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ABSTRACT In recent years, the rapid development of artificial intelligence, especially deep learning
technology, makes machine learning have application scenarios in the fields of power system stability
analysis, coordination along with scheduling and load forecasting. This paper designs an emotional deep
learning programming controller (EDLPC) for automatic voltage control of power systems. The designed
EDLPC contains an emotional deep neural network (EDNN) structure and an artificial emotional Q-learning
algorithm. Besides, a specially defined proportional-integral-derivative (PID) controller is added to the
deep neural networks (DNNSs) structure as the actuator of an EDNN to realize the automatic tuning of
PID controller parameters. In terms of control, the controller combines the advantages of the EDNN and
PID controller, meanwhile adopts a reinforcement learning algorithm to optimize the parameters. From the
perspective of reinforcement learning, embedding prior knowledge into the output instructions of EDNN
is helpful to weaken the fitting problem in the training process. Compared with the outputs of the DNN
and Q-learning algorithm under the two cases, the EDLPC could gain the highest control performance with
smaller voltage deviations. The simulation results verify the feasibility and effectiveness of the proposed
method for automatic voltage control of power systems.

INDEX TERMS Automatic voltage regulator, emotional deep learning programming controller, emotional

deep neural network.

I. INTRODUCTION

The conventional voltage control of the power system mainly
includes three layers, which are the primary, secondary and
tertiary levels of voltage control [1]. The primary voltage
controller is a reactive voltage control device, which com-
prises a synchronous motor, static var compensator, static
var generator, automatic voltage regulation (AVR), on-load
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tap changer, and so on [2]. Yashar Hashemi er al. pro-
posed a multi-objective gravity search algorithm to solve the
generation cost of two wind turbines of doubly fed induc-
tion generator and permanent magnet synchronous generator,
and evaluated the dynamic performance of each type [3].
Amar K. ef al. improved a selfish group optimization method
to coordinate the frequency and voltage regulation of isolated
multi-source hybrid microgrids, and analyzed the system con-
trol results under five different extreme conditions [4]. There-
into, the conventional proportional-integral-derivative (PID)
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controller which is combined with a manifold algorithm can
enhance the control performance of the AVR to obtain stable
voltage output [5]. Z. Bingul ef al. proposed a new time-
domain performance criterion cuckoo search algorithm for
automatic voltage regulator (AVR) PID controller parame-
ter tuning, and through the analysis of its anti-interference
performance and robust performance. The analysis of its
anti-interference performance and robust performance has
verified that the PID controller based on this algorithm has a
good effect on tuning optimization [6]. Yongquan Zhou et al.
employed the water wave optimization algorithm to optimize
the optimal PID controller of the automatic voltage regulator
system to improve the step response of the AVR system with
higher efficiency and robustness [7]. Serder Ekinic et al. pro-
posed a new method of objective function tuning the design
of PID controller based on an improved kidney excitation
algorithm [8]. Abdellatif Bouaichi applied polarity reversal
technology to evaluate the restoration performance of PID
for the most accurate power loss analysis [9]. Nevertheless,
the PID parameters in the voltage controller need reset if
system parameters are updated and adjusted. This method of
control reduces the operating efficiency of the controller [10].
In the power system, the conventional secondary voltage
regulation and tertiary voltage regulation are independent
optimization processes [11]. Generally, the voltage regulation
of these two stages is limited, thus the adjustment effect is not
satisfactory [12].

To balance the contradiction between control performance
and operational efficiency in the dynamic process of the
power system, reinforcement learning can be applied [13].
Jiajun Duan et al. designed a Grid-Mind, which is an
autonomous control framework for power grid safe operation
based on advanced artificial intelligence technology [14].
This paper demonstrates a combination of the large-scale
simulation of deep Q-network, deep deterministic policy gra-
dient, and the interaction of power grid actual environment.
At the same time, the agent in this paper is a closed-loop
control with no model and only a data drive. The data of the
emotional deep learning programming controller proposed in
this paper comes from PID controller and provides a spe-
cific system model for simulation. To enhance the learning
ability of the Q-learning algorithm, the deep neural networks
(DNNs) and emotional factors are added to this algorithm to
improve the control strategy of autonomous voltage. Hanchen
Xu et al. proposed a batch reinforcement learning algorithm
which is effective to minimize the voltage deviation of the
whole system [15]. At present, researchers are trying to com-
bine deep learning and other technologies to improve the
aspects of scalability, intelligence, reward mechanism, and to
optimize agent decision-making in practical problems [16].
Roozbeh Rajabi et al. proposed a single user power consump-
tion forecasting method based on recursive graph and deep
learning to accurately forecast short-term or medium-term
load [17].

