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ABSTRACT IoT-based WSNs have proved their significance in delivering critical information pertaining
to hostile applications such as Wildfire Detection (WD) with the least possible delay. However, the sensor
nodes deployed in such networks suffer from the perturbing concern of limited energy resources, restricting
their potential in the successful detection of wildfire. To extenuate this concern, we propose an intelligent
framework, Sleep scheduling-based Energy Optimized Framework (SEOF), that works in two folds. Firstly,
we propose an energy-efficient Cluster Head (CH) selection employing a recently developed meta-heuristic
method, Tunicate Swarm Algorithm (TSA), that optimizes the five novel fitness parameters by integrating
them into its weighted fitness function. Secondly, we perform a sleep scheduling of closely-located sensor
nodes based on the distance threshold calculated through a set of experiments. Sleep scheduling methodology
plays a pivotal role in abating the number of data transmissions in SEOF. Finally, we simulate SEOF
in MATLAB under different scenarios to examine its efficacy for the various performance metrics and
scalability features. Our empirical results prove that SEOF has ameliorated the network stability period
for two different scenarios of network parameters by 35.3% and 216% vis-a-vis CIRP.

INDEX TERMS Cluster head (CH), energy efficiency, [oT-based WSN, sleep scheduling, tunicate swarm

algorithm (TSA), wildfire detection (WD).

I. INTRODUCTION

With the evolution of sensing technology, IoT-based WSNs
have been proliferating in handling multifaceted applications
[1]. IoT-based sensor nodes play a pivotal role in disseminat-
ing information from hostile areas where human’s interven-
tion is quixotic [2]-[4]. The sensed information is gathered
from these hostile areas and then forwarded to the sink from
where it is sent to the user for performing the required course
of action [5]. There is an enormous number of applications
of IoT-based Wireless Sensor Network (WSN), and among
them, one predominantly prevalent is the Wildfire Detection
(WD) [6], [7]. Wildfires are a recurrent phenomena around
the world. Millions of forest hectares are burnt in flames from
wildfires every year [8]. The Global Forest Watch (GFW)
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reports fire statistics of any country, and it also presents the
status of fire alarms for different regions [9]. The Mendocino
Complex Fire loomed up in Northern California on July 27th,
2018 was registered as the largest fire in the history that
burnt 459,123 acres of land. According to a report by Forest
Survey of India (FSI), occasional fires occur to the 54.40%
of forests in India and 7.49% of forest experience moderately
frequent fires [10]. Basically, the 90% forest fires are caused
by the anthropogenic activities namely, unattended camp-
fire, smoking, burning debris, firework, poachers and timber
mafia, etc. The remaining 10% are caused due to the natural
phenomenon namely, lightening, volcanic eruption, and due
to meteorites, etc. The forest fires are mostly dependent upon
the type of vegetation or trees grown in the forest areas.
Pine tree forests are highly fire prone as the leaves/needles
of pine act as a fuel for forest fires due to its resin content
[11]. Therefore, many significant attempts are reported to
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replace the pine trees with other suitable trees that grows
broad-leaves [12].

According to the National Fire Danger Rating System
(NFDRS), firefighters must be made aware at a maximum
of six minutes after the fire is started, to curb it, before it
spreads to a large scale [13]. Therefore, it can be concluded
that there is a great significance of early detection of wildfires
to avoid the high magnitude of loss to the property, lives,
flora and fauna. Since the advancements in Micro-Electro-
Mechanical-System (MEMS), the various researchers have
worked to pact with WD through multiple imaging patterns
or the use of sensors. It is evident that the former method
fails in adverse environmental conditions. Therefore, we use
the latter approach for WD while considering the energy
efficiency of the IoT-based sensor nodes. In our proposed
work, four Data Collecting Sinks (DCS) are placed outside
the network to deliver the fire related information with the
least delay. The placement of four DCS avoids the hot-spot
problem and assists in ameliorating the network lifetime [14].

Further, to resolve the issues of WD, energy-efficient
routing is required that must immunizes the network from
the hot-spot problem and also delivers critical information
with least delay. Multitudinous attempts are reported so
far that address the above said concern by optimizing the
cluster-based routing which incorporates significant param-
eters for Cluster Head (CH) selection [15]. However, routing
strategies that optimize clustering by employing optimization
technique with high exploration and fast convergence are
still left unnoticed. To resolve this concern, we use Tunicate
Swarm Algorithm (TSA) that possesses high exploration and
exploitation capabilities, and due to such remarkable features,
it has high convergence [16]. TSA is tested on different
benchmarks, and it is revealed through its statistical outcomes
that it is more efficient than the competitive algorithms.
A detailed study about TSA can be done from study [16].

