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ABSTRACT This study proposes a duty cycle-based direct search method that capitalizes on a bioinspired
optimization algorithm known as the salp swarm algorithm (SSA). The goal is to improve the tracking
capability of the maximum power point (MPP) controller for optimum power extraction from a photovoltaic
system under dynamic environmental conditions. The performance of the proposed SSA is tested under
a transition between uniform irradiances and a transition between partial shading (PS) conditions with a
focus on convergence speed, fast and accurate tracking, reduce high initial exploration oscillation, and
low steady-state oscillation at MPP. Simulation results demonstrate the superiority of the proposed SSA
algorithm in terms of tracking performance. The performance of the SSA method is better than the
conventional (hill-climbing) and among other popular metaheuristic methods. Further validation of the
SSA performance is conducted via experimental studies involving a DC-DC buck-boost converter driven
by TMS320F28335 DSP on the Texas Instruments Experimenter Kit platform. Hardware results show that
the proposed SSA method aligns with the simulation in terms of fast-tracking, convergence speed, and
satisfactory accuracy under PS and dynamic conditions. The proposed SSA method tracks maximum power
with high efficiency through its superficial structures and concepts, as well as its easy implementation.
Moreover, the SSA maintains a steady-state oscillation at a minimum level to improve the overall energy
yield. It thus compensates for the shortcomings of other existing methods.

INDEX TERMS MPPT, salp swarm optimization, partial shading, PV characteristic, MATLAB.

I. INTRODUCTION
Over the past decade, the increasing energy consump-
tion and the inevitable reduction in fossil fuel resources
(coal, oil, natural gas), as well as the rapid environmental
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deterioration resulting from global warming, have prompted
global efforts to study renewable energy sources (RESs),
such as wind, solar energy, hydropower, geothermal energy
and biomass [1]. Overcoming these issues has become the
focus of global market interest. Also, power generation from
RESs saves billions of barrels of crude oil and reduces car-
bon dioxide (CO2) emissions and greenhouse gases [2], [3].
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Solar energy is a pure form of energy directly from the
sun. It is considered a state-of-the-art RES for electricity
generation basically because solar energy is harmless to the
environment. The sun’s energy is a thousand times greater
than the energy produced by fossil fuels in one day [4].
Another benefit of solar energy is that it can be used by
virtually almost every country to produce electricity without
depending on other nations. As solar energy is eternal and
continuing, its long-term use can be guaranteed.

Solar photovoltaic (PV) is one of the world’s most promis-
ing and abundant RESs. PV systems are clean, durable, noise-
free, freely available, and omnipresent. Additionally, they are
free from rotating parts, and they do not require heavy main-
tenance. These systems are also used in various applications,
such as road lighting, solar cars, and hybrid renewable energy
systems. According to International Energy Agency reports,
the global primary energy utilization demand will increase by
60% from 2002 to 2030 [5], and PV systems will produce
around 11% of the world’s electricity and avoid 2.3 Gt of
CO2 emissions per year by 2050 [6]. After hydropower and
wind, PV has become the third most important source of
renewable energy. The International Energy Agency for Pho-
tovoltaic Power Systems reports that the global installation of
PV capacity expanded to 227 GW in March 2015 and is
expected to reach 500 GW by the end of 2020 [7].

NOMENCLATURE
D Duty cycle
PV Photovoltaic
MPP Maximum power point
GMPP Global maximum power point
LMPP Local maximum power point
GP Global peak
ISC Short circuit current
VOC Voltage open circuit
IMPP Current at maximum power point
VMPP Voltage at maximum power point
PMPP Power at maximum power point
VPV Tracked PV voltage
IPV Tracked PV current
C1 Coefficient parameter
C2, C3 Random number
ub Upper boundary
lb Lower boundary
F Food source
Po Output power
fS Switching frequency
L1 Inductor
1P Power differential ratio
1Vo/Vo Voltage ripple
ηmppt MPPT efficiency
Vo Initial speed
t Time
a Acceleration
dki Initial duty cycle

GBest Global best position
L Maximum iteration
l Current iteration
P(k)i Current at i-th iteration
P(k−1)i Power at i-1th iteration
LP Local peak
PS Partial shading conditions

However, PV systems’ power generation remains uncertain
because of the low-efficiency yield resulting from vary-
ing environmental conditions, such as partial shading (PS)
and irradiance conditions [8], [9]. The characteristics of a
nonlinear PV source vary depending on the solar irradi-
ance and temperature received. The occurrence of partial
shading conditions (PSCs) causes the power
vs. voltage (P-V) characteristic curve to become
multimodal [10]–[13]. Hence, PV systems are equipped
with maximum power point trackers (MPPTs) to ensure
optimum energy extraction from PV arrays and thereby
overcome the aforementioned problems. However, existing
conventional MPPT algorithms [14]–[19] cannot differen-
tiate local and global maximum points and thus have low
effectiveness, particularly in dealing with multiple peaks
problems. The ideal MPPT should track the actual maxi-
mum power point (MPP) for all environmental situations,
including PSCs.