Massive data could prolong the training time of the rein-
forcement learning algorithm [18]. Lei Xi et al. proposed
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a win or learn fast strategy climbing network based on
strategy dynamics which can solve the problems caused by
random interference and can improve the utilization of new
energies [19]. This paper provides certain prior knowledge
to accelerate the learning ability of the agent in the initial
stage of the algorithm. As one of the conventional machine
algorithms, more data could not improve the performance of
reinforcement learning after reaching a certain matrix dimen-
sion [20]. Therefore, this paper proposes an emotional deep
neural network (EDNN) to improve the accuracy of voltage
control, with strong nonlinear mapping ability. The number
of training layers in DNNs and neurons in each layer can
affect the effectiveness of the training. Excessive layers and
neurons could cause slow training speed, while few could
reduce the accuracy of learning, thus unable to accurately and
comprehensively characterize the characteristics of the data.

To reduce the influence of the number of training lay-
ers and neurons on the system control, the Q-learning
algorithm with artificial emotion has been introduced [21].
Ying Chen et al. proposed a Q-learning algorithm based on
the nearest sequence memory to realize on-line learning and
attack to regulate the normal operation of power systems [22].
Beakcheol Jang et al. studied the latest research trends and
key applications using the Q-learning algorithm [23]. In other
words, the agent contains two parts, i.e., an emotional part and
a logical part. Among them, the emotional part acts on the
output action together to ensure the output of the minimum
voltage regulation instructions. Emotional decision-making
is used to adjust the agent’s learning of experience knowl-
edge, so as to overcome the inefficient learning caused by the
limited trial and error methods, and then accelerate the agent’s
convergence speed in the current environment.

In this paper, an EDNN is designed for the emotional deep
learning programming controller (EDLPC), which can obtain
a smaller voltage deviation in the power system through
multiple neural layers. Both the Q-learning algorithm and
the DNN have certain defects in the formulation of a control
strategy. If the DNN is too small (underfitting) relative to the
training set, the rule model found can not capture the data
characteristics precisely fit the data well. If the DNN is too
large (overfitting), too many rules will be remembered, It is
too specific and rigid to remember the training set, so it may
not flexibly change the potential abnormal data in the system.
After adding a Q-learning algorithm, it can flexibly complete
the formulation of the action according to the environment
state and reward state. However, the Q-learning algorithm
might not guarantee to explore all the States and action pairs.
Given this deficiency, the emotional factors were introduced
to select more accurate actions through the adjustment of the
reward matrix. In this paper, the source of simulation data
is generated from the PID controller, which is convenient
for data acquisition. The limitation of this method is that it
needs to obtain the actual data before on-line control, which
requires more training time than PID controller and other
direct online control methods. In the step wave experiment,
EDLPC has a smaller voltage deviation control effect than
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TABLE 1. Symbol abbreviation table.

Symbol name Abbreviated name

Automatic voltage regulation AVR

Proportional-integral-derivative PID
Deep neural network DNN

Genetic algorithm GA
Emotional deep neural network EDNN

Emotional deep learning programming controller EDLPC

a single DNN and Q-learning algorithm voltage control. The
control framework has a more accurate control performance.

The EDLPC proposed in this paper is based on deep neural
network and Q-learning algorithm. The training set is gener-
ated by PID controller, and the parameters of PID controller
are obtained by genetic algorithm. Although the DNN and
Q-learning algorithm have been applied to the voltage control
of power systems, some defects of the two algorithms cannot
be made up by simply combining each other. To improve
this drawback, we add the “‘emotion” part to the above two
algorithms respectively, and then combine them, which can
effectively improve the accuracy and performance of the
control algorithm. The experimental results show that the
emotional factor can effectively improve the control effect
of the algorithm. The key features of EDLPC are given as
follows.

1) The EDLPC mainly includes EDNN. The EDNN con-
sists of several neural layers, each of which has a differ-
ent number of neurons; thus, the EDNN can overcome
the limitation of linear separability.

2) Since the EDNN can provide multiple sets of data
inputs and outputs at the same time, the EDLPC is
designed as a multi-input and multi-output controller.

3) The EDLPC contains an artificial emotional Q-learning
algorithm, in which the agent is composed of a logical
part and an emotional part. The EDLPC can weaken the
potential fitting problem of DNN.

The rest of this paper is presented as follows. The EDNN is
introduced in Section II. A voltage regular controller frame-
work based on EDLPC and the Q-learning algorithm with
artificial emotion is described in Section III. In Section IV,
simulation results are shown. At the same time, the gradient,
error, and network training after each iteration are as well as
given. Section V is briefly the summary of this paper.