The other crucial approach in preserving energy of
IoT-based sensor nodes is sleep scheduling of these nodes.
These nodes when put into sleep state, turn off either
the radio (disrupting communication capability) or sensory
device (halting the sensing/detection of events) [17]. Sleep
scheduling must be examined with prudence and random
sleep scheduling is not encouraged due to its repercussion on
network connectivity and topological efficiency. A profusion
of sleep scheduling mechanisms are discussed in detail by the
various researchers [18], [19]. However, none of the study
considered the joint consideration of two crucial aspects;
sleep scheduling and energy efficient CH selection.

A. RESEARCH CONTRIBUTIONS

To address the concern of WD with energy optimized
clustering and sleep scheduling, we state our contributions
as follow.

1) We propose an intelligent framework named as
Sleep scheduling-based Energy Optimized Frame-
work (SEOF) pertinent to WD that uses IoT-based sen-
sor nodes. In SEOF, we optimize the CH selection using
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FIGURE 1. The proposed scenario of SEOF.

a meta-heuristic optimization method named TSA [16].
We consider five essential parameters for selecting CH,
which are optimized in the integrated fitness function
of TSA. These parameters include distance between the
DCS and the node, node proximity, network’s average
energy, residual energy and time delay.

2) We apply sleep scheduling mechanism in each cluster,
just before the start of intra-cluster data transmission.
As nodes are randomly deployed, we consider distance
and energy level of adjacent nodes to put them into
sleep or active state. If the distance among the adjacent
nodes is lower than the threshold distance, then only
one node is made active which transfers the data to CH
until it sustains.

3) We employ four DCS around the network periphery to
extenuate the concern of hot-spot problem and early
data delivery to a sink in large area networks. Con-
sequently, it eradicates the aforementioned problem
by introducing single-hop communication between the
sensor nodes and the DCS. Figure 1 shows the proposed
scenario for WD.

4) We perform extensive simulation analysis for two dif-
ferent scenarios (Case I and Case II) to examine the
performance and scalalability. These cases have differ-
ent network dimensions including the count of nodes
deployed and area of network. We use several crucial
performance metrics that include stability period, net-
work survival period, network’s remaining energy and
throughput to evaluate the efficacy of SEOF.

This is the first ever work for WD that incorporates mul-
tiple DCS to immune the network from the hot-spot prob-
lem, and expedite the data delivery through optimized CH
selection. In addition to this, it is the first instance when the
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joint consideration of sleep scheduling and energy efficient
clustering pertinent to WD is taken into account.

The rest of manuscript is structured as follows. Section II
addresses the related work for energy-efficient routing tech-
niques, WD and sleep scheduling mechanisms. Further,
in Section III, we discuss the operation of TSA and SEOF.
Next, in Section IV, we present outcomes and discussions.
Finally, Section V concludes and highlights directions for
future work.

Il. RELATED WORK

The role of IoT in various real-time applications has
been unparallel to any other technology [20]-[26]. Many
researchers have targeted Industrial IoT for its efficacy in
network performance [27]-[29] however, a comprehensive
attention is still required for some hostile applications for
an example WD. WD has been one of the challenging tasks
to curb the wildfires, which have been the prominent cause
behind damaging several hectar [8]. Since the advancements
in Micro-Electro-Mechanical-System (MEMS), the various
researchers have worked to pact with WD through multiple
imaging patterns or sensors. It is evident that the former
method fails in adverse environmental conditions. There-
fore, we use the latter approach for WD while considering
the energy efficiency of the 5G-Integrated IoT-based sensor
nodes. Further, we briefly discuss the related work targeting
WD, CH selection and sleep scheduling in sensor network.

A. WD TECHNIQUES

Cao et al. [30] proposed ABi-LSTM for WD which involves
a large amount of image capturing and complexities in the
installation over the forest cover. Leal et al. [31] utilized the
onboard fuzzy logic approach for the detection of fire spots
in Amazon forest of Brazil. However, the system gets com-
promised when the environmental conditions get worsened.
Aslan et al. [32] proposed a general WD framework that
works for developing a technique for strategically deploying
the sensor nodes. The authors used deterministic deployment
of sensor nodes that adds complexity in real time imple-
mentation. The authors proposed an architecture for WD and
designed a clustering protocol, but it is observed that regular
or deterministic sensor nodes deployment adds complexity
to the network. Jan er al. [33] proposed a Sybil detection
approach which employs residual energy and RSSI-based
Sybil attack detection strategies. But, it is noted that the
choice of CH is computationally expensive, and it further
introduces overheads in the proposed algorithm. As a result,
this problem ultimately leads to gigantic energy consumption.

