
Received January 21, 2021, accepted February 17, 2021, date of publication February 22, 2021, date of current version March 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3060940

Automatic Exam Correction Framework (AECF)
for the MCQs, Essays, and Equations Matching
HOSSAM MAGDY BALAHA AND MAHMOUD M. SAAFAN
Computers and Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

Corresponding author: Hossam Magdy Balaha (hossam.m.balaha@mans.edu.eg)

ABSTRACT Automatic grading requires the adaption of the latest technologies. It has become essential
especially when most of the courses became online courses (MOOCs). The objectives of the current work
are (1) Reviewing the literature on the text semantic similarity and automatic exam correction systems,
(2) Proposing an automatic exam correction framework (HMB-AECF) for MCQs, essays, and equations that
is abstracted into five layers, (3) Suggesting equations similarity checker algorithm named ‘‘HMB-MMS-
EMA’’, (4) Presenting an expressionmatching dataset named ‘‘HMB-EMD-v1’’, (5) Comparing the different
approaches to convert textual data into numerical data (Word2Vec, FastText, Glove, and Universal Sentence
Encoder (USE)) using three well-known Python packages (Gensim, SpaCy, and NLTK), and (6) Comparing
the proposed equations similarity checker algorithm (HMB-MMS-EMA) with a Python package (SymPy)
on the proposed dataset (HMB-EMD-v1). Eight experiments were performed on the Quora Questions Pairs
and the UNT Computer Science Short Answer datasets. The best-achieved highest accuracy in the first
four experiments was 77.95% without fine-tuning the pre-trained models by the USE. The best-achieved
lowest root mean square error (RMSE) in the second four experiments was 1.09 without fine-tuning the used
pre-trained models by the USE. The proposed equations similarity checker algorithm (HMB-MMS-EMA)
reported 100% accuracy over the SymPy Python package which reported 71.33% only on ‘‘HMB-EMD-v1’’.

INDEX TERMS Automatic exam correction, document embedding, expression trees, MCQmatching, word
embedding.

I. INTRODUCTION
Automatic grading is an approach that requires the adaption
of the latest technologies. Automatic grading has become
very necessary especially when most of the courses became
online courses (MOOCs). This section introduces the seman-
tic text (essays), multiple-choice questions (MCQs), and
equations (expression) matching in detail as the proposed
approach and suggested framework depend mainly on them.

A. SEMANTIC TEXT MATCHING
Semantic text matching is the process of finding the similarity
percentage between two texts semantically [1]. They pass
through (1) text pre-processing, (2) tokenization (i.e. the text
can be used as a whole or tokenized into words), (3) feature
extraction, and (4) the semantic similarity score is calculated
between them. The process is summarized in Figure 1 and
discussed in the following sub-sections.

The associate editor coordinating the review of this manuscript and

approving it for publication was Feng Shao .

FIGURE 1. Semantic text matching steps summarization.

1) PRE-PROCESSING THE TEXT PHASE
The pre-processing phase consists of a set of steps: (1) trim-
ming (removing) the text whitespaces from the left and right

32368 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0686-4411
https://orcid.org/0000-0002-9279-1537
https://orcid.org/0000-0002-2495-9924

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 1. Stemming vs. Lemmatization.

such as spaces, tabs, and new line feeds, (2) removing accents
from the text, (3) converting the whole text into lowercase,
(4) removing the punctuations wisely, (5) removing stop-
words, and (6) applying lemmatization. Any of these steps
can be bypassed according to the application.

Removing stop-words is the process of filtering the text
from a set of common words such as ‘‘the’’ and ‘‘an’’ [2].
Lemmatization is the process of reducing the words as it takes
into account the language full vocabulary to apply the mor-
phological analysis to words [3]. Lemmatization has another
alternative is called stemming [4]. The main target of both
is to reduce the inflectional forms and derivationally related
forms of a word to a common base form [5]. The differences
between them are shown in Table 1 [6].

2) TEXT TOKENIZATION PHASE
Tokenization is converting (breaking) the text into compo-
nents, pieces (words and sub-words), punctuations, and so
on [7]. The breaking is performed using a delimiter which is
the ‘‘space’’ commonly. The tokenization algorithm should
perform a check on each tokenized element and answer
the following question ‘‘Should this element be tokenized
or not?’’. For example, ‘‘U.S.A’’ should not be tokenized
while ‘‘the Earth. It has’’ should be tokenized. Abbreviations,
emails, and website links should be added to the exceptions
also. This phase can be bypassed if we want to work with the
whole text or paragraph [8].

3) EXTRACTING FEATURES FROM TEXT PHASE
The raw textual data cannot be used directly with the
algorithms as most of them expect numerical data (feature
vectors) [9]. They also should be in a fixed-size format rather
than a variable-length text. There are different approaches
to extract features from the text such as count vectorizer,
term frequency (TF), term frequency-inverse document fre-
quency (TF-IDF), word embedding, and document (para-
graph) embedding [10]–[12]. Count vectorizer counts the
occurrences of each word in the document to map that text
into a number. It has a critical drawback that larger docu-
ments will have higher average count values than shorter ones
although they may focus on the same topics [13].

The TF avoids the cons. of the count vectorizer as it divides
the number of occurrences of each word in the document
by the total number of words in the document. It can be
considered as a normalization step. Its drawback is that it is
not enough separately. The word ‘‘the’’ may be used more
frequently in the document and hence it will give less weigh-
tage to the more meaningful words such as ‘‘school’’ and
‘‘university’’ (as they might be occurring less frequently in
the document compared to the ‘‘the’’ word). For example,
‘‘the boy went to the school by the yellow bus.’’. The ‘‘the’’
word occurred three times while the words ‘‘boy’’, ‘‘school’’,
and ‘‘bus’’ occurred only once [14].

The TF-IDF is a refinement on the top of the TF as it
downscales the weights for the words that occur in many
documents in the corpus and are therefore less informative
compared to those that occur only in a smaller portion of
the corpus and are more informative. The term IDF is a
logarithmically scaled inverse fraction of the documents that
contain the term while the term TF-IDF can be considered
as the combination of the count vectorizer, TF, and IDF
factors. In short words, the TF-IDF is how important a word
in the document [15]. Equation 1 shows how to calculate the
TF-IDF.

ValueTFIDF = TF(t, d)× IDF(t,D)

= TF(t, d)× log
(

N
{d ∈ D : t ∈ D}

)
(1)

where t is the term, d is the current document, D is the
documents in the corpus, N is the number of total documents
in the corpus, and {d ∈ D : t ∈ D} is the count of documents
in the corpus that contains the term t .

Word embedding is a mathematical description of the
individual words such that words that appear frequently in
the language will have similar values which leads to derive
the context [16]. For example, ‘‘lion’’ is closer to ‘‘cat’’.
Word2Vec [17], GloVe [18], and FastText [19] are the com-
mon flavors of word embeddings. Word embedding has some
pros. such as dimensionality reduction and performance-
boosting.

Word2Vec is a shallow two-layered neural network to
perform word embeddings. It groups the vector of similar
words in the vector space and it can be used to compare the
whole document as it takes the advantage of individual token
vectors. It can be obtained using two variants: (1) Skip Gram
and (2) Common Bag of Words (CBOW) [20].

Skip-gram takes the target word and tries to predict the
surrounded content words, while CBOW takes a set of content
words and tries to predict a target word. CBOW is higher
in speed than skip-gram and provides a better frequency
while skip-gram needs a small number of training records and
represents even rare and uncommon words [21], [22].

Word2Vec performs word embeddings by relating target
words to their context. It ignores whether some context words
appearmore frequently than others. ForWord2Vec, a frequent
co-occurrence of words creates more training data only and
has no additional information. In contrast, GloVe (Global

VOLUME 9, 2021 32369

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 2. Word2Vec, GloVe, and FastText comparison.

Vectors) focuses on that, the frequency of co-occurrences
is critical and should not be neglected. GloVe builds the
word embeddings by relating a combination of word vectors
directly to the probability of these words’ co-occurrence in
the corpus [23], [24].

Word2Vec has a drawback that, it does not generalize
to unknown words. FastText overcomes this drawback. The
word embeddings from FastText look very similar to the
ones generated by Word2Vec. FastText is not calculated
directly, but there is a combination of lower-level embed-
dings. There are two main advantages: (1) generalization
is available as new words have the same characters as
known ones and (2) less training data is required since much
more information can be extracted from each part of the
text [25]. Table 2 summarizes Word2Vec, GloVe, and Fast-
Text. The pre-trained model weights can be downloaded and
used for Word2Vec, GloVe, and FastText (from their offi-
cial website) https://code.google.com/archive/p/word2vec/,
https://nlp.stanford.edu/projects/glove/, and https://fasttext.
cc/ respectively.

Document (i.e. paragraph or sentence) embedding consid-
ers the entire sentence and their semantic information repre-
sented as vectors. This will help machines in understanding
the context of the entire text. There are many techniques
including the state-of-the-art ones such as Doc2Vec, Sen-
tenceBERT, InferSent, InferSent2, and Universal Sentence
Encoder (USE). Doc2Vec is an extension of the Word2Vec.
It is one of the most popular techniques that was used as
an unsupervised algorithm above the Word2Vec. There are
two ways to achieve that: (1) Distributed Memory version of
Paragraph Vector (PVDM) and (2) Distributed Bag of Words
version of Paragraph Vector (PVDOBW). Both of them are
useful but the first is recommended for most of the tasks.