Numerous MPPT techniques have been introduced in the
literature. They can be classified into two major classes,
namely, conventional and metaheuristic algorithms. Conven-
tional algorithms include perturb and observe (P&O) [20],
which was previously referred to as hill climbing (HC) [21],
incremental conductance [22], ripple correlation control [23],
and extremum seeking control [24]. Metaheuristic algorithms
include artificial intelligence (AI) and evolutionary compu-
tation (EC). AI consists of fuzzy logic [25] and artificial
neural networks [26], [27]. EC includes the genetic algorithm
(GA) [28], particle swarm optimisation (PSO) [29], [30],
cuckoo search (CS) [31], fractional chaotic FPA [32], flow
regime algorithm, social mimic optimization, Rao algorithm,
ant colony optimisation (ACO) [33], [34], butterfly opti-
mization algorithm [35], [36], grasshopper optimization algo-
rithm [37], bat algorithm [38], metaphor-less algorithms [39]
and many more.

Under uniform conditions, conventional MPPT tech-
niques, such as HC, can track the global MPP on the I-V
curve, but they fail to track the global MPP under PSCs.
This phenomenon (PSC) occurs when the PV modules in a
PV array panel do not receive uniform irradiance. It could
also be due to obstacles (buildings, telephone poles, elec-
trical utility towers) and clouds striking at certain points in
the PV array whilst the other parts remain uniformly irradi-
ated. Partial shading can dramatically reduce a PV panel’s
power and complicate the tracking process caused bymultiple
peaks in the P-V characteristic curve. Conventional MPPTs
also find difficulties in tracking the global peak (GP) under
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PSCs because they are not capable of differentiating between
the local peak (LP) and the GP since dP/dV characteristics
for both peaks are the same [40]. Therefore conventional
MPPT algorithms usually fail to track the GP because it
typically traps in a false power peak (local peak), as dis-
cussed in [40], [41]. The resulting output power significantly
drops. Statistically, the output power could decrease by up
to 30% [24], [42] of the total energy generated by PV systems.

Metaheuristic algorithms, such as PSO, are introduced for
MPP tracking, particularly during PS. These algorithms suc-
cessfully track the GP under PS with nearly zero oscillation
at the MPP. However, the PSO or standard metaheuristic
algorithm requires proper initialization and periodic tuning to
ensure a good tracking performance. Improper initialization
and parameter tuning result in unsatisfactory tracking per-
formance. For example, large particles contribute to a long
tracking time and convergence speed as the attribute reduces
diversity or randomness in searching the optimal candidate,
i.e., duty cycle [43]. As an alternative to standard meta-
heuristic, the idea of bioinspired optimization methods is
mainly drawn from the intelligence of flocks, swarms, herds,
or schools of creatures in nature. Such methods apply the
behaviours of fireflies, bees, and birds in MPPT algorithms.
In the literature, prominent bioinspired optimisation
algorithms include CS [31], flower pollination algo-
rithm [43], [44] ABC [32], grey wolf optimisation [45],
firefly algorithm [46], fractional chaotic ensemble PSO [47],
wind-driven optimisation [48], improved differential evo-
lution (DE) [49], GA [50], cat swarm optimisation [51]
and sliding mode control [52]. The disadvantages cited
in [31], [43], [44], [51] are due to the high complexity of
the searching mechanism that contributes to the computa-
tional burden relative to that of the proposed algorithm.
In [36]–[39] the disadvantages include the high complex-
ity of the structure, equation, and concept that contributes
to the high initial oscillation and tracking time during the
MPP tracking process compare with this proposed method.
In [8], [32], [33], [43], [47], [51], the authors proposed
an algorithm with a tracking time of more than 0.5 s and
slow tracking relative to the proposed bio-inspired algorithm
in the current work. The researchers in [35], [45]–[47],
and [53] did not evaluate the proposed algorithm under
dynamic changes in irradiance and the effectiveness of
the developed algorithms was not clearly presented. The
authors in [48], [49], [54]–[58] only performed tests under
static conditions and did not analyze dynamic performance.
In [52], the proposed MPPT technique was not evaluated
under PSCs and was only tested under varying irradiance
conditions.