The wildfires have been so frequent across the globe, but
the promising solution has not come yet into the limelight.
It is anticipated that the appropriate CH selection exploited
for WD will help in handling this cause efficiently.

It is learnt from the retrospective study that the
cluster-based routing mechanism plays a pivotal role in WD
[34]. A plethora of attempts for the optimized CH selection
are reported in the existing literature. Behera er al. [15]
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presented CH selection by considering the residual energy
solely. Hence, the proposed approach is energy inefficient
as the ignorance of the distance factor for CH selection
ameliorates the energy consumption. Pokhrel er al. [35] pro-
jected the Cluster-based Intelligent Routing Protocol (CIRP)
that used crucial factors for CH selection to eradicate the
hot-spot problem. However, in CIRP, the CH selection did
not consider the delay factor involved in delivering the data
to the sink. Therefore, it is not suitable for WD applica-
tion. Verma et al. [5] proposed Genetic Algorithm-based
Optimized Clustering (GAOC) by considering three factors
namely, node density, energy and distance for choosing
CH. Furthermore, the Genetic Algorithm (GA) employed
for CH selection suffered from slow convergence. Further,
Behera et al. [36] proposed i-SEP technique in which the
choice of CH was based on the threshold value calculated
for every type of heterogeneous node. However, the proposed
technique did not consider the various other essential param-
eters, namely node density, network average energy, etc.
Sharma et al. [37] proposed Energy-efficient Trusted Moth
Flame Optimization and Genetic Algorithm (eeTMFOGA)
based clustering algorithm, which selects CH based on
node density, remaining energy, packet forwarding progress,
distance, and delay in transmission. However, there is a
significant problem with eeTMFOGA which suppress its
pertinence to hostile applications. The sensor nodes and Base
Station (BS) are moving, which will bring the high challenges
for WD in the context of its real time implementation. Some
of the researchers [38], [39] also exploited the fuzzy sys-
tem for CH selection. The authors in [38] proposed Fuzzy
Logic-based Effective Clustering (FLEC) technique but it did
not consider the delay factor. In [39], CH selection is done
solely based on the RSSI value. Therefore, the scope of these
fuzzy-based algorithms is not pertinent to WD. We discern
from the literature study that the meta-heuristic methods are
more promising as they optimize each factor opted for CH
selection to acquire the best possible solution [3], [4], [24],
[27]-29], [40].

1) WHY TSA FOR CH SELECTION?

TSA possesses high exploration and exploitation capabilities,
and due to such remarkable features, it has high convergence.
TSA is tested on different benchmarks, and it is revealed
through its statistical outcomes that it is more efficient than
the competitive algorithms. A detailed study about TSA can
be done from study [16].

B. SLEEP SCHEDULING METHODS

It is learnt from the various studies related to cluster-based
routing mechanism, if the number of participating nodes can
be reduced, it can elongate the network lifetime comprehen-
sively. Therefore to address this concern, many researchers
have considered sleep scheduling of sensor nodes [41], [42].
The paramount reason behind it is the fact that the adjacent
nodes have this propensity to sense similar value of targeted
attribute. Hence, keeping only one node in active state till
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it has energy, does not harm the network [43], [44]. The
authors in [45] proposed an Intelligent Sleep scheduled algo-
rithm (iSleep) that considered the temperature sensitivity of
the nodes for taking the decision to put it in active or sleep
state. Due to the multi-hop communication, iSleep suffers
from hot-spot problem. The sleep scheduling has also played
apivotal role in handling the energy conservation for Wireless
Body Area Network (WBAN) [18], [19]. The authors in [44]
proposed a hybrid approach considering energy harvesting
and non-harvesting nodes to elongate the network lifetime.
Due to the added harvesting resources, the proposed approach
is costly. The authors in [46] proposed Energy aware Schedul-
ing with Quality Guarantee method (ESQG) that aimed to
decrease the count of awakening nodes with the process of
information fusion. The authors considered the importance
degree for different surveillance locations. The proposed
method suffers from high computational overheads. Hence,
there is a need of a sleep scheduling mechanism that avoids
hot-spot problem and also maintain energy balancing in the
network. We addresses this concern by a novel method of
sleep scheduling mechanism in SEOF. Further, we explain its
operational framework.