Il. COMPOSITION ALGORITHM OF EMOTIONAL DEEP
LEARNING PROGRAMMING CONTROLLER

Conventional voltage control includes three control layers,
i.e., primary, secondary, and tertiary levels [24]. The rapid
and random change of voltage is compensated by the “‘one-
time action” of the system power plant, which requires a fast
response (reaction in a few seconds) [25]. This part of the
adjustment is mainly realized by the excitation adjustment
of the unit, and secondly by the automatic voltage tap of
the transformer [26]. The ““secondary” control functions and
“tertiary”” control functions establish a new state of the sys-
tem [27]. Secondary control manages the dynamic reactive
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power of available resources in a region with a response time
of approximately 3-5 minutes. The tertiary control is a manual
operation; and the overall coordination of the whole system
point voltage can artificially be obtained [28].

Many medium control algorithms are gradually applied
to the voltage primary adjustment process. One of the most
classic medium control algorithms is the PID controller [8].
Omer Saleem et al. proposed a state-dependent self-tuning
fractional order control strategy to make the system have the
characteristics of fast transient, minimum transient recovery
time, and minimum steady-state fluctuation by augmenting
the optimal PID controller [29]. The control principle and the
structure of the algorithm are simple, meanwhile, the PID
controller has the characteristics of wide adaptability and
wide application in engineering [30]. Sajjad Dadfar er al.
proposed an improved fuzzy gain scheduling control strategy
based on the PID controller, which can improve the per-
formance of the whole power system in the grid-connected
mode [31]. At the same time, PID controller can control the
system voltage and can stabilize the power near the specified
value, hence as to achieve stable and accurate control [32].
In a practical nonlinear system, the controller can only be
applied for a certain balance point and its domain, and often
the domain range cannot meet the actual accuracy require-
ments [33]. Due to the existence of network communication
delay, the control performance of the traditional PID con-
troller in a networked control system will decline.

This paper combines EDNN and artificial emotional
Q-learning to mitigate the shortcomings of the PID controller.
The EDNN can find the optimal PID controller parameter
values of the current system for voltage regulation and can
apply these parameters as well as voltage regulation data for
DNN, which is applied to ensure the control accuracy of the
controller and the relative balance of learning time. In this
paper, the number of layers and neurons of DNN is specially
adjusted.

A. DEEP NEURAL NETWORKS
The main optimization goal of EDLPC is the voltage output
generated by the PID controller. The PID control voltage link
can be characterized as follows,

u(t) = Kp(err(t) + Tl, . / err(t)dt + @) (1)

where K),, T; and T are the controller parameters of the PID,
which need to be adjusted and modified according to the
actual process.

The transfer function of the controlled object along with
the feedback model is shown in FIGURE 1. The automatic
voltage model consists of four parts: a controlled object,
a controller (omitted), a feedback link and an overall negative
feedback framework. Among them, a new controller EDLPC
is proposed in this paper, which is used to regulate the voltage
in the controller part of the automatic voltage control model.
The parameters K, K., Kg, K;, Ty, Te, Tg and T, of each
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FIGURE 1. Flow chart of automatic voltage control.

part in the FIGURE 1 are given values according to real-life
specific systems.

The emotional control link can automatically find the most
reasonable PID regulation value for system voltage control.
And the simulation data obtained by the PID regulation will
be provided to DNN as a training camp for learning.

The DNN combines low-level features to form high-level
features, to find out the form of data distribution character-
istics. The mathematical realization of the network is mainly
divided into forwarding calculation result and reverse modi-
fication weights. The DNN is extended from the perceptron
and consists of a multi-layer neural network. Each small local
model can be regarded as a single perceptron model, that

n

is, the combination of linear function y = Y w;x; + b and

activation function f(y). The DNN mainly iél_clludes forward
propagation algorithm and back-propagation algorithm. For-
ward propagation is mainly based on several weight coeffi-
cient matrix w, bias factor b, input vector x, and is calculated
from the input layer to the back layer by layer until the system
output results. The output a]’- of the j-th neuron in the /-th layer
can be calculated as follows [14],

ai =) = _ wha, " +b) ©)

i=1

where wl.k is the system weight from the k-th neuron of the
[-1 layer to the j-th neuron of the /-th layer. The bias factor
corresponding to the j-th neuron in the /-th layer is defined
as bjl-. By transforming Eq. (2) into a simple matrix, the result
can be presented as follows [14],

d =) =fwd=" +b") 3)

where I = L, a® is the final result of forward output algo-
rithm; where L is the number of output layers.

