872608 7.972355
Vs 0.994536 1.018251 1.028962 Vgso 0.991598 1.000016 1.038692 Pgs6 9.830257 11.08163 12.17604
Vegio 0.985124 0.987963 1.057147 Vg 0.988434 0.996476 1.004291 Pguo 47.71871 48.52704 50.85145
Vg 1.001336 1.004853 1.004994 Vg 0.980902 1.003911 1.007502 Pgy 42.8984 38.02109 39.43219
Vgis 0.986684 0.994935 1.002363 Vo 0.984036 0.992545 1.020191 Pgue 16.9351 13.55459 18.68081
Vgig 0.985982 1.000388 1.002433 Voo 1.014529 1.006701 1.01794 Pgso 191.3283 193.5522 191.9474
Vegio 0.981764 0.992125 0.999241 Vgion 1.004213 1.004768 1.020643 Pgss 46.49148 52.82352 49.26603
Vg 1.010933 0.995563 1.022409 Vgios 1.002034 1.005052 1.01273 Pgss 33.01362 31.24771 33.50091
Vgos 1.006522 1.002289 1.051994 Vg 0.988868 0.988318 1.000059 Pgse 32.79813 32.20836 28.68977
Ve 0.984578 0.995776 1.043426 Vgios 0.985706 0.986969 0.996676 Pgso 150.236 144.2465 148.4185
\ 1.00736 0.998077 1.012358 Vgior 0.977007 1.007398 0.991734 Pge 146.7947 146.4662 145.5609
Vgs 0.985702 1.000705 1.004703 Vg 0.994691 0.995143 0.997463 Pge> 3.075373 5.409727 0.919869
Vg 1.001315 0.994796 1.009654 Vg 1.000761 0.996128 1.008984 Pges 340.24 343.1779 347.14
Vg 0.998826 1.001995 1.01423 Vg 0.995104 0.998419 0.989119 Pgee 338.8979 333.383 345.5017
Vgse 0.996872 1.000512 1.011564 Vg3 1.003272 0.999511 1.014351 Pgeo 435.1995 420.0408 447.172
N 0.995017 1.007938 0.995252 Vg 0.99221 0.989888 1.028376 Pgs 3.3153 4.952 3.554469
Vgo 0.998501 0.992327 0.999179 Qciio 3.433403 2.747985 1.921634 Pgs 4.10617 5.957473 6.958749
N 0.98471 0.993103 1.009174 Tss 0.980853 0.990739 0.982669 Pgss 5.173819 5.367425 3.620331
Vg 1.013694 0.996964 1.025023 Ta6.25 1.040272 0.990994 1.030434 Pgy, 17.76658 18.54868 18.57015
Vgss 1.001168 0.999054 1.000393 T30.17 1.007093 0.993033 1.000503 Pgre 23.83948 22.78672 23.27477
Vagss 0.997003 0.988823 1.000056 Tas37 0.989779 0.985453 0.978436 Pgs; 5.30136 4.990874 5.01496
Vgse 0.99727 0.991884 0.999946 Tes-59 0.97811 0.98031 0.9865 Pgso 413.6035 431.1988 424.8214
Vgso 0.999804 0.984918 1.019087 Tea-61 1.022857 0.986531 1.005752 Pgss 3.428681 3.511341 1.501542
Ve 1.003803 1.003375 1.023109 Tes-66 1.018381 0.978714 0.991853 Pggs 4.640827 8.704353 3.696617
Vg 1.002465 1.001473 1.020533 Tes-60 0.990064 1.030147 0.968144 Pgso 498.6183 508.0404 489.0252
Vges 1.019278 1.000651 1.034182 Tsi.50 1.017001 0.991456 0.994161 Pgoyo 4.750069 6.756458 4.586402
Ve 1.013705 1.012503 1.037543 Qcsa 3.160126 3.087901 1.150959 Pgo, 4.177038 5.32284 2.555376
Vg 1.052881 1.020604 1.041747 Qcus 1.444551 3.346518 2.091185 Pgo, 3.003547 5.081245 3.93183
Ve 1.012551 1.001192 1.011341 Qcus 1.18188 3.473862 1.785974 Pgoo 4.32297 6.103572 6.03406
Vegn 1.005235 0.999073 1.015182 Pg, 26.28358 25.42102 26.54415 Pgioo 235.0426 222.1833 226.96
Qcue 1.861114 2.023086 2.686768 Pg,4 4.294837 4.012869 3.693149 Pgios 40.59621 37.07055 36.7585
Qcug 2.597947 2.1977 1.720663 Pge 4.236527 6.190472 4.905669 Pgios 4.382992 2.123044 0.312447
Qcys 2.820211 1.861555 2.682434 Pgs 4.327845 5.457846 6.222592 Pgios 6.223345 5.144801 7.232248
Qcyo 2.673192 2.399119 2.612964 Pgio 398.5607 403.9986 392.6066 Pgiy 25.55481 29.36573 30.00723
Qcs 3.05824 2.464496 3.193171 Pgi» 80.27043 81.63004 85.65711 Pgiio 7.003971 11.74894 6.275507
Qcss 2.6372 2.95837 2.960937 Pgs 22.89133 21.74721 21.38944 Pgii 34.5408 36.70812 36.73564
Qcios 2.950314 3411313 3.38705 Pgis 11.9989 11.80954 10.61896 Pgiin 35.57717 37.03873 34.00411
Qcio7 3.582273 2.888965 1.267831 Pgio 21.64319 16.89857 20.33499 Pgii3 3.537151 4.995061 5.048399
Ven 1.002366 1.004955 1.009536 Pgos 5.025808 5.705384 4.815462 Pgiie 5.87423 6.328332 4.445068
Vgu 0.990387 0.983319 0.989306 Pgys 192.0747 194.2544 188.9902 J1 130175.7 130328 129873.6
Ve 0.977369 1.002086 0.980728 Pgs 284.734 265.1669 273.4047 Ploss 86.03009 | 86.63589 78.66545
Vg 1.00638 1.003881 1.015787 Pgy; 7.698354 12.09849 4.560537 |
TABLE 11. Comparative results of IEEE 118 bus system for fuel cost
137300 minimization.
136500 Algorithm J1 (8/hr)
135500 CSO 130175.7
_ NBA 130328
2134300 MCSO 129873.6
) Colliding Bodies Optimization (CBO)[55] 135072.999
i Artificial Bee colony (ABC) [55] 135145.1889
52500 DE [23] 130518.5
Enhanced CBO [55] 135172.266
131500 Backtracking search algorithm (BSA)[56] 135333.5
Differential Evaluation (DE) [55] 142751.1178
130300 PSO [20] 130288.210
128500 Biogeography Based Optimization(BBO) [55] 135272.1959