BERT is a Bidirectional Encoder Representations from
Transformers for the pre-training over a lot of unlabeled
textual data. It is based on Google’s released transformer
architecture. It is working mechanism is (1) Pre-training:
it learns the language representation from a huge amount
of unlabeled data in an unsupervised manner and (2) The
pre-trained model can be fine-tuned after that in a supervised
manner using a small amount of labeled trained data. It is

used in fine-tuning the language representation in different
machine learning tasks.

XLNet is a large bidirectional transformer that uses the
improved training methodology, larger data, and more com-
putational power to achieve better performance metrics than
BERT on twenty language tasks. To improve the XLNet train-
ing, it applied the permutation language modeling where all
of the tokens were predicted in random order. This helped the
model to learn from the bidirectional relationships. Hence,
it achieved better dependencies and relations between the
words. It was trained with over 130 Gigabytes of the textual
data for 2.5 days using 512 tensor processing unit (TPU)
chips running which was much larger than the original
BERT [26].

RoBERTa (Robustly optimized BERT approach) was
introduced by Facebook. It is a retraining of the BERT with
an improved training methodology using 1000% more data
and computational power. RoBERTa removed the Next Sen-
tence Prediction (NSP) task from BERT’s pre-training and
introduced dynamic masking [27]. It used 160 Gigabytes of
the textual data for pre-training including (1) 16 Gigabytes
of Books Corpus and English Wikipedia used in BERT,
(2) The CommonCrawl News dataset, (3) web text corpus,
and (4) stories from the Common Crawl [27].

SentenceBERT is a (BERT)-based model that has four key
concepts: (1) Attention, (2) Transformers, (3) BERT, and
(4) the Siamese network. The latter one is used to calcu-
late the cosine similarity of two-pair sentences [28], [29].
InferSent is a supervised sentence embedding technique. It is
trained on the Stanford Natural Language Inference (SNLI)
dataset. It contains 570K human-generated English sentence
pairs and uses the GloVe vectors for the pre-trained word
embedding. InferSent2 is similar to InferSent but uses the
FastText pre-trained vectors [30]. The USE is useful for
multi-task learning which is useful in sentence similarity and
text classification. Its encoder is based on two encodermodels
and anyone of them can be used. They are (1) Transformer
Encoder and (2) Deep Averaging Network (DAN) Encoder
[31], [32].

GPT-3 (Generative Pre-trained Transformer 3) is arguably
the most powerful member in the family of the NLP models
including BERT and GPT-series. GPT-3 is a deep-neural-
network-powered language model that was developed by
OpenAI. Words or phrases in the GPT-3 were randomly
removed from the text and the model learned to fill-in them
using only the context (i.e. surrounding words). It removes
the necessity of the traditional models fine-tuning for each
NLP task. It contains 175 billion parameters and was trained
on the Common Crawl dataset. It resulted in a powerful and
generalizable model [33].

4) CALCULATING THE SEMANTIC SIMILARITY PHASE
Semantic similarity is a metric defined over a set of docu-
ments or terms when the idea of the distance between items is
based on the similarity of their meaning or semantic content.
It includes ‘‘is a’’ relations [34]. For example, the ‘‘car’’ word

32370 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

can be treated similarly to the ‘‘bus’’ word. There are different
methods such as (1) Cosine similarity, (2) Jaccard similarity,
(3) Manhattan distance, and (4) Euclidian distance [35].

Cosine similarity (Equation 2) measures how similar the
documents are in size irrespective. It calculates the cosine
angle between two vectors projected in the multi-dimensional
space. The smaller the angle, the higher the cosine simi-
larity [36]. Cosine similarity is comparing two real-valued
vectors while Jaccard similarity (Equation 3) is for compar-
ing two binary vectors or sets [37]. The Euclidean distance
(Equation 4) is a straight-line distance between two vec-
tors [38]. The Manhattan distance (Equation 5) is considered
a way to compute the distance between two points when you
are not able to get the straight-line [39].

SimilarityCosine =
A • B

‖ A ‖ • ‖ B ‖
(2)

SimilarityJaccard =
| A ∩ B |
| A ∪ B |

=
| A ∩ B |

| A | + | B | − | A ∩ B |
(3)

DistanceEuclidean =

√√√√ n∑
i=1

(Ai − Bi)2 (4)

DistanceManhattan =
n∑
i=1

| Ai − Bi | (5)

where A and B are the numerical vectors, and n is the number
of elements.

5) SOFTWARE PACKAGES
There are multiple software packages with Python language
(the used programming language in the current research) such
as Gensim [40], SpaCy [41], and NLTK [42]. Gensim is
a Python package for topic modeling, document indexing,
and similarity retrieval with large corpora [43]. SpaCy is
a free open-source package for natural language process-
ing (NLP) in Python. It is built on the very latest state-of-the-
art researches. It comes with a set of pre-trained statistical
models and word vectors. It supports tokenization for more
than 60 languages [44]. NLTK is a leading platform for
building different Python applications to work with human
language data. It provides easy-to-use interfaces and lexical
resources such as WordNet. It has a suite of text processing
libraries for classification, tokenization, stemming, tagging,
parsing, and semantic reasoning [45].

B. MCQ MATCHING
There are different types of multiple-choice questions
(MCQs) such as single select, multiple select, and dropdown
MCQs. The correction of them is straightforward but depends
on the type of the MCQ itself. It checks directly if the student
answer is similar to the reference answer or not. It extracts
the matching percentage and based on it and the correction
criteria, the mark is put. For example, for multiple select
MCQ, if there are five selections (three are correct) and the

mark is one, then for each selection, it is 0.2. Accumulation
is put on each correct selection (if the selection should be
selected and the student selected it or if the selection should
not be selected and the student did not select it).

C. EQUATIONS MATCHING
An equation in its simplest form is the combination of
symbols, functions, numbers, and operators. For example
(a+b)∗c. Equations (or Expressions) matching is the process
of determining if two equations (or expressions) lead to the
same result [46]. There are three representations of expres-
sions: (1) prefix notation, (2) infix notation, and (3) postfix
notation [47]. If the operators appear between the operands
then it is the infix notation. If the operators appear before and
after the operands then they refer to prefix and postfix nota-
tions respectively. The following inner sub-sections present
the expression trees, how to convert from the infix to prefix
notation, and how to build the expression trees recursively.
The proposed equations matching algorithm (discussed in a
later section) depends mainly on them.

1) EXPRESSION TREES
Expression trees, as shown in Figure 2, are binary trees
in which each internal node presents an operator while the
leaves are the operands. They are useful in many applica-
tions such as equations (or expressions) matching [48], [49].
To construct an expression tree, the expression is converted
to the infix notation, and then the tree is built [50].

FIGURE 2. Example on the expression trees.

2) INFIX TO PREFIX NOTATION CONVERSION
The following subsection shows how to convert from the
infix notation to the prefix notation. It is limited to integer
positive numbers and ∗, −, /, and + operators. The input to
the algorithm is the infix expression while the output is the
prefix expression. The steps are summarized in Algorithm 1
and discussed below.

1) Read the infix expression.
2) Get the elements from infix expression using the regu-

lar expression ‘‘[a−zA−Z]+[0−9]∗|[0−9]+|[(|)|+
| − | ∗ |/]’’ [51]. This regex will extract the variables,
numbers, and operators.

3) Initiate a ‘‘reverse’’ variable.
4) For each element in the elements array: (1) exchange

‘‘(’’ with ‘‘)’’ and vice versa, (2) encapsulate the

VOLUME 9, 2021 32371

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

Algorithm 1 Infix to Prefix Notation Conversion Pseudocode
1: function INFIX2PREFIX(infix) \\ The infix to prefix notation conversion function. It accepts the the infix notation and

returns the prefix notation.
2: re← ‘‘[a-zA-Z]+[0-9]*|[0-9]+| [(|)|+|-|*|/]’’ \\ The used regular expression to extract variables, numbers, and

operators.
3: elements← Regex(infix, re) \\ The extracted variables, numbers, and operators.
4: reverse← ‘‘’’ \\ Initiate the ‘‘reverse’’ variable.
5: for each element ← elements do \\ Iterate on each element in the elements array.
6: element ← Exchange(element , ‘‘(’’, ‘‘)’’) \\ Exchange between ‘‘(’’ and ‘‘)’’ and vice versa in the element

variable.
7: element ← EncapsulateIfOperand(element) \\ Encapsulate the operands with curly braces.
8: reverse← element + reverse \\ Apply the reversing operation.
9: rem← ‘‘{[a-zA-Z]+[0-9]*}|{[0-9]+}|[(|)|+|-|*|/]’’ \\ The used regular expression to extract the modified operands

and operators.
10: modifiedElements← Regex(reverse, rem) \\ The extracted modified operands and operators.
11: prefix ← ‘‘’’ \\ Initiate the ‘‘prefix’’ variable.
12: stack ← Stack() \\ Initiate the ‘‘stack’’ variable.
13: for each modifiedElement ← modifiedElements do \\ Iterate on each modified element in the modifiedElements

array.
14: prefix ← AppendIfOperand(prefix, modifiedElement) \\ Append the element the ‘‘prefix’’ variable if it is a

modified operand.
15: stack ← PushIfLeftParenthesis(stack , modifiedElement) \\ Push the element into the stack if it is a left

parenthesis ‘‘(’’.
16: stack , prefix ← HandleIfOperator(stack , prefix, modifiedElement) \\ If the element is an operator, pop the top

higher-precedence stack elements, append them to the ‘‘prefix’’ variable, and push the element after that into the stack.
17: stack , prefix ← HandleIfRightParenthesis(stack , prefix, modifiedElement) \\ If the element is

a right parenthesis ‘‘)’’, pop the top stack elements until it reaches a left parenthesis ‘‘(’’ and append them to the ‘‘prefix’’
variable (neglect the parentheses).