The output of the back-propagation algorithm is closer
to the sample value by determining the appropriate weight
coefficient matrix w and bias matrix b. The gradient descent
method is usually applied to solve the extremum; and the
mean square deviation function is applied to calculate the
loss function. The expected output sample is minimized as
follows [14],

_1 S Y N )
E(w,b,x,y)—zllf(wa +0) =)l 4)
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The gradient solutions of w and b can be calculated as
follows [14],
dE(w,b,x,y)  AE(w,b,x,y) 7"
owk azk owk
=@ - Hr o ©

dEw.b,x,y)  9E(w,b,x,y) dz"
dbL N azk abL
=@ -nosreh (6)
Sort out the public parts of the above formula [14],
0E(w, b, x,
8t = % =@ -ynofeh )

The relationship between 82! and 8” is solved by recur-
rence method as follows [14],

L—1 L 9 L INT ~ ¢ L—1
& =467 =5Ww) Of @) (®)
aZL—l
The corresponding weight coefficient matrix w and offset
b are updated as follows [14],

n
wo=w —a Zai,l(ai,l—l)T )
i=1
n .
b= —azﬁs”l (10)
i=1

where « is the iteration step. When the change values of w and
b are less than the iteration threshold ¢, the update process is
finished and the final weight and offset are output.

Compared with the conventional neural network, the DNN

has the following characteristics:

1) With the complexity of the model increases, the number
of hidden layers increases to multi-layer; and then the
model expression ability improves.

2) From the original single input and single output layer
to the multi-input and multi-output layer, the flexibility,
as well as the feasibility of the model, are improved.

3) Since the activation function has been expanded,
the original activation function sign has limited learn-
ing ability.

Then the activation function with strong learning ability is

applied for upgrading functions, such as Sigmoid function,
Tanh function, ReLU function, etc.

B. EMOTIONAL DEEP NEURAL NETWORK

FIGURE 2 shows the running process of EDNN. The EDNN
combines the advantages of DNN and improves its control
performance. The emotional model created in EDNN opti-
mizes the PID control link to ensure DNN obtain training data
with higher quality. By adjusting the number of neural layers
of DNN and the number of neurons in each layer for repeated
training, the fitting effect of the network can be improved
continuously. When the trained network is tested on-line,
the output voltage control command could be adjusted contin-
uously according to the input error. Thus, the output voltage
of the controlled object is closer to the set value.
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FIGURE 2. Emotional deep learning programming controller.

Compared with the DNN, the EDNN has the following
characteristics:

1) The EDNN adds an emotion model to optimize PID
parameters. The parameter value of the controller is
adjusted by continuously evaluating the current control
output.

2) After the evaluation of the emotional model, EDNN
will perform the fitting voltage output according to
the data currently generated. The fitting effect will be
improved by adjusting the number of hidden layers and
the number of neurons in each layer.

3) The EDNN trains according to the evaluated data and
then generates the output voltage command, thus the
network can send out smaller voltage deviation action.

The pseudo-code of the EDNN is given in Algorithm 1.

Algorithm 1 Emotional Deep Neural Network
1: Initialize the parameters of PID, i.e., K, T}, Ty
2: Control the system according to Eq. (1)
3: Evaluate the voltage data and return to the first step in
case of failure
4: lop:
5: Initialize the number of neural network layers and the
number of neurons in each layer
6: Calculate w and b as Eq. (9) and Eq. (10), respectively
: Judge whether the change of w, b is less than ¢, and
provide the weight and offset after the updating
8: Calculate the forward output result a as Eq. (3)
9: goto lop.
10: Test the network and evaluate the regulation deviation of
voltage

C. Q-LEARNING ALGORITHM

Q-learning algorithm is that agents modify the Q matrix by
environment state and reward value, and obtain actions from
action set as the output according to the designed probabil-
ity. The updated strategy of the Q matrix can be presented
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as follows [14],

O(s, a) < O(s, a)+a(R(s, 5", a)+y mEa}Q(s’, a)—0(s, a))
Y

where s and s’ represent the current state and the next state,
respectively; y is the discount factor; R(s, s', a) is the reward
value gained from the environment; and the strategy of reward
function value after adding artificial emotion could be calcu-
lated as follows [14],

1 2
_‘ /255
—e (12)
8321

where 8, is the variance of state s. At the same time,
the updated strategy of probability matrix P can be shown
as follows [14],

R(s, s, a) <

P(s,a) + B(1 — P(s,a)), d =a,
P(s, a)(1 — B), d #a,

P(s, a) < (13)

where S is the probability distribution factor. The initial value
of P(s, a) is P(s,a) = 1/|A|. |A| is the number of actions in
the action set, and its range is P(s, a) € [0, 1].

D. ARTIFICIAL EMOTIONAL Q-LEARNING

At present, artificial emotion is a popular branch of artificial
psychology. After the agent has emotion, it can simulate and
analyze human emotion. At this time, the agent can determine
the current output of artificial emotion through the emotional
factors of the environment and memory and then convert the
emotion to solve the engineering problem.