IIl. PROPOSED WORK: SEOF
In this section, the network presumptions and working
operation of SEOF are discussed.

A. NETWORK ASSUMPTIONS
We consider some network assumptions while implementing
the proposed work.

1) The nature of the network is stationary, i.e., nodes and
DCS remain stationary throughout the network run.
Three heterogeneous nodes namely, normal, advanced
and super nodes are used which have least, intermediate
and maximum level of energy, respectively.

2) We assume that DCS has no constraints of energy, com-
putation, and network coverage as long as the operation
of SEOF is concerned.

3) Further, we assume our network to be a square-shaped
area to use it as a paradigm to perform our simulation.

4) The deployment of IoT-based sensor nodes is done
randomly but in a uniform pattern. Each node is
location-unaware and is given a unique id once it
is deployed. These nodes compute distance between
different entities based on Received Signal Strength
Indicator (RSSI) value [35].

5) We do not consider the factors of radio interference and
any hindrance or signal attenuation due to the presence
of physical objects.

6) We consider the proposed protocol to be ideally
secured. The security considerations for this work, are
out of scope.

7) We have not considered homogeneous nodes due to
the fact that existence of homogeneity is not feasible
due to different factors that include manufacturing dif-
ferences, and different period of activation once these
nodes are deployed.
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B. WORKING STRUCTURE OF SEOF

It functions in two stages namely set-up and steady-state
phase [5]. In the former stage, network formation and CH
selection are done for the network, whereas the latter involves
the process of data transmission during inter-cluster and
intra-cluster communication in the network. It is worth noting
that we apply sleep scheduling mechanism in each cluster
before data transmission is commenced. In Algorithm 1,
we mention various steps involved in the working process of
SEOF.

1) SET-UP PHASE

This phase pacts with the network formation which involves
’the node deployment and sink placement’ and CH selec-
tion. We employ four DCS outside the network as illustrated
in Figure 1. Then, we deploy heterogeneous loT-based sensor
nodes randomly in the network which is assumed to be a
forest cover of pre-defined dimensions. We use TSA to select
CH through the mathematical modelling of TSA’s fitness
function which we discuss in detail as follows.

(a) Fitness parameters employed in SEOF for CH selec-
tion: We use five essential fitness parameters for the
selection of CH. We define symbols with their mean-
ings in Table 1 that are used in proceeding sections.
These parameters are discussed as follow:

1) Energy (Residual, initial and threshold value):
The first parameter, i.e., F; considers residual,
initial, and threshold energy of a node for CH
selection. It is imperative to consider the updated
energy value of the candidate nodes as nodes con-
sume energy in commensurate with a gradual pro-
gression of rounds. Equation (1) determines the
summation ratio of the residual energy of the i
node to its initial value of energy, multiplied with
its threshold energy value. The threshold energy
level of a node defines the required energy value
of a candidate node for its selection as CH. In this
work, the threshold energy is taken as 0.3 Joule
after performing a number of experiments. It is
noted that higher the value of Fj, the greater
the probability of a node for its election
as CH.

n

F= Y TS < Emo® ()

2) Distance among node and DCS: This fitness
parameter called the distance factor is the
fundamental factor for any successful wire-
less communication between two entities [47].
The second fitness parameter i.e., F» computes
ratio of distance factor. It is the summation ratio
of the distance among ’a candidate node and the
nearest DCS’ and an average distance among all
nodes from their nearest DCS. It is noted that a
node should have a low value of distance ratio
for its selection as CH to preserve its energy.
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Algorithm 1 SEOF Algorithm
Input :»n = 100, R,y (Rounds maximum value),
DCS; = (110, 50), DCS> = (50, 110),
DCS; = (—10, 50), DCS4 = (50, —10)
Output: A = CH_N, dead,pdes, alivenodes and v
1 Deployment of heterogeneous sensor nodes CH_N =0
2 Initializing CH nodes
3 for r (round) = 1 to R, Then

TABLE 1. Symbol definition.