18: stack , prefix ← HandleRemaining(stack , prefix) \\ If there any remaining elements in the stack, pop them and
append them to the ‘‘prefix’’ variable (neglect the parentheses).

19: modifiedElements← Regex(prefix, rem) \\ Get the modified elements but now from the ‘‘prefix’’ variable.
20: reverse← ‘‘’’ \\ Initiate the ‘‘reverse’’ variable.
21: for each modifiedElement ← modifiedElements do \\ Iterate on each modified element in the modifiedElements

array.
22: reverse← modifiedElement + reverse \\ Apply the reversing operation.
23: prefix ← reverse
24: return prefix \\ Return the required prefix notation.

operands (variables and numbers) with curly braces,
and (3) perform the reversing on the form ‘‘reverse =
element + reverse’’ (i.e. each incoming element is put
at the beginning of the ‘‘reverse’’ string).

5) Get themodified elements from the reversed expression
using the regular expression ‘‘{[a − zA − Z] + [0 −
9]∗}|{[0−9]+}|[(|)|+|−|∗|/]’’. This regex will extract
the modified operands and operators.

6) Initiate a ‘‘prefix’’ variable and a stack.
7) For each element in the modified elements array: (1)

if the element is a modified operand, append to the
‘‘prefix’’ variable, (2) if the element is a left parenthesis
‘‘(’’, push it into the stack, (3) if the element is an
operator, pop the top higher-precedence stack elements,
append them to the ‘‘prefix’’ variable, and push the
element after that into the stack, and (4) if the element
is a right parenthesis ‘‘)’’, pop the top stack elements

until it reaches a left parenthesis ‘‘(’’ and append them
to the ‘‘prefix’’ variable (neglect the parentheses).

8) If there any remaining elements in the stack after iter-
ating on all modified elements, pop them and append
them to the ‘‘prefix’’ variable (neglect the parentheses).

9) Similar to the fifth step, get the modified elements from
the ‘‘prefix’’ variable and re-reverse the elements on the
form ‘‘reverse = element + reverse’’.

3) BUILDING THE PREFIX EXPRESSION TREE
The following subsection shows how to build the prefix
expression tree. The algorithm depends on the recursion [52].
The input to the algorithm is the prefix expression while the
output is the prefix expression tree. The steps are summarized
in Algorithm 2 and discussed below.

1) Read the prefix expression.
2) Get the first modified element from the expression.

32372 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

Algorithm 2 Building the Prefix Expression Tree Pseudocode
1: function BUILDEXPRESSIONTREE(prefix) \\ The function accepts the prefix expression and returns the prefix expression

tree.
2: firstElement ← PopFirstModifiedElement(prefix) \\ Pop the first modified element from the expression.
3: node← Node(firstElement) \\ Create a node object.
4: if IsOperandNode(node) then \\ Check if the node object is an operand.
5: return node \\ If TRUE, return the node object.
6: node.Left ← BuildExpressionTree(prefix) \\ Apply recursion on the rest of the expression to get the left branch.
7: node.Right ← BuildExpressionTree(prefix) \\ Apply recursion on the rest of the expression to get the right branch.
8: return node \\ Return the required prefix expression tree.

3) Create a node object. A node object is an object from
the ‘‘Node’’ class that contains the data, left branch, and
right branch members. The left and right branches are
‘‘NULL’’ by default.

4) If the first modified element (i.e. node object) is an
operand, return the node object. Otherwise, continue
the next steps.

5) Perform recursion (repeat the second step) on the rest
of the expression to get the left branch.

6) Perform recursion (repeat the second step) on the rest
of the expression to get the right branch.

7) Return the node object.

4) SOFTWARE PACKAGES
There are multiple software packages with Python language
(the used programming language in the current research)
that handles the expressions such as SymPy [53]. SymPy is
a package for symbolic mathematics. It aims to become a
full-featured computer algebra system (CAS). It keeps the
code as simple as possible to be comprehensible and easily
extensible.

From this basic introduction, the current study works on
the automatic grading approach using the latest technologies.
This will be applied to essays, MCQs, and equations (i.e.
expressions). The main contributions of the current study are:

1) Proposing an automatic exam correction framework
(HMB-AECF) for MCQs, essays, and equations.

2) Comparing the different approaches to convert textual
data into numerical data (Word2Vec, FastText, Glove,
and USE) using three well-known Python packages
(Gensim, SpaCy, and NLTK).

3) Applying different experiments on the ‘‘Quora Ques-
tions Pairs’’ and the ‘‘UNT Computer Science Short
Answer’’ datasets.

4) Suggesting equations similarity checker algorithm
named ‘‘HMB-MMS-EMA’’.

5) Presenting an expression matching dataset named
‘‘HMB-EMD-v1’’.

6) Comparing the proposed equations similarity checker
algorithm ‘‘HMB-MMS-EMA’’ with a well-known
Python package (SymPy) on the proposed dataset
‘‘HMB-EMD-v1’’.

The rest of the paper is organized as follows: Section two
reviews a set of the related works. Section three discusses

the suggested framework and proposed algorithm in detail.
Section four shows the performed experiments and used
datasets. It presents the compiled dataset, reports the experi-
mental results, and discusses them in detail. Finally, the con-
clusion of the presented work and future work are reported in
Section five.

II. RELATED WORK
There are several proposed approaches and systems in the
field of automatic scoring and grading. Most of them worked
on the grading of essays and short answers. Pribadi et al. [54]
developed a system for automatic short answer scoring. They
compared multiple methods that applied the overlapping
methods to determine the similarity degree between the ref-
erences and students’ answers. They showed that the cosine
coefficient method reported the best results than the Dice and
Jaccard coefficient methods.

Suzen et al. [55] focused on the short answer questions
automatic grading. They reported the experimental results
on their own compiled dataset. The dataset was collected
and compiled from a computer science class at North Texas
University. They applied several data mining techniques to
the student answers corpus to calculate the similarity scores.
They argued that the computational methods could be used to
improve the reliability of human scoring but not replace it.

Mohler et al. [56] worked on the computer-assisted assess-
ment of the short student answers. They merged the graph
alignment features using the lexical-semantic similarity mea-
sures. They reported that the answers can be graded more
accurately compared with if the semantic measures were used
in isolation.

Hassan et al. [57] suggested a supervised learning algo-
rithm for the short answer automatic scoring which was
based on paragraph embeddings. They discussed significant
deep learning-based models for generating paragraph embed-
dings. They presented a detailed choice criterion of paragraph
embedding.

Mohler et al. [58] investigated unsupervised techniques for
the automatic short answer grading problem. They compared
a set of text similarity knowledge-based and corpus-based
measures. They reported the effect of domain and size on
the corpus-based measures. They introduced a technique to
improve system performance by integrating automatic feed-
back from the student answers.

VOLUME 9, 2021 32373

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 3. Related works pros. and cons.

FIGURE 3. Automatic Exam Correction Proposed Framework (HMB-AECF).

Table 3 shows the pros. and cons. of the discussed related
works. They are ordered from the latest to the oldest accord-
ing to the publishment year.

III. AUTOMATIC EXAM CORRECTION FRAMEWORK
(HMB-AECF)
The proposed automatic exam correction framework named
HMB-AECF is shown in Figure 3. It consists of five layers
and they are discussed in the following five sub-sections.

A. FIRST LAYER: ACCEPT THE STUDENT ANSWERS LAYER
The first layer is responsible for accepting the student’s
answers to different questions. The questions can be MCQs
(single selection and multiple selections), essays (single step
and multiple steps), or equations (single step and multiple
steps). Each student answer is encapsulated in a header in the
format shown in Figure 4.
From Figure 4, it consists of six parts: (1) The ‘‘Student

ID’’ field has four bytes to hold unsigned students identifier
numbers from 0 up to 232. (2) The ‘‘Question ID’’ field
has four bytes to hold unsigned questions identifier numbers
from 0 up to 232. (2) The ‘‘Question Type’’ field has four

FIGURE 4. First layer: Accept the student answers layer.

bits to hold the type of question such as 0000 for MCQ
(Single selection). The combinations from 0110 and above
are left for future use for other question types. (3) The ‘‘Is
Answered?’’ field has a single bit (Boolean) to indicate if the
student answered the question or not. It will help to bypass
the automatic correction process and set a zero mark. (4) The
‘‘Time Elapsed’’ field has 3 bytes to hold the student elapsed
time to answer the question. It is useful alsowhen the question
is timed and has a maximum time. (5) The ‘‘Data’’ field is up
to 10 Megabytes to hold the student’s answer.

B. SECOND LAYER: STUDENT AND REFERENCE ANSWERS
COMBINATION LAYER
The second layer is responsible for combining each stu-
dent’s answer with the corresponding reference answer.