Artificial emotional Q-learning algorithm uses artificial
emotion to update the reward function strategy in the
Q-learning algorithm. The agent of the algorithm consists
of two parts, one is the logical thinking part of the agent,
the other is the emotional part of the agent. The strategies
of artificial emotion acting on reward function in state s are
as follows,

R(s) < e_(s_m‘s)z/2(8x’76)2 (14)

Ssném

where 7 is the emotional output value of variance factor; and
ns is the emotional output value of state factor. The output
conversion processing of artificial emotion is as follows [14],

1
kn, — 2 Nmax,
Ja
n < (15)
fn ) fn max»

where k; is the range coefficient of artificial emotion max-
imization, i.e. n € [0, ky], f, is the corresponding artificial
emotion.

The pseudo-code of artificial emotional Q-learning is given
in Algorithm 2.
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Algorithm 2 Artificial Emotional Q-Learning
1: Initialize the parameters of artificial emotion Q-learning,
ie,o,y, B
2: Initialize the agent state s
3: Initialize Q-value matrix Q and probability distribution
matrix P
4: loop:
Gain the system state s and reward value r from the
environment
: Calculate the reward value R(s, §', a)
7: Update Q-value matrix as Eq. (11) and reward signal
as Eq. (14)
8: Calculate the emotional part of the agent and convert
the emotional factor output as Eq. (15)
9: Update probability distribution matrix as Eq. (13)
10: goto loop.

Ill. AUTOMATIC VOLTAGE CONTROLLER BASED

ON EMOTIONAL DEEP LEARNING

PROGRAMMING CONTROLLER

The previous section mainly introduced the algorithm and
improvement of the controller. In this section, the whole
system framework based on the controller, which is mainly
divided into the following three parts, will be represented.

A. DEEP LEARNING PROGRAMMING FOR AUTOMATIC
VOLTAGE CONTROL

To make the power system run safely and economically at any
time, meanwhile to provide users with high-quality power,
a controller with high control performance is needed in prac-
tice. Since the EDNN needs an amount of data to train the
networks of the EDNN, the Q learning algorithm is added to
the EDNN. Meanwhile, to achieve higher accuracy, the train-
ing of the controller needs big data support. Furthermore,
the complexity of the graph model in deep learning leads
to a sharp increase in the time complexity of the algorithm.
To ensure the real-time and accuracy of the algorithm, a Q
algorithm based on artificial emotion is added into EDNN to
ensure the minimum deviation of voltage regulation.

The specific AVR framework is shown in FIGURE 3. After
the voltage evaluation of the emotional controller, the agent
is initialized and the DNN is trained off-line. Both the trained
EDLPC output state s and reward r are taken as the environ-
ment influence inputs of the agent logic part. According to
the change of the current environment, s, r, and the memory
of the emotional part of the agent 1 provides voltage action
a.

B. EMOTIONAL DEEP LEARNING PROGRAMMING
CONTROLLER

The goal of voltage control in power systems is to keep
the supply voltage in a certain range. The EDLPC pro-
posed in this paper is based on the Markov framework,
which has been proved. Therefore, the control strategy has
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practical feasibility and is an effective voltage control strat-
egy. The implementation of the EDLPC is mainly divided
into two parts: online training and offline voltage regulation.
After receiving the voltage data collected and monitored by
EMS/SCADA, the EDLPC can analyze the voltage deviation
and give the corresponding action strategy to realize the
voltage regulation of power systems. Meanwhile, the power
loss is reduced on the basis that the voltage meets the
requirements. In the framework of automatic voltage control,
the EDLPC replaces the conventional controller, which can
control the system and can reduce the voltage deviation. The
specific operation process of EDLPC is described below.

The EDLPC determines the parameters of the controller
through the emotional model after inputting the data. If it
passes the decision, it can initialize the parameters of the
controller. If it fails, it can adjust the PID module. Then the
trained DNN and artificial emotional Q-learning algorithm
are tested on-line; besides the parameters are updated until
the output meets the iterative requirements. Since the output
command is sent to the controlled object for completion,
the generated voltage can be compared with the reference
value as the next input of the controller.

The pseudo-code of the EDLPC is given in Algorithm 3.