Symbols Meaning

Ein Node’s initial energy

Eres Node’s residual energy
Erup(i) it" node’s threshold energy
n Total nodes considered

Davgna—pcs

Average distance between all nodes and their
nearest DCS

DistRatio

Ratio of distance factor

Dpna—pcs(i)

Distance among i*" node and the nearest
DCS

Davg;—; Distance among *" and j** node
CL Cluster nodes count

Ndpzm Node proximity

Tielay Time delay

TNdelay Normalized time delay

Taetay(i) Time delay of i*" node

Tdelay(min)(i)

th

Minimum time delay of ¢*"* node

T(ielay(maac)(i)

Maximum time delay of it* node

A, 6,8,y and o Variables with equal weight values
deadnodes Number of dead nodes

Dy Distance between &kt and j*" nodes
alivenodes Number of alive nodes

Nearpcs Nearest DCS

tx transmission

Rc Current round

CH election, a candidate node should have higher
value of F, as depicted from equation (4).

(@)

Distrasio =

Z" Dya—pcs(i)

i=1 Davgna—pcs

1 " _
Davgna—pcs = - % ZiZIDnd—DCS(l) 3

1
Fy=——— @)

Distratio

3) Node proximity: The third fitness parameter

4 alive,pdes = 1

5 deadypges = 0

6 for i = I to n Then

7 if E,.5(i) == 0 then

8 deadypdes = deadpoges + 1

9 if dead, p4es == 0.9 x n then

10 all_dead = R¢ (current value of
round)

11 end if

12 aliveypdes = alive,pdes — deadypdes

13 end if

14 for i = 1 to n Then

15 if E,.;(i) > 0 then

16 Applying TSA for choosing CH

17 CH_N =CH_N +1

18 for k=11t (CL — 1) Then

19 Compute distance of k™ to j"* node

20 if Dy_j < Dyq then

21 if E,o5(k) > Ee5(j) then

22 ‘ 7™ node < Sleepgiaze

23 else

24 | k™ node < Sleepgiare

25 end if

26 else

27 | break

28 end if

29 end for

30 i active node < Assigning TDMA
slot

31 CH_N <«— i active node

32 Nearpcs <— CH_N

33 Update E,.s(i) using [47]

34 else

35 | break

36 end if

37 end for

38 if dead, p4es == 0.9 x n then

39 | break

40 end if

41 end for

42 end for

43 return A
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Equation (2) and equation (3) show the compu-
tation of ’distance ratio’ and ’average distance of
the node from the DCS’. For an energy efficient

i.e, F3) assists in choosing a node having greater
node count around its vicinity as a CH. Conse-
quently, the distance among the cluster member
nodes and a candidate node (to be selected as
CH), decreases. Equation (5) determines the aver-
age distance between the adjacent nodes i.e., i"
and j node in a cluster. Equation (6) illustrates
that a node having lowest average distance from
the other nodes in the cluster is selected by Fs.
In the other words, a node with higher number of
neighboring nodes is selected.
CL—1~—CL—1
Ndpym = é X (Z ijl Davg,-_j(i))

i=1

5
1
F3 = (0)
Ndpxm
48189
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4) Network’s average energy: This parameter,
i.e., F4 considers the network’s average energy,
which must be considered while selecting a node
as a CH. As the data transmission continues,
the network’s average energy abates which in turn
abates the count of a number of CHs to be selected
for a particular round. Equation (7) depicts the
network’s average energy. It is evident that higher
the value of F4 for a candidate node, more chances
it will have, to become a CH.

1 n
Fy= e ZizlEres(i) @)

5) Time Delay: The fifth fitness parameter, i.e., Fs,
is one of the significant contributions of pre-
sented work due to its direct dependence on
curbing the wildfire at the earliest. When the
network area is huge and the placement of the
sink inside the network is not possible due to
the hostile environment, the sensors inevitably
follow multi-hop communication. Consequently,
the critical fire-alarming information is delivered
very late leading to massive damage to the for-
est covers. Equation (8) computes the time delay
from the ratio of distance and speed of the data
packet which is assumed to be traveling with
the speed of light i.e., ¢ under ideal conditions.
Equation (9) normalizes the time delay to limit
its value in the range [0 1].

.~ Dna—pcs(®)
Tdelay(l) = nf (®)
T Tdelay(i) - Tdelay(min)(i) (9)
N elay =
deley Tdelay(max)(i) - Tdelay(min)(i)
1
Fs = (10)
TNdeIay

In equation (10), the value of F5 should be max-
imized to select the node with the least delay
involved in transmission of data to the DCS.