The literature also presents a combination of conventional
MPPT and soft computing MPPT, such as PSO blended
with ANFIS [58], hybrid ABC with HC [59], Fuzzy blended
with PSO [60], ACO blended with P&O [61], FPA with
P&O [56], PSO with P&O [62] and PSO combined with
DE to produce DEPSO [54], [63]. The results of these
combinations show promising outcomes and implementation

opportunities. However, mixing conventional and soft com-
puting MPPT methods involve high complexity program-
ming, implementation cost and computational burden inMPP
tracking compare to simple concept and structure of proposed
method in this paper.

Simple implementation, fast convergence speed, and accu-
rate tracking are the main priorities for MPPT applications.
Therefore, a new MPPT algorithm based on the salp swarm
algorithm (SSA) is proposed in the current work. Seyedali
Mirjalili introduced the SSA in [64]. It is one of the robust
optimization algorithms among the bioinspired algorithms.
The SSA is based on salp groups’ swarming behaviour during
ocean foraging and navigation. A swarm of salps remains
connected, and a salp chain is never separated. The SSA
has been proved to support exploitation by directing the
search in every optimization problem towards an up-and-
coming region in the search space around the right global
optimum. This swarming behaviour is modelled, and the SSA
is introduced to solve many optimization problems. In the
current study, an improved application of the SSA–MPPT
based on the direct duty cycle control strategy is presented to
improve PV systems’ efficiency. The SSA method comprises
two simple steps involving mathematical functions: i) first
salp (leader) equation and ii) direct control equation of fol-
lowers to update the duty cycle/control variable with the first
salp (leader) and second salp [3]. The proposed SSA method
is compared and evaluated with several metaheuristics and
a conventional algorithm (HC) to verify its viability. The
proposed SSA, relative to the HC and other metaheuristic
algorithms, can reduce high initial oscillation during the
tracking process, thereby contributing to a low energy loss,
improving tracking performance with a convergence speed of
less than 500 ms, and facilitating the tracking of actual global
optima with a reduced steady-state oscillation around the
MPP [23]. A simple search mechanism in the proposed SSA
exhibits good MPPT performance under dynamic irradiance
changes, thus enhancing the amount of energy extracted from
PV systems. The proposed SSA simulation results are vali-
dated with experimental work to prove the effectiveness and
advantages of the method. Generally, the main contributions
of this work are as follows:
• A simple novel bioinspired optimization method called
the SSA is introduced to track the global maximum
power point (GMPP).

• The proposed algorithm introduces a duty cycle bound-
ary concept to direct the searching area towards the
probable GMPP region. It has a straightforward control
structure, simple implementation, low energy loss dur-
ing the initial oscillation of the MPP tracking process,
high convergence speed, and accurate tracking.

• The effectiveness of the proposed SSA is proved under
various extreme environmental conditions.

• The proposed SSA is compared with the conventional
HC and several other popular metaheuristics in terms of
fast-tracking, convergence speed, and accurate tracking
during sudden changes in irradiance conditions.
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• The performance and effectiveness of the proposed SSA
are validated based on simulation and experimental
results.

The remaining parts of the article are: Section II describes
the SSA as a new bioinspired optimizer. Section III
discusses the application of the SSA to MPP tracking.
Section IV discusses the advantages of SSAMPPT. Section V
presents the simulation results and the comparison of the SSA
with the conventional and metaheuristic methods. Section VI
summarises the experimental validation. Section VII
and VIII: limitation of proposed SSA and details the
conclusion.

II. SALP SWARM ALGORITHM (SSA)
The body of salps and their movement are similar to those
of jellyfish. Salps pump water through their tubular bodies
as a driver to move forward. Salps are part of the Salpidae
family and are characterized by transparent tubular bodies.
Fig. 1 shows the shape of an individual salp. One of the most
exciting characteristics of the SSA is behaviour swarming.
The flock of salps illustrated in Fig. 2 is called the salp chain.
The main factor for swarm behaviour is to use foraging and
coordinated changes to find the best location for food sources.

FIGURE 1. Individual salp.

FIGURE 2. Swarm of salps (salp chain).