Algorithm 3 Emotional Deep Learning Programming
Controller
1: Initialize the parameters of EDLPC, i.e., a, v, B8, K, T;
and T,
2: Control the system model according to Eq. (1)
3: Conduct emotional assessments of the resulting data.
4: Initialize the system state s, Q-value matrix Q and prob-
ability distribution matrix P
5. pl:
6: Initialize the number of neural network layers and the
number of neurons in each layer
7: Calculate w and b as Eq. (9) and Eq. (10), respectively
8: Judge whether the change of w, b is less than ¢, and
provide the weight and offset after the updating
9: Calculate the forward output result a as Eq. (3)
10: goto pl.
11: Test the network and evaluate the regulation deviation of
voltage; transfer data to the agent at end
12: Ip:
13: Gain the system state s and reward value r from the
environment
14: Calculate the reward value R(s, s, a) by Eq. (12)
15: Update Q-value matrix as Eq. (11) and reward signal
as Eq. (14)
16: Calculate the emotional part of the agent and convert
the emotional factor output as Eq. (15)
17: Update probability distribution matrix as Eq. (13)
18: goto lIp.
19: Provide the output for the voltage command to the system
model
20: Take the output of the system as the next controller inputs
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FIGURE 4. Operation process of automatic voltage control.

C. OPERATION PROCESS OF AUTOMATIC

VOLTAGE CONTROLLER

Automatic voltage control plays an important role in reducing
network loss, improving voltage quality, and coordinating
system resource allocation. At present, many researchers
have adopted different control methods to realize their func-
tions according to the actual situation. The operation process
of the EDLPC in the automatic voltage control framework is
shown in FIGURE 4.

Under the set reference voltage, the voltage variation gen-
erated by the system is the inputs of the controller. The
training of the controller is completed in the off-line voltage
data, meanwhile, the parameters are adjusted according to the
system model. The voltage regulation command sent by the
controller is delivered to the system model to obtain the cor-
responding system output, which can continue to perform the
same control process as the next error input. Simultaneously,
the output voltage command realizes the relevant regulation
logic. The output pulse command increases or decreases the
excitation current and changes the reactive power of the gen-
erator, to realize the automatic voltage control of the power
grid.
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TABLE 2. Parameters of system model.

Parameter Meaning Value
K, Gain of error amplifier 10 Hz/p.u.
Ke Gain of silicon-controlled rectifier power amplifier 1 Hz/p.u.
K, Gain of generator 1 Hz/p.u.
K, Gain of sensor 1 Hz/p.u.
Ts Time constant of error amplifier 0.1s
Te Time constant silicon-controlled rectifier power amplifier 04s
Ty Time constant of generator 1s
T Time constant of sensor 0.01s

IV. CASE STUDIES

All of the simulation programmings covered in this paper
are simulated on the Intel Core i7-2760QM processor
of 2.40 GHz CPU and 16 GB RAM computer with the
MATLAB version 9.7 (R2019b). The specific model simu-
lation parameters are shown in TABLE 2.

A. CASE 1

The flow chart of the EDLPC method proposed in this paper
is shown in FIGURE 4, and the specific pseudo code is shown
in Algorithm 3. The main input and output of the controller
proposed in this paper are the voltage deviation caused by the
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FIGURE 5. Mean squared error of training process of emotional deep
learning programming controller (Case 1).
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FIGURE 6. Gradient, momentum constant, validation checks of training

process of emotional deep learning programming controller (Case 1).

actual voltage and the standard voltage. The current deviation
voltage will be sent to the controller as the next input of the
system for regulation. The energy of the control signal mainly
comes from the energy management systems/supervisory
control and data acquisition (EMS/SCADA). The normal
operation of system energy could be ensured by collecting
and monitoring voltage data. The standard voltage data used
in Case 1 simulation is mainly selected from the voltage and
voltage sampling value of the actual generator in one day.
The sampling period is 15 minutes, and 96 items of data
are collected. The input and output of the system are voltage
deviation, and the current deviation voltage will be sent to the
controller for regulation as the next input of the system. This
paper adopts a typical generator system model, which mainly
includes a generator model, a voltage controller and a nega-
tive feedback link. The specific model framework is shown
in FIGURE 1. In the simulation, the control strategy mainly
includes EDLPC, DNN and Q learning algorithm under the
same parameters. This simulation compares the control per-
formance of the DNN, Q learning algorithm, and the EDLPC
in the same control system. The training results of the EDLPC
are given in FIGURE 5 to FIGURE 7. The minimum mean
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FIGURE 7. Instances of training process of emotional deep learning
programming controller (Case 1).

square error occurs in the ninth epoch of 0.00021174. This
outcome shows that DNN has the best verification effect at
this time. The step size of the validation set is set to 10 epochs.
The default value of the gradient is 0.11832. To avoid the
neural network converging to the local minimum, the range
of mu is 107> ~ 0.1. The maximum error of validate fail
is 2 in the fifth iteration. The training error of the DNN is
-0.00015, and the maximum testing error is -0.00614. The
trained EDLPC voltage regulator has a series of small voltage
deviations, which range from - 0.05 to 0.56 V.