32374 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 4. The different question types with the corresponding pre-processors, processors, and post-processors.

The reference answer for an MCQ is the correct selection,
for an essay can be keywords or the actual answer and for
an equation is the reference equation. This layer encapsulates
the previous layer header and produces a new header as shown
in Figure 5.

FIGURE 5. Second layer: Student and reference answers combination
layer.

From Figure 5, it consists of six parts: (1) The ‘‘First
Layer Header’’ field is the data from the previous layer.
(2) The ‘‘Reference Answer’’ field is up to 10 Megabytes per
answer to hold the reference correct answer. (3) The ‘‘Are
Keywords?’’ field has a single bit (Boolean) to indicate if the
reference answer is composed of keywords or the full answer.
It is used only when the question type is an essay. (4) The
‘‘Is Timed?’’ field has a single bit (Boolean) to indicate if
the question is timed or not. If the question is timed, the next
field will be used. (5) The ‘‘Allowed Time’’ field has 3 bytes
to hold the allowed time to answer the question. (6) The
‘‘Maximum Score’’ field has 4 bytes to hold the maximum
score as a floating-point number.

C. THIRD LAYER: AUTO CORRECTION LAYER
The auto-correction layer consists of four modules: (1) the
initializer module, (2) the pre-processing module, (3) the pro-
cessing module, and (4) the post-processing module. The ini-
tializer module checks the question type (from the first layer)
and determines if the question is a single step or multiple
steps. To generalize the two cases using loops or queues,

it encapsulates the single-step question into an array of a sin-
gle element. It also determines the question main type: MCQ,
essay (text), or equation to determine the corresponding pre-
processor, processor, and post-processor modules as shown
in Table 4.

This layer encapsulates the previous layer header and pro-
duces a new header as shown in Figure 6.

FIGURE 6. Third layer: Auto correction layer.

From Figure 6, it consists of five parts: (1) The ‘‘Second
Layer Header’’ field is the data from the previous layer.
(2) The ‘‘Is Strict?’’ field has a single bit (Boolean) to indicate
if the essays should remove accents and punctuations and
apply the lemmatization or not. It is useful when the accents
and punctuations are useful and there is no necessity for
lemmatization. (3) The ‘‘Similarity Score’’ field has 4 bytes
to hold the similarity score as a floating-point number. (4) The
‘‘Threshold’’ field has 2 bytes to hold the threshold value
used in determining if the answer is correct or not. It is used
only with essays. (5) The ‘‘Is Correct?’’ field has a single
bit (Boolean) to indicate if the answer is correct or not.

1) EQUATIONS MATCHING ALGORITHM (HMB-MMS-EMA)
The current sub-section discusses the suggested equations
matching algorithm named (HMB-MMS-EMA) shown in
Algorithm 3 and illustrated graphically in Figure 7. Algo-
rithm 3 is discussed below.

VOLUME 9, 2021 32375

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

Algorithm 3 The Suggested Equations Matching Algorithm, HMB-MMS-EMA, Pseudocode
1: function PREPROCESSEXPRESSION(expression) \\ The function accepts the expression and returns the pre-processed

expression.
2: trimmedExpression← RemoveWhitespaces(expression) \\ Remove the whitespaces from the expression.
3: normExpression, lookupTable ← Normalize(trimmedExpression) \\ Normalize the expression and get the

normalized expression and the lookup table.
4: return normExpression, lookupTable \\ Return the pre-processed expression with the lookup table.

5: function PROCESSEXPRESSION(expression, lookupTable) \\ The function accepts the expression and the merged lookup
table. It returns the processed expression tree.

6: replaced ← Replace(expression) \\ The square brackets are replaced with parentheses in the expression.
7: prefix ← Infix2Prefix(replaced) \\ The prefix notation is extracted.
8: expressionTree← BuildExpressionTree(prefix) \\ The expression tree is built.
9: expandedTree← ExpandExpressionTree(expressionTree) \\ The expression tree is expanded.
10: refined ← RefineTree(expandedTree) \\ The expanded tree is refined.
11: restored ← RestoreExpression(refined , lookupTable) \\ The refined expression is restored using the lookup table.
12: cleaned ← RemoveCurlyBraces(restored) \\ Remove the curly braces from restored expression.
13: result ← Stringify(cleaned) \\ Stringify the cleaned expression.
14: return result \\ Return the processed and expanded expression tree.

15: function POSTPROCESSEXPRESSION(first , second) \\ The function accepts the two processed expressions and returns the
similarity score.

16: similarity← CalculateSimilarity(first , second) \\ Calculate the similarity score between the two expressions.
17: return similarity \\ Return the similarity score.

18: function HMB-MMS-EMA(firstExpression, secondExpression) \\ The function accepts the two expressions and returns
the similarity between them.

19: firstPreprocessed , firstLookupTable ← PreprocessExpression(firstExpression) \\ Pre-process the first expression.
20: secondPreprocessed , secondLookupTable ← PreprocessExpression(secondExpression) \\ Pre-process the second

expression.
21: lookupTable ←MergeLookupTables(firstLookupTable, secondLookupTable) \\Merge the two lookup tables.
22: firstProcessed ← ProcessExpression(firstPreprocessed , lookupTable) \\ Process the first pre-processed expression.
23: secondProcessed ← ProcessExpression(secondPreprocessed , lookupTable) \\ Process the second pre-processed

expression.
24: similarity← PostprocessExpression(firstProcessed , secondProcessed) \\ Post-process the two processed

expressions.
25: return similarity \\ Return the required similarity score.

FIGURE 7. Graphical illustration of the Equations Matching
Algorithm (HMB-MMS-EMA).

The HMB-MMS-EMA starts by reading the two expres-
sions required to find the similarity between them. The fol-
lowing steps (i.e. following the three phases in Table 4)

are applied to each expression until the similarity score is
calculated between them:

1) The expression is read.
2) The pre-processing is applied to the expression by

removing the whitespaces and applying normaliza-
tion. In the normalization step, the variables take the
annotation ‘‘v’’ followed by a number. For example,
‘‘(a+ b)*c’’ should be normalized to ‘‘(v1+ v2)*v2’’.

3) The variables with their normalized annotations are
stored in a lookup table. All lookup tables should be
merged together. It will be used in a later step.

4) The square brackets used with expressions are replaced
with parentheses.

5) The expression is converted into the prefix notation
and the expression tree is built after that (discussed
previously in Algorithm 1 and Algorithm 2).

6) The expression tree expansion is generated as follows
in the next inner-steps.
a) Read the expression tree.

32376 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

b) Read the next node element (initially is the root
node).

c) Perform recursion (i.e. repeat the second inner-
step) on the left node if it exists.

d) Perform recursion (i.e. repeat the second inner-
step) on the right node if it exists.

e) Check if the current node data is a modified
operand, encapsulates the data into an array.

f) If the current node data is a plus ‘‘+’’
or minus ‘‘−’’, update the data to be on
the form ‘‘left_node_data + [operator] +
right_node_data’’.

g) If the current node data is an asterisk ‘‘*’’,
perform a multiplication spread. Multiplication
spread is performed when the left branch is mul-
tiplied to the right branch. It generates W × M
operations where W and M are the left and right
branch elements counts respectively. For exam-
ple, the expressions‘‘(a+ b) * (c+ d)’’ should be
spread into ‘‘a * c + a * b + b * c + b * d’’.

h) If the current node data is a forward slash ‘‘/’’,
perform a division spread. The division spread
is performed when the left branch is divided by
the right branch. It generates W operations. For
example, the expression‘‘(a+ b) / (c+ d)’’ should
be spread into ‘‘a / (c + d) + b / (c + d)’’.

i) The expanded expression is refined after that from
the same divisions, zeros, and ones. The zeros
with their operators are removed if the operator
is a plus ‘‘+’’ or minus ‘‘−’’. The zero’s portion
is removed if the operator is an asterisk ‘‘*’’.

j) The ones with their operators are removed if the
operator is an asterisk ‘‘*’’ or a forward slash ‘‘/’’.
For example, ‘‘a * 0 + a + 0 + a * 1 + 1 * 0 + 1
* 1’’ should become ‘‘a + a + a + 1’’.

k) It is refined also if there are divisions on the
same operands. For example, ‘‘b / b’’ should
become ‘‘1’’.

l) The refined expression is exported. This step
restores the normalized annotations to their
original variables using the built lookup table.
It removes the curly braces also.

m) The stringified expression is returned as the pro-
cessing output.

7) Calculate the similarity score between the two pro-
cessed expressions and return it as the output of the
algorithm.

Table 5 shows an example of how the suggested algorithm
works.

D. FOURTH LAYER: MANUAL CORRECTION
ENHANCEMENT LAYER
This layer is optional and can be bypassed. The target of this
layer is to refine (i.e. enhance) the automated reported results.
The instructor should pass on each student’s answer (with
its correction) anonymously to approve or update the result

TABLE 5. Example on the steps of the suggested HMB-MMS-EMA.

manually. This layer encapsulates the previous layer header
and produces a new header as shown in Figure 8.

FIGURE 8. Fourth layer: Manual correction enhancement layer.