(b) Fitness Function: The fitness function is the linear
combination of the fitness parameters computed above.
The fitness function, i.e., F', should be minimized to
attain the optimized selection of the node as CH. Equa-
tion (11) gives the value of the fitness function, which
is processed further in TSA optimization method.

1
F =
AXF14+8xF+y xF3+B8xFs+0 xFs
(11)
S+A+B+y+o=1 12)

Equation (12) represents a weighted sum of
above-mentioned weight factors associated with
different fitness parameters.
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2) STEADY-STATE PHASE

Once, the CHs are selected in the network, the process of
sleep scheduling mechanism in each cluster, is applied in the
following steps.

1) In the first step, we compute the distance of a cluster
member node with the other nodes in that cluster. If the
distance computed among any two nodes is lower than
the threshold distance (we define it through multiple
simulations as given in Figure 5 (c)), then those two
nodes are considered further for energy checking.

2) In the second step, we check the current energy value
of those two nodes selected from the first step, and the
node with lesser energy from the other, enters into sleep
state whereas other stays active until it sustains.

3) In the third step, as soon as the active node drains its
energy, the node with sleep state is triggered to active
state.

The whole process of operation of SEOF including the sleep
scheduling mechanism, is explained in the Algorithm 1. The
CH gathers, aggregates and then forwards the information to
the nearest DCS.

C. DESCRIPTION FOR ALGORITHM 1

We present the operational framework of SEOF in
Algorithm 1. The detail description of this algorithm is given
as follows. We consider the network dimensions as an input
to the algorithm. It include number of nodes, maximum
number of rounds i.e., R4 for which the algorithm has to
run, and the Cartesian coordinates which define the location
of the four DCS placed outside the network. In output of
this algorithm, we get the selected CH by applying TSA
optimization method, the dead and alive nodes status with the
respect to round, the final value of round when the algorithm
is halted. We delineate the whole process covered by SEOF
in Algorithm 1 as follows.

In Line 1, we deploy heterogeneous sensor nodes and
placement of DCS is done. In Line 2, we initialize the
CHy variable to store the count of CHs. In Line 3-Line
42, we explain the whole process of SEOF with the steady
progression of each round. It covers the for loop that
stops its operation only when the satisfactory condition is
met. The status of alive and dead nodes is initialized in
Line 4-Line 5.The count of alive and dead nodes with
respect to the remaining energy of a node is updated in
Line 6-Line 14. In Line 9-Line 11, we compare the count
of all dead nodes to the 90% of total nodes. In Line 15-Line
38, we present the CH selection, sleep scheduling and steady
state phase. In Line 16, we check the remaining energy of a
node if it is not equal to zero then only it is considered for
CH selection and steady state phase. In Line 17, we apply
TSA [16] optimization method for CH selection. In Line 18,
the count to CHs is updated. In Line 19-Line 30, we intro-
duce the sleep scheduling concept in a cluster. In Line 20,
we compute the distance between k™ and j* node to find if
the computed distance is lower than the threshold distance
(5 meter). In Line 22, we compare the remaining energy of
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k™ with j"* node, and whosoever possesses lower energy than
the other, goes to sleep state. In Line 31, the active node in a
cluster is assigned TDMA slot for data transmission to CH.
In Line 33, CH transmits data to nearest DCS in a single-hop
communication. In Line 34, the energy of a node is updated
using radio energy model [47]. In Line 39-Line 41, the count
to the dead nodes is checked whether it is equal to 90% of total
nodes, then the algorithm stops. Finally, in Line 43, the output
A is obtained.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
We present the computational complexity of SEOF through
the Lemma 1 that we define as follows.

Lemma 1 (:) SEOF terminates in a finite number of iter-
ations i.e., Ry = O(1) and possesses overall computation
complexity equals to O(Ryax X N X CL x Totalpy, X s xd x P).

Proof (:) SEOF has a fixed count of nodes deployed
in the network. Once the steady state phase commences,
the nodes gradually starts decreasing their energies. This
process occurs till the point when 90% of the total nodes
completely exhaust their energies. The energy consumption
of each node occurs according to the radio energy model
[47]. The whole algorithm is made to run for fixed maximum
number of iterations i.e., R, Which is commensurate with
the 90% dead nodes in the network. Hence, SEOF algorithm
terminates with finite iterations.