The simulation results obtained by these compared meth-
ods are shown in FIGURE 8. FIGURE 8 shows that the DNN
generate a small error in the early sampling data, while the
Q-learning algorithm gains a small error in the later sam-
pling data. The proposed EDLPC can obtain smaller data
fluctuation in the whole sampling data. After calculation,
the average absolute error of voltage generated by DNN is
0.4222; and the average absolute error of voltage generated
by the Q-learning algorithm is 0.5615. The average absolute
error of the voltage is 0.2007 at the end of the EDLPC, which
shows that the controller has higher performance for the AVR
of power systems.

B. CASE 2

The EDLPC proposed in this paper is compared with the
DNN and Q learning algorithm with the same parameters
under the condition that the standard voltage is step wave, and
the specific voltage deviation is given in FIGURE 9. Through
a comprehensive performance comparison, we find that the
proposed algorithm can obtain smaller voltage deviation to
ensure voltage stability. To better show the control effect
of the algorithm, the step wave superimposed by multi-step
links is used in this paper, which can observe the response
output of the algorithm under different sampling times, and
understand the control characteristics of the algorithm in
each time-period. In this case, the input reference voltage
is step voltage, which rises 0.5 V every 10 s. The hard-
ware equipment in this paper comes from the test base of
Nanning Guodian Power Technology Co., Ltd. The system
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FIGURE 9. Output voltage obtained by compared methods (Case 2).

simulation of this experiment mainly includes the software
part of offline training and the hardware experiment of step
voltage fluctuation. The generator is selected from Nanning
Guodian science and technology enterprise incubator. As an
experimental incubation base, the enterprise mainly creates
order based school enterprise cooperation to achieve a win-
win situation among universities, enterprises and students.
FIGURE 9 shows the output voltage curves obtained by com-
pared methods. The remaining three curves show the control
outputs of the DNN, Q-learning algorithm, and the EDLPC.
The experimental data show that the controller will produce
a large voltage deviation in a period of the input signal step.
When the voltage reference value is stable, the controller can
produce a small voltage deviation. If the number of layers is
the same, too many or too few neurons will affect the learning
speed of the network, which will lead to the results of too fast
learning rate with inadequate fitting, too slow learning rate,
and so on. The number of neuron layers affects the data error
processing to a certain extent, and the data results from each
experiment are not the same. The parameters proposed in this
paper can ensure that the voltage deviation is small in many
experiments, even in the worst case. Compared with the other
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TABLE 3. Integrated of time weighted absolute error, integral of squared
error, and integrated absolute error of voltage deviation in Case 2.

Algorithms ITAE ISE IAE

Q-learning algorithm  56.3168  4.1968  5.6317

Deep neural network ~ 42.0667  7.4379  4.2067

EDLPC 20.1160  0.6020 2.0116
TABLE 4. Statistics of voltage peak in each stage.

Algorithms 10-20s  20-30s  30-40s  40-50s  50-60s
Q-learning algorithm 1.025 1.586 2.012 2.502 3.026
Deep neural network 1.031 1.57 2.007 2.532 2.979

EDLPC 1.005 1.504 2.005 2.506 3.005

two algorithms, the EDLPC can obtain smaller error output
under the condition of the signal step or stationary. The DNN
and Q-learning algorithm can produce unstable system output
instructions in a short period when the reference voltage step
is completed. In the comparison of algorithm performance,
the three algorithms use the same data set for training. The
network/agent after training has been tested many times,
the results of which are obtained by comparing integrated
of time weighted absolute error (ITAE), integral of squared
error (ISE), and integrated absolute error (IAE) (TABLE 3).
These indices obtained by these compared algorithms show
that the EDLPC can obtain the highest control performance
with smaller ITAE, smaller ISE, and smaller IAE. On this
basis, we calculate the voltage percentage of the improved
algorithm. Compared with deep neural networks, the EDLPC
reduces voltage deviation by 52.46% ; compared with the
Q-learning algorithm, the EDLPC reduces voltage deviation
by 64.26%, which has a better control effect. Furthermore,
the proposed algorithm is belonging to a Markov process,
which has been proved. It can be seen from FIGURE 9 that
EDLPC takes longer time to raise voltage than Q-learning
algorithm in 50 to 60 seconds, but the EDLPC has faster
voltage regulation time in terms of time to achieve voltage
stability. TABLE 4 shows the peak voltage statistics of the
three algorithms in each stage.

Compared with the DNN and Q-learning algorithm,
the EDLPC has the following characteristics in the control
system.

1) The EDLPC adjusts its internal parameters continu-
ously to adapt to different types of system environment
through the training of voltage data, and obtains higher
control performance.

2) The EDLPC weakens the potential fitting problem in
DNN. Through the agent’s continuous perception of the
environment, the voltage command generated by the
EDNN can be continuously readjusted.