From Figure 8, it consists of four parts: (1) The ‘‘Third
Layer Header’’ field is the data from the previous layer.
(2) The ‘‘Is Approved?’’ field has a single bit (Boolean)
to indicate if the original score generated by the frame-
work is approved or not. If the original score is approved,
the ‘‘Updated Score’’ field will be empty. (3) The ‘‘Original
Score’’ field has 4 bytes to hold the original achieved score by
the framework as a floating-point number. (4) The ‘‘Updated
Score’’ field has 4 bytes to hold the updated score as a
floating-point number.

E. FIFTH LAYER: RESULTS OUTPUT LAYER
This layer is responsible for storing the results in the storage
medium (i.e. database or cloud storage) and displaying the
final report to the user. It does not generate new headers.

IV. EXPERIMENTS AND DISCUSSION
The current section discusses the applied experiments and
reports the corresponding results. It is divided into two types
of experiments. They are (1) Text Matching Experiments and
(2) Expressions Matching Experiments.

A. TEXT MATCHING EXPERIMENTS
The Quora Questions Pairs dataset [59] is used in the first
4 experiments. It consists of 404, 290 records (149, 263
duplicated and 255, 027 non-duplicated) of potential question
duplicate pairs. Each record has a unique identifier, full text
for two question pairs, and a Boolean value that indicates
whether these pairs are duplicates or not.

The UNT Computer Science Short Answer dataset [60] is
used in the next 4 experiments. It consists of 2, 442 records

VOLUME 9, 2021 32377

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 6. The experiments 1 to 8 configurations.

TABLE 7. Experiment 1 using Word2Vec (GoogleNews-vectors-negative300.bin).

of 10 assignments with between 4 and 7 questions each
and 2 exams with 10 questions each. These assignments
(or exams) were assigned to an introductory computer science
class at the University of North Texas. The data is in plaintext
format. Each assignment includes the question, instructor
answer, and set of student answers with the average grades
of 2 annotators included. The scores were normalized to the
scale [0 : 5] before being averaged.

Table 6 summarizes the different configurations of the first
eight experiments.
Experiment 1: In the pre-processing phase, whitespace,

punctuations, stop-words, and accents are removed and
lemmatization is applied (the ‘‘Is Strict?’’ flag is set to False
in the third layer header). The tokenization phase is applied
and the text is converted into words. The overall text vector is
calculated using the sum and mean (average) of the word vec-
tors. The pre-trained models of Word2Vec (i.e. GoogleNews-
vectors-negative300.bin), GloVe (i.e. glove.6B.300d.txt,
glove.42B.300d.txt, and glove.840B.300d.txt), and FastText
(i.e. wiki-news-300d-1M.vec and crawl-300d-2M.vec) are
used in the word embedding phase. The cosine similarity
and Pearson correlation are calculated. The 95%, 90%, and
85% thresholds (if above, it is duplicate, and otherwise, it is
not duplicate) are set to determine the number of matches.
The accuracy is calculated by dividing the number of correct
matches by the actual number of records. The results are
captured in Table 7, Table 8, and Table 9 for Word2Vec,
GloVe, and FastText respectively.

From Experiment 1, the GoogleNews Word2Vec
pre-trained model (Table 7) reports that all of the accuracies
are in the range of 65% to 68%. The best accuracy (67.11%)

FIGURE 9. Experiment 1 Word2Vec confusion matrix.

is achieved using the NLTK package with the 85% threshold
and Cosine similarity score. Figure 9 shows the confusion
matrix of the best score record. The overall vector calculation
using the sum and mean reported the same results which
indicate that the cosine similarity and Pearson correlation are
not affected by that.

The GloVe 6B pre-trained model (Table 8) reports that all
of the accuracies are in the range of 66% to 68%. The best
accuracy (67.87%) is achieved using the SpaCy package with
the 90% threshold and Cosine similarity score. Figure 10
shows the confusion matrix of the best score record. The
GloVe 42B pre-trained model (Table 8) reports that all of the
accuracies are in the range of 59% to 68%. The best accuracy
(67.58%) is achieved using the SpaCy package with the 95%
threshold and Cosine similarity score. Figure 11 shows the
confusion matrix of the best score record. The GloVe 840B

32378 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 8. Experiment 1 using GloVe (glove.6B.300d.txt, glove.42B.300d.txt, and glove.840B.300d.txt).

TABLE 9. Experiment 1 using FastText (wiki-news-300d-1M.vec and crawl-300d-2M.vec).

FIGURE 10. Experiment 1 GloVe 6B confusion matrix.

pre-trained model (Table 8) reports that all of the accuracies
are in the range of 64% to 69%. The best accuracy (68.09%)
is achieved using the SpaCy package with the 90% threshold
and Cosine similarity score. Figure 12 shows the confusion
matrix of the best score record.

The FastText News pre-trainedmodel (Table 9) reports that
all of the accuracies are in the range of 66% to 68%. The

FIGURE 11. Experiment 1 GloVe 42B confusion matrix.

best accuracy (67.22%) is achieved using the SpaCy package
with the 90% threshold and Cosine similarity score. Figure 13
shows the confusion matrix of the best score record. The
FastText Crawl pre-trained model (Table 9) reports that all
of the accuracies are in the range of 66% to 69%. The best
accuracy (68.21%) is achieved using the SpaCy package with
the 90% threshold and Cosine similarity score. Figure 14
shows the confusion matrix of the best score record.

VOLUME 9, 2021 32379

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

FIGURE 12. Experiment 1 GloVe 840B confusion matrix.

FIGURE 13. Experiment 1 FastText News confusion matrix.

FIGURE 14. Experiment 1 FastText Crawl confusion matrix.

Experiment 2: It is similar to Experiment 1 but in the strict
mode. The ‘‘Is Strict?’’ flag is set to True in the third layer
header. The results are captured in Table 10, Table 11, and
Table 12 for Word2Vec, GloVe, and FastText respectively.
From Experiment 2, the GoogleNews Word2Vec pre-

trained model (Table 10) reports that all of the accuracies are
in the range of 64% to 67%. The best accuracy (66.95%) is
achieved using the NLTK package with the 85% threshold
and the two scores and with the 90% threshold and Pearson
correlation. Figure 15 shows the confusion matrix of the best
score record.

The GloVe 6B pre-trained model (Table 11) reports that
all of the accuracies are in the range of 50% to 67%. The
best accuracy (66.20%) is achieved using the SpaCy package

FIGURE 15. Experiment 2 Word2Vec confusion matrix.

FIGURE 16. Experiment 2 GloVe 6B confusion matrix.

FIGURE 17. Experiment 2 GloVe 42B confusion matrix.

with the 95% threshold and Cosine similarity score. Figure 16
shows the confusion matrix of the best score record. The
GloVe 42B pre-trained model (Table 11) reports that all of the
accuracies are in the range of 38% to 63%. The best accuracy
(62.21%) is achieved using the Gensim package with the 90%
threshold and Pearson correlation score. Figure 17 shows the
confusion matrix of the best score record. The GloVe 840B
pre-trained model (Table 11) reports that all of the accuracies
are in the range of 49% to 67%. The best accuracy (66.84%)
is achieved using the SpaCy package with the 95% threshold
and Cosine similarity score. Figure 18 shows the confusion
matrix of the best score record.

32380 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 10. Experiment 2 using Word2Vec (GoogleNews-vectors-negative300.bin).

TABLE 11. Experiment 2 using GloVe (glove.6B.300d.txt, glove.42B.300d.txt, and glove.840B.300d.txt).

TABLE 12. Experiment 2 using FastText (wiki-news-300d-1M.vec and crawl-300d-2M.vec).

The FastText News pre-trained model (Table 12) reports
that all of the accuracies are in the range of 63% to 68%.
The best accuracy (67.59%) is achieved using the SpaCy
package with the 90% threshold and Cosine similarity score.
Figure 19 shows the confusion matrix of the best score
record. The FastText Crawl pre-trained model (Table 12)
reports that all of the accuracies are in the range of 43%
to 67%. The best accuracy (66.19%) is achieved using the
SpaCy package with the 95% threshold and Cosine similarity
score. Figure 20 shows the confusion matrix of the best score
record.

Experiment 3: It is similar to Experiment 1, but instead of
using the word embedding, the paragraph embedding using
USE is used. The ‘‘Is Strict?’’ flag is set to False in the third
layer header. The pre-trained models of the USE are USE
v4 and v5 (Encoder of greater-than-word length text trained
on a variety of data) and USE v3 (Greater-than-word length
text encoder for question-answer retrieval). USE v5 is larger
than USE v4. The cosine similarity and Pearson correlation
are calculated. The 95%, 90%, and 85% thresholds (if above,
it is duplicate, and otherwise, it is not duplicate) are set to
determine the number of matches. The accuracy is calculated

VOLUME 9, 2021 32381

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

FIGURE 18. Experiment 2 GloVe 840B confusion matrix.

FIGURE 19. Experiment 2 FastText News confusion matrix.

FIGURE 20. Experiment 2 FastText Crawl confusion matrix.

by dividing the number of correct matches by the actual
number of records. The results are captured in Table 13.

From Experiment 3 (Table 13), the USE v4 pre-trained
model reports that all of the accuracies are in the range of
65% to 70%. The best accuracy (69.83%) is achieved using
the SpaCy package with the 85% and 90% thresholds and
Pearson correlation score. Figure 21 shows the confusion
matrix of the best score record. The USE Large v5 pre-trained
model reports that all of the accuracies are in the range of 67%
to 72%. The best accuracy (71.94%) is achieved using the
SpaCy package with the 85% and the two scores and with the
90% threshold and the Pearson correlation score. Figure 22
shows the confusion matrix of the best score record. The USE
QA v3 pre-trained model reports that all of the accuracies are

FIGURE 21. Experiment 3 USE v4 confusion matrix.