1

21 41 61

81

101 121 141 161 181 201 221

Iterations

241 261 281 301

FIGURE 14. Convergence characteristics for IEEE 118 bus system.

o The proposed MCSO is evolved incorporating external
archive to store and upgrade the non-dominated

solutions for handling the multi-objective EEPF.
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V. CONCLUSION
In this paper, a modified approach of crow search opti-
mizer (MCSO) is developed for solving the combined
EEPF problem. The combined EEPF problem is handled
considering the quadratic polynomial fuel generation costs,
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the valve point loading effect, and emissions. For this tar-
get, the proposed MCSO incorporates the enchanting NBA’s
feature of their local search ability into the CSO. Not only
that but the proposed MCSO is also involved with an exter-
nal archive and dominance comparison. Also, a parametric
analysis of the CSO algorithm is executed for minimizing
the fuel generation costs to extract its best values. Moreover,
a comparative study of CSO, NBA, and MCSO in solving the
EEPF problem with different objective functions, and they
are tested to solve the EEPF problem on the standard IEEE
30 bus and a practical West Delta power grid. The scalability
of the proposed method has been approved on the IEEE
118-bus test system as a large-scale power system. The sim-
ulation results of the proposed MCSO for minimizing the
quadratic model of the fuel generation costs are compared
with the other heuristic methods that were informed in the
literature and demonstrated its effectiveness and superior-
ity. The statistical comparative study between CSO, NBA
and MCSO for solving various EEPF optimization problems
establishes the MCSQO’s high degree of robustness in all the
studied cases in terms of its acquired objectives are much
trustable than CSO and NBA. The hypervolume indicator
proves the high capability of the proposed MCSO compared
with the CSO method for multiobjective cases. The future
works of this study can be extended to involve the influence of
various types of reactive power resources based flexible AC
transmission systems. Applications of optimal power flow
problem in virtual power plants. Also, dealing with emer-
gency events and assure the capability of the power genera-
tion settings after the occurrence of emergency events. Also,
applications of new optimization methods can be considered
as extension in the viewpoint of solution methodology.

APPENDIX A

Table 12 shows the control parameters of the developed
optimization algorithms NBA, CSO, and MCSO.

TABLE 12. Control parameters of NBA and MCSO.

Parameter NBA CSO MCSO
pop size (NP) 50 50 50
Maximum iteration (Iter™) 300 300 300
Archive size of non-dominated solution 100 100 100
Awareness probability (AP) 0.3
Flight length (fI) 2
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