A. MATHEMATICAL MODEL
The goal of salp swarm behaviour is to locate food
sources [31] by foraging and coordinating. The action can
be modelled by mathematical functions to solve optimization
issues. A salp swarm can be divided into leaders and follow-
ers. The salp leader is at the front of the salp chain whilst
the rest of the salps in the chain are considered followers.

The salp leader guides the swarm and is followed by the salp
followers as they find food sources. The position of all salps
in the swarm, their behaviour, and their populations are stored
in a two-matrix array (row and column) called x. The target
area of the salp swarm in the region of the matrix array is
a food source called F . To update the salp leader’s position,
Seyedali Mirjalili [1] proposed the following equation:

xk1 = F + C1((ub− lb)C2 + lb) C3 < 0.5 (1)

xk1 = F − C1((ub− lb)C2 + lb) C3 < 0.5 (2)

where xki is the position of the salp leader; F is the food
source position; ub is the upper bound; lb is the lower bound;
i = 1; and C1, C2, C3 are random numbers. According to
Equations (1) and (2), the salp leader’s position is updated in
accordance with the food source. Coefficient C1 is a highly
significant parameter for balancing exploitation and explo-
ration in the SSA; it is defined as

C1 = 2e−(
4l
L )

2
(3)

where l and L are the current andmaximum iterations, respec-
tively. ParametersC2 andC3 are two random parameters with
values between (0, 1) that are generated uniformly.

The following equations (Newton’s law of motion) are
used to update the position of the followers:

xki =
1
2
at2 + v0t (4)

where i ≥ 2, xki is the ith position of the salp follower in the
kth iteration, t is time, v0 is the initial speed where v = x−x0

t
and a = vfinal

v0
. In the field of optimization, time is an iteration,

the discrepancy between iterations is equal to 1, and v0 = 0.
This equation can be expressed as

xki =
1
2

(
xki−1 + x

k
i

)
(5)

where i ≥ 2 and xki shows the position of the ith salp follower
in the kth iteration. The swarm of salps is modelled using the
mathematical model functions of Equations (1), (2), and (5).

B. ALGORITHM
The SSA creates a population of salp chains and begins to
search for the global optimum by following a mathematical
model of the salp chains (salp swarm). The salp leader in
the SSA model initiates the search for a food source and
directs the salp followers in the chain. When the food source
is replaced with the global optimum, the salp swarm (salp
chains) automatically moves towards it. The optimum food
source is supposed to be chased by the salp leader responsible
for guiding the salp followers to seek the food source. The
best solution has yet to be obtained because of the unknown
global optimum of optimization issues.

The SSA starts with the concept of finding the global opti-
mum to initialize a randomly positioned swarm population of
salps. It then evaluates each salp chain’s fitness and searches
for the salp with the desired fitness function optimization.
It chooses the best fitting salp swarm position (variable F)
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as the food source to be chased by the salp swarm [42].
The C1 coefficient factor in Equation (3) is updated accord-
ingly. Thereafter, the position of the salp leader is updated in
Equations (1) and (2), and the salp followers are updated
in Equation (5) for each iteration. Boundary conditions, i.e.
upper boundary (ub) and lower boundary (lb) are set to pre-
vent any salp from going outside the search area for optimiza-
tion. The second step (evaluation of the fitness of each salp
chain) is repeated until a criterion or end criterion is met.

The food source location is updated during the optimiza-
tion of the salp chain in the search space via exploration and
exploitation. The salp chain likely searches for and finds a
good location and solutions. Fig. 3 shows that a moving food
source can be found and chased by the modelled salp chain.
With this movement and behaviour of the salp chain (a swarm
of salps) towards the food source, it can move towards the
global optimum which changes during each iteration. The
coefficient C1 is the single main SSA control parameter that
drives the movement to explore the solutions through the
search space and then exploit it.

FIGURE 3. Salp chain movement around a stationary food source
(Seyedali Mirjalili et al., 2017).