FIGURE 22. Experiment 3 USE Large v5 confusion matrix.

FIGURE 23. Experiment 3 USE QA v3 confusion matrix.

in the range of 67% to 71%. The best accuracy (70.80%) is
achieved using the SpaCy package with the 85% and the two
scores andwith the 90% threshold and the Pearson correlation
score. Figure 23 shows the confusion matrix of the best score
record.
Experiment 4: It is similar to Experiment 3 but in the strict

mode. The ‘‘Is Strict?’’ flag is set to True in the third layer
header. The results are captured in Table 14.

From Experiment 4 (Table 14), the USE v4 pre-trained
model reports that all of the accuracies are in the range of
65% to 72%. The best accuracy (71.83%) is achieved using
the SpaCy package with the 85% and 90% thresholds and
Pearson correlation score. Figure 24 shows the confusion

32382 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 13. Experiment 3 using USE v4, Large v5, and QA v3.

TABLE 14. Experiment 4 using USE v4, Large v5, and QA v3.

FIGURE 24. Experiment 4 USE v4 confusion matrix.

matrix of the best score record. The USE Large v5 pre-trained
model reports that all of the accuracies are in the range of
69% to 78%. The best accuracy (77.95%) is achieved using
the SpaCy package with the 85% and the two scores and with
the 90% threshold and Pearson correlation score. Figure 25
shows the confusion matrix of the best score record. The USE
QA v3 pre-trained model reports that all of the accuracies are
in the range of 69% to 78%. The best accuracy (77.54%) is
achieved using the SpaCy package with the 90% threshold
and Pearson correlation score and with the 85% threshold
with the two scores. Figure 26 shows the confusion matrix
of the best score record.

Table 15 summarizes the results achieved by Experiments 1
to 4 with the corresponding thresholds, scores, and packages.

Table 15 shows that the best-reported accuracy (77.95%)
is achieved by the USE Larges v5 in the ‘‘Strict’’ mode

FIGURE 25. Experiment 4 USE Large v5 confusion matrix.

FIGURE 26. Experiment 4 USE QA v3 confusion matrix.

using the SpaCy package. SpaCy package reports the best
accuracies in most of the records (15 out of 18) over Gensim
and NLTK packages. The threshold (90%) is reported as the

VOLUME 9, 2021 32383

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 15. Experiments 1 to 4 summarization.

TABLE 16. Experiment 5 using Word2Vec (GoogleNews-vectors-
negative300.bin).

most suitable one (12 out of 18). The Cosine similarity score
is better than the Pearson correlation score (15 out of 18).
Experiment 5: Similar to the previous experiments, in the

pre-processing phase, whitespace, punctuations, stop-words,
and accents are removed and lemmatization is applied (the
‘‘Is Strict?’’ flag is set to False in the third layer header).
The tokenization phase is applied and the text is con-
verted into words. The overall text vector is calculated
using the sum and mean (average) of the word vectors.
The pre-trained models of Word2Vec (i.e. GoogleNews-
vectors-negative300.bin), GloVe (i.e. glove.6B.300d.txt,
glove.42B.300d.txt, and glove.840B.300d.txt), and FastText
(i.e. wiki-news-300d-1M.vec and crawl-300d-2M.vec) are
used in the word embedding phase. The cosine similarity
and Pearson correlation are calculated and based on them,
the corresponding predicted grade is calculated by dividing
the score by 100 and multiplying it with 5. The root mean
square error (RMSE) between the predicted scores (ŷi) and
actual dataset average scores (yi) is calculated in Equation 6)
where Ns is the number of elements. The RMSE results are
captured in Table 16, Table 17, and Table 18 for Word2Vec,
GloVe, and FastText respectively.

RMSE =

√∑Ns
i=1(ŷi − yi)2

Ns
(6)

From Experiment 5, the GoogleNews Word2Vec pre-
trained model (Table 16) reports the lowest RMSE value of
1.69. It is achieved using the NLTK package and Cosine
similarity score. The overall vector calculation using the sum
and mean reported the same results which indicate that the
cosine similarity and Pearson correlation are not affected by
that. The GloVe pre-trained model (Table 17) reports the
lowest RMSE value of 1.49. It is achieved using the NLTK
package with the two scores. The GloVe 42B pre-trained
model (Table 17) reports the lowest RMSE value of 1.17. It is
achieved using the Gensim and NLTK packages with the two
scores. The GloVe 840B pre-trained model (Table 17) reports
the lowest RMSE value of 1.19. It is achieved using the NLTK
package with the two scores. The FastText News pre-trained
model (Table 18) reports the lowest RMSE value of 1.09.
It is achieved using the Gensim and NLTK packages with the
two scores. The FastText Crawl pre-trained model (Table 18)
reports the lowest RMSE value of 1.27. It is achieved using
the NLTK package with the two scores.
Experiment 6: It is similar to Experiment 5 but in the strict

mode. The ‘‘Is Strict?’’ flag is set to True in the third layer
header. The results are captured in Table 19, Table 20, and
Table 21 for Word2Vec, GloVe, and FastText respectively.
From Experiment 6, the GoogleNews Word2Vec pre-

trained model (Table 19) reports the lowest RMSE value of
1.43. It is achieved using the Gensim package and Cosine
similarity score. The GloVe pre-trained model (Table 20)
reports the lowest RMSE value of 1.17. It is achieved using
the NLTK and SpaCy packages with the two scores. The
GloVe 42B pre-trained model (Table 20) reports the low-
est RMSE value of 1.18. It is achieved using the Gensim
package with the two scores. The GloVe 840B pre-trained
model (Table 20) reports the lowest RMSE value of 1.14.
It is achieved using the Gensim package with two scores.
The FastText News pre-trained model (Table 21) reports the
lowest RMSE value of 1.10. It is achieved using the Gensim
package with the two scores. The FastText Crawl pre-trained

32384 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 17. Experiment 5 using GloVe (glove.6B.300d.txt, glove.42B.300d.txt, and glove.840B.300d.txt).

TABLE 18. Experiment 5 using FastText (wiki-news-300d-1M.vec and crawl-300d-2M.vec).

TABLE 19. Experiment 6 using Word2Vec
(GoogleNews-vectors-negative300.bin).

model (Table 21) reports the lowest RMSE value of 1.09.
It is achieved using the NLTK package with the Pearson
correlation score.
Experiment 7: It is similar to Experiment 6, but instead of

using the word embedding, the paragraph embedding using
USE is used. The ‘‘Is Strict?’’ flag is set to False in the third
layer header. The pre-trained models of the USE are USE
v4, USE Large v5, and USE QA v3. The results are captured
in Table 22.

From Experiment 7 (Table 22), the USE v4 pre-trained
model reports the lowest RMSE value of 7.13. It is achieved
using the SpaCy package with the two scores. The USE Large
v5 pre-trained model reports the lowest RMSE value of 7.24.
It is achieved using the SpaCy package with the two scores.
The USE QA v3 pre-trained model reports the lowest RMSE
value of 7.38. It is achieved using the SpaCy package with
the two scores.
Experiment 8: It is similar to Experiment 7 but in the strict

mode. The ‘‘Is Strict?’’ flag is set to True in the third layer
header. The results are captured in Table 23.
From Experiment 8 (Table 23), the USE v4 pre-trained

model reports the lowest RMSE value of 7.11. It is achieved
using the SpaCy package with the two scores. The USE Large
v5 pre-trained model reports the lowest RMSE value of 7.15.
It is achieved using the SpaCy package with the two scores.
The USE QA v3 pre-trained model reports the lowest RMSE
value of 7.41. It is achieved using the SpaCy package with
the two scores.

VOLUME 9, 2021 32385

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 20. Experiment 6 using GloVe (glove.6B.300d.txt, glove.42B.300d.txt, and glove.840B.300d.txt).

TABLE 21. Experiment 6 using FastText (wiki-news-300d-1M.vec and crawl-300d-2M.vec).

TABLE 22. Experiment 7 using USE v4, Large v5, and QA v3.

Table 24 summarizes the results achieved by Experiments
5 to 8 with the corresponding scores and packages.

Table 24 shows that the best-reported lowest RMSE (1.09)
is achieved by the FastText News in the non-‘‘Strict’’ mode
using the NLTK and Gensim packages and by the FastText
Crawl in the ‘‘Strict’’ mode using the SpaCy package. The
three Python packages are suitable as they report the same
values in most of the records. The two scores are suitable as
they report the same values in most of the records.

TABLE 23. Experiment 8 using USE v4, Large v5, and QA v3.

B. EXPRESSIONS MATCHING EXPERIMENTS
The expression matching experiments are performed on a
dataset (named HMB-EMD-v1) compiled by the authors.
It consists of 5 columns (Number, Expression 1, Expression 2,
Are Equal?, Variables). The first column is a counter, the sec-
ond two columns are two expressions, the third column is
to indicate if they are equal or not, and the last column lists
the variables used in the expressions. The dataset consists of
150 records. Table 25 shows 5 random records of the dataset.