We discuss the computational complexity of SEOF as fol-
lows. The first for loop iterates for R,,, number of rounds
and the dead nodes are checked for every value of n. Hence,
the complexity of this loop becomes O(Ryax X N). Every n'
node is considered for CH selection for every round of Ry .
Also, Line 17 computes the CH selection by applying TSA
algorithm which takes O(Totaly,, x s x d x P) time, as deter-
mined from Algorithm 1. At the fine grain level, TSA takes
O(s x d) time to initialize the population, O(Totaly, x s x d)
time to compute the fitness of each agent and O(P) time to
model tunicate’s behavior. In (Line 19-Line 30), the steps for
sleep scheduling mechanism are represented. Thus, the com-
mutative complexity of this loop (Line 15-Line 38) becomes
ORpax X N x CL x Totalpy, x s x d x P).

IV. RESULTS AND DISCUSSIONS

In this section, we firstly discuss the simulation setting
employed for the proposed work later, we discuss the per-
formance metrics used in this paper for evaluation of the
proposed protocol.

A. SIMULATION SETTING

The simulation of SEOF is done in MATLAB Software ver-
sion 2016a with the simulation parameters defined in Table 2.
The worth-noting point is that the DCS is placed around
the network at 10-meter distance from the periphery of each
side of the square-shaped network. The purpose of doing so,
is to keep the sink out of the network/forest cover. To have
a comprehensive simulation investigation, the simulation of
SEOF is performed ten times, and the best results are taken
with a 95% confidence interval. To examine the SEOF for its
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TABLE 2. Simulation parameters.

Parameters Values

100 x 100 meter? (Case I) and 500 x

Network size 500 meter? (Case IT)

Cartesian coordinates given as (110,50),
(50, 110), (-10, 50), (50, -10)

100 (Case I) and 200 (Case II)

Position of DCS

Total sensor nodes count

Normal sensor node’s ini- () 5
tial energy

TY(I;G of  heterogeneous Normal, Advanced and Super nodes
nodes

Normal=70, Advanced=20 and Super
Number of heterogeneous nodes=10 (Case I) and for Case II,
nodes Normal=140, Advanced=40 and Super
nodes=20

Energy proportions of het- Normal: 0.5 Joule, Advanced: 1 Joule
and Super nodes: 1.5 Joule

70 Joules (Case I) and 100 Joules (Case
Network’s total energy 1)

erogeneous nodes

Threshold  distance  for 5 meter (Case I) and 10 meter (Case II)
sleep scheduling

TSA Parameters Values
Search agents 80
Number of generations 1000
Confidence interval 95%

scalability characteristics, we consider two cases of different
network dimensions as given in Table 2. First case considers
100 x 100 meter? forest cover area deployed with 100 nodes
whereas, second case considers 200 nodes that we deploy in
500 x 500 meter? forest cover area. We empirically evaluate
the threshold distance for sleep scheduling and found the
optimum values; 5 meter for Case I as depicted from Figure 5
(c), and 10 meter for Case II. The performance evaluation of
SEOF is done against the CIRP [35], FLEC [38], GAOC [5],
and eeTMFOGA [37].

B. PERFORMANCE METRICS

The efficacy evaluation of SEOF is performed based on the
performance measures that are discussed as below.

1) Stability Period: It is the count of the rounds before
the first node in the network completely exhausts its
energy and hence, is said to be dead. We examine
SEOF for two cases; for Case I, we find through
the simulation analysis that SEOF acquires a stability
period of 2747 rounds. However, the other protocols,
namely eeTMFOGA, GAOC, FLEC, and CIRP, posses
the stability period of 621, 859, 1748, and 2029 rounds,
respectively as depicted in Figure 2 (a). The amelio-
ration in the stability period by SEOF accounts for
35.3% and 57.1% vis-a-vis CIRP and FLEC protocols,
respectively. For Case II, Figure 2 (b) and Figure 3
(c) illustrate that the stability period of SEOF is having
low value due to more number of transmissions in the
network.
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The prominent cause behind such improvement in
this performance measure is associated with the pro-
posed CH selection and the single-hop communication
involved due to the placement of multiple numbers
of DCS. Further, the sleep scheduling mechanism
helps in energy preservation of all nodes in the net-
work by switching their roles from active to sleep
state.