3) Based on the artificial emotional Q-learning of the
EDLPC, the reward mechanism of the algorithm is
constantly updated with the intervention of emotional
factors, making the controller more sensitive to the
current environment state, to obtain more appropriate
action output.
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4) The EDLPC needs to learn with a large number of
data in advance; and the EDLPC requires complex
operations in the early stage to gain a higher control
performance.

C. DISCUSSION

Compared with the traditional DNN algorithm, the EDLPC
could overcome the potential overfitting and underfitting of
the network; compared with the current Q-learning algorithm,
the EDLPC could effectively improve the risk caused by
the “dimension disaster” of the matrix, so as to maintain
the stability of the system. The selection of PID parameters
is mainly due to the acceleration of the genetic algorithm
(GA). Through the continuous updating of genetic algorithm,
crossover and mutation, better parameter solution could be
obtained. The EDLPC proposed in this paper needs the corre-
sponding voltage training data to pre-train the agent network
offline before it can be used in the actual engineering con-
trol link, which requires more time cost than the traditional
heuristic control algorithm. The controller presented in this
paper introduces a variety of improved methods to improve
its voltage control strategy based on the original defective
algorithm, to obtain the optimal solution through making
up for the defects and give full play to the advantages of
various algorithms. The EDLPC can obtain higher control
performance in two cases.

The specific parameters of the PID controller mentioned
after the emotional model evaluation are proportional: 8,
integral: 2.499, and derivative: 1.5. In this case, 200 volt-
age data are collected by the PID controller and used as
data set for the EDLPC pre-training. The particular param-
eters are obtained through the voltage evaluation link in
EDNN. In the framework of automatic voltage control as
shown in FIGURE 1, the above PID parameters obtained by
genetic algorithm with 200 population size and 200 maxi-
mum iteration have higher control performance with small
voltage deviation. The ranges of these PID parameters for
the applied genetic algorithm are set as (—50, 50), (—10, 10)
and (—10, 10).

The DNN applied in the controller has eight hidden layers,
and the number of neurons in each layer is 12, 8, 12, 16, 12,
12, 8, and 12. The maximum training iterations of the network
are set to 20 hours. After numerous testing, (i) the number of
the layers of the DNN can be set from 4 to 12; (ii) the number
of numerous of each layer could be set from 8 to 60.

The initialization parameters of the artificial emotional
Q-learning algorithm are learning to rate @ = 0.1, which can
be selected in (0.001, 0.1) according to the learning situation
of the agent. The constant of the probability distribution is
B = 0.05. The range of the probability distribution can be
set from 0.001 to 0.1. The smaller constant of a probability
distribution can avoid the higher action output of the Q value
in the early reinforcement period. The discounted rate of
future reward is y = 0.9. The nearer y is to 1, the more
far-sighted it is to consider the value of subsequent states.
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State set s = {—o0,—0.50,—-046,...,0.46,0.50, c0},

33
action set a = {—100, —93.75, ..., 100}.
33

V. CONCLUSION

With the rapid development of China in recent years,
the requirements of various industries for power quality are
increasing year by year. The stability of grid voltage and
power (frequency) determines the level of power quality.
Although the traditional PID controller can ensure the sta-
ble operation of power system voltage control in the AVR
framework, there are still some deficiencies in power quality
improvement. In this regard, we use the current hot in-depth
class learning to further improve the power quality. In the
simulation of the last chapter, compared with the voltage
deviation of 0.4222 generated by DNN and the voltage devi-
ation of 0.5615 generated by Q-learning, the 0.2007 volt-
age deviation obtained by EDLPC proposed in this paper
could ensure a better operation effect of the system. The
automatic voltage control framework designed in this paper
can replace the conventional PID voltage control and can
obtain a smaller voltage deviation. The EDNN and Q-learning
algorithm include artificial emotion are applied in this voltage
control framework. The automatic voltage control framework
based on EDNN and artificial emotional Q-learning has the
following main characteristics.

1) Compared with the conventional PID control algo-
rithm, the proposed voltage control framework has
better voltage control performance and higher voltage
accuracy.

2) The EDNN based on DNN can obtain higher training
results, meanwhile, the agents include the emotional
part and logical part, which have more accurate action
selection. Thus, the controller can make up for the
potential fitting problem of the neural network.

3) By adjusting the parameters of DNN in EDNN, better
experimental results could be obtained. A large number
of parameter tuning experiments show that the appro-
priate parameters are more conducive to the controller’s
perception of the state of the environment and give the
corresponding instructions.

The proposed method could not only minimize the voltage
deviation of the generated step wave but also improve the
direct current capacitor of the chain static synchronous com-
pensator through the modulation of the step wave for dynamic
reactive power compensation in the future. The EDLPC could
be applied in automatic generation control, power system
stabilizer, doubly-fed induction generator, and photo-voltaic
in the future.
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