32386 VOLUME 9, 2021

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

TABLE 24. Experiments 5 to 8 summarization.

TABLE 25. Five random rows of the HMB-EMD-v1 dataset.

TABLE 26. The achieved results from experiment 9.

Experiment 9: The suggested algorithm is applied to the
proposed dataset and the number of matches is reported. The
SymPy Python package is applied also to the dataset. Table 26
reports the achieved results.

Table 26 shows that the suggested algorithm (HMB-MMS-
EMA) achieved an accuracy of 100% which is more than the
Sympy Python package on the 150 records of the proposed
dataset.

V. CONCLUSION AND FUTURE WORK
The current work reviewed the literature on text semantic sim-
ilarity and automatic exam correction systems. It proposed
an automatic exam correction framework (HMB-AECF) for
MCQs, essays, and equations that was abstracted into five
layers. Each layer had its separate work and header (unless
the last one). It compared the different approaches to con-
vert (i.e. embed) the textual data such as essays and short
answers into numerical data. TheWord2Vec, FastText, Glove,
and Universal Sentence Encoder (USE) were used as the
embedding pre-trained models in the experiments while
BERT, SentenceBERT, RoBERTa, XLNET, and GPT-series
were mentioned and can be depended on in future stud-
ies. The comparison was performed using three well-known

TABLE 27. Table of Abbreviations.

Python packages (Gensim, SpaCy, and NLTK) in eight exper-
iments. The experiments were performed on the Quora Ques-
tions Pairs and the UNT Computer Science Short Answer
datasets. The best-achieved highest accuracy in the first four
experiments was 77.95% without fine-tuning the pre-trained
models by the USE. The best-achieved lowest RMSE in
the second four experiments was 1.09 without fine-tuning
the used pre-trained models by the USE. The current study
also proposed an equations’ similarity checker algorithm
named HMB-MMS-EMA. It presented an expression match-
ing dataset named HMB-EMD-v1. The ninth experiment was
performed as a comparison between the HMB-MMS-EMA
and the SymPy Python package. The HMB-MMS-EMA
reported 100% accuracy over the SymPy Python package

VOLUME 9, 2021 32387

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

which reported 71.33% only. As the future work, the HMB-
AECF can be extended for other types of questions and the
HMB-MMS-EMA algorithm can be improved to carry other
arithmetic operations and functions such as sine and cosine.
Other machine learning and state-of-the-art deep learning
techniques, approaches, and packages can be used for the
paper evaluations.

APPENDICES
TABLE OF ABBREVIATIONS
Table 27 presents the ‘‘Table of Abbreviations’’ and is
ordered in ascending order.

TABLE OF SYMBOLS
Table 28 presents the ‘‘Table of Symbols’’ and is ordered
according to the symbols’ existence.

TABLE 28. Table of symbols.

REFERENCES
[1] R. Mihalcea, C. Corley, and C. Strapparava, ‘‘Corpus-based and

knowledge-based measures of text semantic similarity,’’ in Proc. AAAI,
vol. 6, 2006, pp. 775–780.

[2] L. Zhiqiang, S. Werimin, and Y. Zhenhua, ‘‘Measuring semantic similarity
between words using wikipedia,’’ in Proc. Int. Conf. Web Inf. Syst. Mining,
Nov. 2009, pp. 251–255.

[3] E. T. Al-Shammari, ‘‘Lemmatizing, stemming, and Query expansion
method and system,’’ U.S. Patent 8 473 279, Jun. 25, 2013.

[4] V. Balakrishnan and E. Lloyd-Yemoh, ‘‘Stemming and lemmati-
zation: A comparison of retrieval performances,’’ in Proc. SCEI
Seoul Conf., Seoul, South Korea, Apr. 2014. [Online]. Available:
http://eprints.um.edu.my/13423/

[5] N. Habash, O. Rambow, and R. Roth, ‘‘MADA+ TOKAN: A toolkit for
Arabic tokenization, diacritization, morphological disambiguation, POS
tagging, stemming and lemmatization,’’ in Proc. 2nd Int. Conf. Arabic
Lang. Resour. Tools (MEDAR), Cairo, Egypt, vol. 41, 2009, p. 62.

[6] I. Boban, A. Doko, and S. Gotovac, ‘‘Sentence retrieval using stemming
and lemmatization with different length of the queries,’’ Adv. Sci., Technol.
Eng. Syst. J., vol. 5, no. 3, pp. 349–354, 2020.

[7] R. M. Kaplan, ‘‘Method and apparatus for tokenizing text,’’
U.S. Patent 5 721 939, Feb. 24, 1998.

[8] P. McNamee and J. Mayfield, ‘‘Character N-gram tokenization for
European language text retrieval,’’ Inf. Retr., vol. 7, nos. 1–2, pp. 73–97,
Jan. 2004.

[9] G. Carenini, R. T. Ng, and E. Zwart, ‘‘Extracting knowledge from evalua-
tive text,’’ in Proc. 3rd Int. Conf. Knowl. Capture, 2005, pp. 11–18.

[10] N. Azam and J. Yao, ‘‘Comparison of term frequency and document
frequency based feature selection metrics in text categorization,’’ Expert
Syst. Appl., vol. 39, no. 5, pp. 4760–4768, Apr. 2012.

[11] A. M. Dai, C. Olah, and Q. V. Le, ‘‘Document embedding with para-
graph vectors,’’ 2015, arXiv:1507.07998. [Online]. Available: http://arxiv.
org/abs/1507.07998

[12] M.Mohd, R. Jan, andM. Shah, ‘‘Text document summarization usingword
embedding,’’ Expert Syst. Appl., vol. 143, Apr. 2020, Art. no. 112958.

[13] A. Kulkarni and A. Shivananda, ‘‘Converting text to features,’’ in Natural
Language Processing Recipes. Berkeley, CA, USA: Apress, 2019, doi:
10.1007/978-1-4842-4267-4_3.

[14] H. Christian, M. P. Agus, and D. Suhartono, ‘‘Single document auto-
matic text summarization using term frequency-inverse document fre-
quency (TF-IDF),’’ ComTech, Comput., Math. Eng. Appl., vol. 7, no. 4,
pp. 285–294, 2016.

[15] A. A. Hakim, A. Erwin, K. I. Eng, M. Galinium, and W. Muliady, ‘‘Auto-
mated document classification for news article in Bahasa Indonesia based
on term frequency inverse document frequency (TF-IDF) approach,’’ in
Proc. 6th Int. Conf. Inf. Technol. Electr. Eng. (ICITEE), Oct. 2014, pp. 1–4.

[16] M.Aydoğan andA. Karci, ‘‘Improving the accuracy using pre-trainedword
embeddings on deep neural networks for turkish text classification,’’ Phys.
A, Stat. Mech. Appl., vol. 541, p. 123288, 2020.

[17] M. Grohe, ‘‘Word2vec, node2vec, graph2vec, x2vec: Towards a theory
of vector embeddings of structured data,’’ in Proc. 39th ACM SIGMOD-
SIGACT-SIGAI Symp. Princ. Database Syst., Jun. 2020, pp. 1–16.

[18] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors
for word representation,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process. (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[19] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin,
‘‘Advances in pre-training distributed word representations,’’ in Proc.
Int. Conf. Lang. Resour. Eval., 2018, pp. 52–55. [Online]. Available:
https://www.aclweb.org/anthology/L18-1.pdf

[20] S. Yilmaz and S. Toklu, ‘‘A deep learning analysis on question classifica-
tion task using word2vec representations,’’ Neural Comput. Appl., vol. 7,
pp. 1–20, Jan. 2020.

[21] M. Mohammed and N. Omar, ‘‘Question classification based on Bloom’s
taxonomy cognitive domain using modified TF-IDF and word2vec,’’ PLoS
ONE, vol. 15, no. 3, Mar. 2020, Art. no. e0230442.

[22] H. Yousuf and S. Salloum, ‘‘Survey analysis: Enhancing the security of
vectorization by using word2vec and CryptDB,’’ Adv. Sci., Technol. Eng.
Syst. J., vol. 5, no. 4, pp. 374–380, 2020.

[23] T. Hai Nguyen, ‘‘Analyze the effects of weighting functions on cost func-
tion in the glove model,’’ 2020, arXiv:2009.04732. [Online]. Available:
http://arxiv.org/abs/2009.04732

[24] B. Mansurov and A. Mansurov, ‘‘Development of word embeddings
for uzbek language,’’ 2020, arXiv:2009.14384. [Online]. Available:
http://arxiv.org/abs/2009.14384

[25] V. Gaikwad and Y. Haribhakta, ‘‘Adaptive GloVe and FastText model for
hindi word embeddings,’’ in Proc. 7th ACM IKDD CoDS 25th COMAD,
Jan. 2020, pp. 175–179.

[26] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le,
‘‘Xlnet: Generalized autoregressive pretraining for language understand-
ing,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 5753–5763.