Network survival period: It is the count of the rounds
till 90% of nodes completely exhaust their energies.
The reason for not considering 10% is the fact that

2)

48192

they contribute negligibly and do not transmit any vital
information. Figure 2 (a), Figure 2 (c), Figure 4 (a) and
Figure 4 (b), represent the number of rounds covered
until 90% of the nodes are dead. For Case I, Figure 2
(a) elucidates that SEOF covers 10509 rounds, whereas
CIRP and FLEC cover 9879 and 6923 rounds, respec-
tively. SEOF accounts for 6% and 51% increase in
the network survival period vis-a-vis CIRP and FLEC
protocols, respectively. For Case II, Figure 2 (c) shows
the network survival period of SEOF is 11365 which is
70% more than that of CIRP.
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TABLE 3. Percentage amelioration by SEOF against other protocols.

Performance metrics

Name of protocols

eeTMFOGA [37] GAOC [5] FLEC [38] CIRP [35]
Case I Case II Case [ Case 11 Case I Case 11 Case [ Case II
Stability Period 342.3 216.6 219.7 660 57.1 375 353 850
Half network dead 275.5 592.7 197.5 421.9 52.5 370.3 27 190.8
Network survival period ~ 188.47 927.5 142.5 209.8 51.7 1754 6 71.7
Throughput 462.3 617.9 269.7 249.9 64.7 344.7 23.8 148.5

The amelioration in this performance metric is due to
the energy-efficient election of CH and the decrease
in the average distance of the CH nodes from the
sink.

Network’s remaining energy: This metric assists in
understanding the rate of energy consumption of the
nodes while the network is operational. The network’s
remaining energy corresponding to the total rounds
covered is depicted in Figure 3 (b) and 4 (c). The
total energy of the network is 70 Joules for Case I
and 100 Joules for Case II. Further, it is evident from
Figure 3 (b) and Figure 4 (c) that the value of the
remaining energy of SEOF is more than the other
protocols during its entire run.

The reason behind this improvement is the single-hop
data communication among the CHs and the DCS that
eventually minimizes the energy consumption.
Throughput: The count of packets sent to the DCS
successfully is referred to as throughput. The through-
put analysis of SEOF against the other protocols
for Case I and Case II is depicted in Figure 5 (a)
and Figure 5 (b), respectively. For Case I, DCS
receive 105519 packets in case of SEOF whereas,
CIRP, FLEC, GAOC, and eeTMFOGA receive 85209,
64032, 28536 and 18763 packets, respectively. For
Case II, the throughput in case of SEOF and CIRP
is 100667 and 40500 packets, respectively. However,
FLEC, GAOC and eeTMFOGA receive 22633, 28767,
and 14021 packets over the rounds.

Due to the enlarged network survival period, the count
of packets transmitted or the count of nodes

3)

4)
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participating in the data transmissions over the
particular count of rounds is more than the other
protocols.

C. SUMMARY

To summarize our findings, we determine the percentage
amelioration by SEOF against the CIRP [35], FLEC [38],
GAOC [5], and eeTMFOGA [37] in Table 3. We specify
the performance of SEOF for two cases; Case I and Case 11
considered for investigation for different performance
metrics.

V. CONCLUSION AND FUTURE WORK
We propose an intelligent framework namely, SEOF to

address the concerns related to the limited energy resources
of IoT-based sensor nodes that are deployed in the forest
covers for Wildfire Detection (WD). In our proposed frame-
work, we present a novel approach of joint consideration of
energy efficient CH selection using a meta-heuristic method
named TSA [16] and sleep scheduling methodology to pre-
serve the energy of sensor nodes. We investigate the per-
formance of SEOF through a set of experiments based on
four performance metrics namely, stability period, network
survival period, network’s remaining energy and throughput.
During empirical investigation of SEOF, we consider two
cases of different network dimensions in terms of count of
nodes and network area, to ensure the scalability of SEOF.
The simulation results reveal that SEOF delivers superior
performance against four state-of-the-art algorithms, namely
CIRP [35], FLEC [38], GAOC [5], and eeTMFOGA [37].
More specifically, we find that SEOF ameliorates the sta-
bility period by 35.3% and 216% for Case I and Case II,
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respectively, vis-‘a-vis CIRP [35] and also outperforms the
other techniques. The performance improvement of SEOF is
acquired at the cost of various assumptions for its real time
implementation. However, when the real time implementa-
tion of SEOF is performed, there are various factors which
may affect the operation of SEOF. The presence of physical
obstacles between sensor node, the ability to withstand high
temperature when the wildfire is in intact, and many others,
can not be ignored ideally.

In extension of this work, the sink placement can be opti-
mized to achieve better network performance. Further, it will
be interesting to observe the performance of SEOF under the
sink mobility scenario to reduce the cost added in the network
with the addition of four DCS.
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