III. MPPT TECHNIQUE USING SSA
Given the continuous variations in temperature and solar irra-
diance, the application of MPPT algorithms under dynamic
environments is a primary concern. Under PSCs, an MPPT
algorithm needs to deal with extreme changing environments.
The standard SSA algorithm is only equipped to handle
static optimization process. Direct employment of the algo-
rithm will result in unsatisfactory tracking performance. The
algorithm will not react to environmental changes once
convergence to a single optimum is achieved. As a result,
the operating point is maintained at a false operating point
and a significant amount of power will be wasted. Even if the

optimum shifts slightly in the event of a small change in irra-
diance, there is a continuous loss in power attainable from the
PV system, which can significantly lower efficiency. To over-
come this drawback, several improvements are proposed to
the standard SSA to ensure dynamic tracking of the true
optima and avoid severe losses. Fig. 4 shows the flowchart
of the proposed SSA method for MPPT application. For sim-
plicity of the algorithm, a direct duty cycle control strategy
is utilized. Firstly, Ns salps determine the initial values of the
duty cycles xki = dki = [d1, d2, . . . , di], i = 1, 2, 3, . . . ,Ns.
Secondly, the algorithm reads and saves the tracked output
power from the initial duty cycles sent to the DC-DC buck-
boost converter. Thirdly, the algorithm evaluates the fitness
function, i.e. the maximum output power set as an objective
function. It then identifies the best fitness as the global best
(GBest) position and updates the salp leader’s position equa-
tion as follows: dk1 = GBest + C1 ((ub− lb)C2 + lb) and
dk1 = GBest − C1 ((ub− lb)C2 + lb); base C3 is a random
probability switch ranging from 0 to 1 and then follows the
Equation of the salp follower: dki =

1
2

(
dki−1 + d

k
i

)
. The C1

coefficient is an important parameter defined in the SSA for

balancing exploitation and exploration. C1 = 2 e
−

(
4 l
L

)2
,

where L and l are respectively the maximum iterations and
current iteration. C2 is the random value generated uni-
formly in the interval [0, 1]. As a food source parameter, the
F symbol is replaced with GBest (global best position) in
the salp leader’s position equation for MPPT application.
Moreover, x is assumed to be equal to d , which denotes duty
cycles. Finally, the MPP is identified, and the step is repeated

FIGURE 4. Flowchart of proposed SSA algorithm.
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FIGURE 5. PV system with the DC-DC buck-boost converter.

until power convergence is achieved and the fitness value is
satisfactory (Fig. 4).

The MPPT technique is mainly aimed at searching for a
GMPP. Therefore, the objective function is defined as

P
(
d (k)i

)
> P

(
d (k−1)i

)
where P is the power, k is the number of iterations and d is
the duty cycle.

The nature of changes in dynamic environments highly
influences the approaches that the algorithm can employ to
recover from the changes. Therefore, the primary issue to
be addressed is how to effectively detect the changes and
differentiate the severity of changes in the P-V landscape.
Changes in the environment can cause the P-V landscapes in
theMPPT problem to vary from a single peak to a single peak
(uniform to uniform irradiance conditions), a single peak to
multiple peaks (uniform irradiance to PS conditions), and
multiple peaks to multiple peaks (PS to PS conditions) at
different rates of frequency changes. To enable standard SSA
algorithm to deal with dynamic MPPT problem effectively,
the following re-initialization shown in Equation (6) is used
to reset the positions of the salps:∣∣∣∣∣P

(k)
i − P

(k−1)
i

P(k−1)i

∣∣∣∣∣ > 1P (6)

η =
Tracked Power (PTracked )
Actual PV Power (Output)

× 100% (7)

IV. ADVANTAGES OF THE PROPOSED SSA
For fast and accurate tracking performance, the initial duty
cycles need to explore a wide P-V curve area. Thus, the num-
ber of initial duty cycle (D) is an essential and critical aspect
that needs to be carefully considered in determining the effec-
tiveness of the tracking process. A large (D) improves the
search efficiency (i.e., probability of tracking to the correct
value) but contributes to long convergence and tracking time.
In the proposed SSA-MPPT, comprehensive simulations indi-
cate that D = 3 is a reasonable compromise and is therefore
used in this study.

Another modification that has been proposed is a deter-
mination of the correct boundary limit to ensure effective
tracking. In this work, a parameter called duty cycle bound-
ary (DCB) is introduced. It is defined as the upper and lower
boundary of the duty cycle (DU , DL). By limiting the duty
cycle value within the DCB, the maximum explorable area
during the optimization process is reduced. The determina-
tion of DCB is done based on the concept of voltage-current
range (VCR). VCR is the range in which the MPP could be
located. For clarity, the proposed SSA’s searchingmechanism
during uniform irradiation is shown in Fig. 6. Only one
sample is used to represent the movement of duty cycle (D) to
demonstrate the advantages of the proposed SSA and how the
modifications made contribute to the fast-tracking and high
convergence speed. The upper subscription of the variable
duty cycle in Fig. 7 shows the number of tracking iterations.
In the first iteration, the proposed SSA tracks the global best
position (GBest). Subsequently, it moves towards (Gbest) in
the same direction. To update the new direction and position
of salp based on the salp leaders, Equations (1) and (2) are
used. It is then followed by the salp follower in Equation (5).
By implementing the direct GBest technique in the proposed
method, particle salp movement moves straight forwards to
the potential target with a skipped region for searching. Com-
pared to the PSO algorithm, it only uses GBest and personal
Best (PBest) to update the new velocity. This is a crucial