[27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly opti-
mized BERT pretraining approach,’’ 2019, arXiv:1907.11692. [Online].
Available: http://arxiv.org/abs/1907.11692

[28] D. Shirafuji, H. Kameya, R. Rzepka, and K. Araki, ‘‘Summarizing
utterances from japanese assembly minutes using political sentence-
BERT-based method for QA Lab-PoliInfo-2 task of NTCIR-15,’’ 2020,
arXiv:2010.12077. [Online]. Available: http://arxiv.org/abs/2010.12077

[29] N. Reimers and I. Gurevych, ‘‘Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,’’ 2019, arXiv:1908.10084. [Online].
Available: https://arxiv.org/abs/1908.10084

[30] H. A. M. Hassan, G. Sansonetti, F. Gasparetti, A. Micarelli, and J. Beel,
‘‘Bert, elmo, use and infersent sentence encoders: The panacea for
research-paper recommendation?’’ in Proc. RecSys, 2019, pp. 6–10.

[31] Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. Hernan-
dez Abrego, S. Yuan, C. Tar, Y.-H. Sung, B. Strope, and R. Kurzweil,
‘‘Multilingual universal sentence encoder for semantic retrieval,’’ 2019,
arXiv:1907.04307. [Online]. Available: http://arxiv.org/abs/1907.04307

[32] M.-Y. Day and C. Jou, ‘‘Universal sentence-embedding models,’’ Founda-
tion, vol. 2, nos. 03–2020, p. 09, 2020.

[33] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ 2020,
arXiv:2005.14165. [Online]. Available: http://arxiv.org/abs/2005.14165

[34] H. T. Nguyen, P. H. Duong, and E. Cambria, ‘‘Learning short-text seman-
tic similarity with word embeddings and external knowledge sources,’’
Knowl.-Based Syst., vol. 182, Oct. 2019, Art. no. 104842.

32388 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-1-4842-4267-4_3

H. M. Balaha, M. M. Saafan: AECF for the MCQs, Essays, and Equations Matching

[35] O. Araque, G. Zhu, and C. A. Iglesias, ‘‘A semantic similarity-based
perspective of affect lexicons for sentiment analysis,’’ Knowl.-Based Syst.,
vol. 165, pp. 346–359, Feb. 2019.

[36] T. Thongtan and T. Phienthrakul, ‘‘Sentiment classification using doc-
ument embeddings trained with cosine similarity,’’ in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics, Student Res. Workshop, 2019,
pp. 407–414.

[37] S. Bag, S. K. Kumar, and M. K. Tiwari, ‘‘An efficient recommendation
generation using relevant jaccard similarity,’’ Inf. Sci., vol. 483, pp. 53–64,
May 2019.

[38] P. Tabaghi, I. Dokmanić, and M. Vetterli, ‘‘Kinetic Euclidean distance
matrices,’’ IEEE Trans. Signal Process., vol. 68, pp. 452–465, 2020, doi:
10.1109/TSP.2019.2959260.

[39] Y. Huang, W. Jin, B. Li, P. Ge, and Y. Wu, ‘‘Automatic modulation
recognition of radar signals based on manhattan distance-based features,’’
IEEE Access, vol. 7, pp. 41193–41204, 2019.

[40] M.M.Haider,M.A.Hossin, H. R.Mahi, andH.Arif, ‘‘Automatic text sum-
marization using gensim Word2 Vec and K-means clustering algorithm,’’
in Proc. IEEE Region Symp. (TENSYMP), Dec. 2020, pp. 283–286.

[41] B. Srinivasa-Desikan, Natural Language Processing and Computational
Linguistics: A Practical Guide to Text Analysis with Python, Gensim,
spaCy, and Keras. Birmingham, U.K.: Packt, 2018.

[42] J. Perkins, Python text Processing with NLTK 2.0 Cookbook. Birmingham,
U.K.: Packt, 2010.

[43] R. Rehurek and P. Sojka. (2011). Gensim-Statistical Semantics
in Python. EuroScipy, Paris, France. [Online]. Available:
https://www.fi.muni.cz/usr/sojka/posters/rehurek-sojka-scipy2011.pdf

[44] (2017). Espacy-Industrial-Strength Natural Language Processing in
Python. [Online]. Available: https://spacy.io

[45] N. Hardeniya, J. Perkins, D. Chopra, N. Joshi, and I. Mathur, Natural
Language Processing: Python and NLTK. Birmingham, U.K.: Packt, 2016.

[46] K. A. Bollen, ‘‘Structural equation models,’’ Encyclopedia Biostatist.,
vol. 7, p. 51, Jul. 2005.

[47] N. Ramsey, ‘‘Unparsing expressions with prefix and postfix operators,’’
Software: Pract. Exper., vol. 28, no. 12, pp. 1327–1356, Oct. 1998.

[48] G. Araujo, P. Centoducatte, R. Azevedo, and R. Pannain, ‘‘Expression-
tree-based algorithms for code compression on embedded RISC architec-
tures,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 5,
pp. 530–533, Oct. 2000.

[49] L. Wang, Y. Wang, D. Cai, D. Zhang, and X. Liu, ‘‘Translating a math
word problem to an expression tree,’’ 2018, arXiv:1811.05632. [Online].
Available: http://arxiv.org/abs/1811.05632

[50] M. P. Barnett and X. Rui, ‘‘Infix to prefix conversion as a PST reduction,’’
ACM SIGPLAN Notices, vol. 25, no. 5, pp. 34–38, 1990.

[51] K. Thompson, ‘‘Programming techniques: Regular expression search algo-
rithm,’’ Commun. ACM, vol. 11, no. 6, pp. 419–422, Jun. 1968.

[52] D. A. Turner, ‘‘Recursion equations as a programming language,’’ in A
List of Successes That Can Change the World (Lecture Notes in Computer
Science), vol. 9600, S. Lindley, C. McBride, P. Trinder, and D. Sannella,
Eds. Cham, Switzerland: Springer, 1982, doi: 10.1007/978-3-319-30936-
1_24.

[53] A. Meurer, C. P. Smith, M. Paprocki, and O. Certík, ‘‘SymPy: Symbolic
computing in Python,’’ PeerJ Comput. Sci., vol. 3, p. e103, Jan. 2017.

[54] F. S. Pribadi, T. B. Adji, A. E. Permanasari, A.Mulwinda, andA. B. Utomo,
‘‘Automatic short answer scoring using words overlapping methods,’’ AIP
Conf. Proc., vol. 1818, Mar. 2017, Art. no. 020042.

[55] N. Sázen, A. N. Gorban, J. Levesley, and E. M. Mirkes, ‘‘Automatic
short answer grading and feedback using text mining methods,’’ Procedia
Comput. Sci., vol. 169, pp. 726–743, Dec. 2020.

[56] M. Mohler, R. Bunescu, and R. Mihalcea, ‘‘Learning to grade short answer
questions using semantic similarity measures and dependency graph align-
ments,’’ in Proc. 49th Annu. Meeting Assoc. Comput. Linguistics, Hum.
Lang. Technol., 2011, pp. 752–762.

[57] S. Hassan, A. A., andM. El-Ramly, ‘‘Automatic short answer scoring based
on paragraph embeddings,’’ Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 10,
pp. 397–402, 2018.

[58] M. Mohler and R. Mihalcea, ‘‘Text-to-text semantic similarity for auto-
matic short answer grading,’’ in Proc. 12th Conf. Eur. Chapter Assoc.
Comput. Linguistics, 2009, pp. 567–575.

[59] Z. Chen, H. Zhang, X. Zhang, and L. Zhao, ‘‘Quora question Pairs,’’ Univ.
Waterloo, Waterloo, ON, Canada, Tech. Rep., 2018. [Online]. Available:
http://static.hongbozhang.me/doc/STAT_441_Report.pdf

[60] A. Prabhudesai and T. N. B. Duong, ‘‘Automatic short answer grading
using siamese bidirectional LSTM based regression,’’ in Proc. IEEE Int.
Conf. Eng., Technol. Educ. (TALE), Dec. 2019, pp. 1–6.

HOSSAM MAGDY BALAHA was born in Egypt
in 1993. He received the B.Sc. and M.Sc. degrees
from the Computers and Systems Engineering
Department, Faculty of Engineering, Mansoura
University, Egypt. He is currently an Assistant
Lecturer with the Computers and Systems Engi-
neeringDepartment, Faculty of Engineering,Man-
soura University, a Senior Full Stack Laravel Web
Developer, and Freelancer. His major research
interests are web development, the Internet of

Things (IoT), deep learning (DL), computer vision (CV), soft computing,
embedded systems, and robotics. He made different courses on YouTube
including web development and the IoT. He built different systems including
web and mobile applications. He had a part in different projects and competi-
tions related to his interests. He has served as a Reviewer in different journals
such as the IEEE ACCESS, IEEE TRANSACTIONS ON CYBERNETICS,
Artificial Intelligence Review (AIRE), and International Journal on Intelli-
gent Systems (INT2).

MAHMOUD M. SAAFAN received the
B.Sc. degree from the Electronics Engineering
Department, and the M.Sc. and Ph.D. degrees
in computers and control systems engineering
from Mansoura University, Egypt. He is currently
an Assistant Professor with the Computers and
Control Systems Engineering Department, Faculty
of Engineering, Mansoura University. His major
research interests are particle swarm optimization
(PSO), artificial intelligence (AI), genetic algo-

rithms (GA), neural networks (NN), fuzzy logic, and deep learning (DL).
Also, he is interested in the applications of AI in machine learning (ML),
image processing, access control, and optimization.

VOLUME 9, 2021 32389

http://dx.doi.org/10.1109/TSP.2019.2959260
http://dx.doi.org/10.1007/978-3-319-30936-1_24
http://dx.doi.org/10.1007/978-3-319-30936-1_24