FIGURE 6. Advantages of proposed SSA in MPP searching mechanism for
the PV systems.

FIGURE 7. Duty cycle illustration during the tracking process.
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parameter to generate the new direction for each particle
swarm and is often employed in other standard metaheuristic
algorithms. This step contributes to long tracking time, slow
convergence speed, and high initial oscillation during the
tracking process. Consequently, a large amount of energy will
be wasted. Based on the illustration of the duty cycle in Fig. 7,
the proposed SSA algorithm only requires four iterations to
find GMPP. Moreover, only C1 coefficient plays a vital role
in balancing the exploitation and exploration capabilities.

As shown in Fig. 7, the PSO algorithm’s duty cycle requires
10 iterations to find the GMPP based on the PSO principle
discussed in [30], [65]. Fig. 6 and Fig. 7 systematically show
the advantages of the proposed method to skip unnecessary
regions during GMPP tracking process, hence improving its
effectiveness. The PSO algorithm [30] and other metaheuris-
tic algorithms with a similar structure will contribute to long
tracking time, slow convergence speed, and steady-state error
around MPP. Fig. 6 clearly shows that the proposed SSA out-
performs the other metaheuristic algorithms and conventional
HC algorithm in terms of fast-tracking, high convergence
speed, reduced high initial exploration process, and zero
steady-state oscillations around MPP.

V. SIMULATIONS RESULTS
The proposed SSA–MPPT algorithm is simulated and ana-
lyzed using a MATLAB/Simulink platform. Fig. 5 shows the
overall simulation block diagram of the PV system which
includes a buck-boost converter and an MPPT controller. The
following parameter specifications of the converter: L =
1 mH, C1 = 470 µF, C2 = 220 µF, and f = 20 kHz.
In this work, the PV array is made up of four series-connected
PV modules. As the MPPT sampling time is crucial because
MPP readings should be taken upon reaching a steady-state
condition, the sampling time of the SSA–MPPT controller
is set to 0.02 s. Simulations are carried out with large step
changes in the uniform irradiance condition (Fig. 9), followed
by large step changes in PSCs, as shown in Figs. 13 and 14.

A. SIMULATION WITH LARGE STEP CHANGES IN
UNIFORM IRRADIANCE CONDITIONS
The performances of the HC, GWO, BOA PSO, GOA, and
SSA based on MPPT during large step changes in uniform
irradiance conditions are evaluated in terms of fast-tracking
capability, oscillation in duty cycles, and convergence speed.
For large step changes, the irradiance is initially set to
1,000 W/m2 at time t = 0 (point 1), reduced to 500 W/m2 at
t = 2 s (point 2) and finally increased to 800W/m2 at t = 4 s
(point 3) (Fig. 8). The temperature is set to be constant
at 25 ◦C. The tracking responses of the HC, GWO, BOA,
PSO, GOA and SSA–MPPT are presented in Fig. 9.

The SSA starts its optimization process by initially sending
three random duty cycles and then updates the salp leader’s
equation to find the GMPP based on a random number C3.
Finally, it proceeds with the follower equation for the rest
of the salps. The coefficient C1 parameter is based on
Equation (3), which governs the balance between

FIGURE 8. P-V curves during uniform solar irradiance.

exploitation and exploration of the SSA. As shown in
Fig. 9-(SSA), particularly for the large step change response
from 0 s to 2 s,C1 governs the SSA in tracking and converging
at the real GMPP (239.6 W) within 0.16 s; such speed is
faster than that of GOA (GMPP= 239.3 W) in 0.48 s (Fig. 9-
(GOA)), PSO (GMPP = 239.1 W) in 0.6 s (Fig. 9-(PSO)),
BOA (GMPP = 239.1 W) in 0.83 s (Fig. 9-(BOA)), GWO
(GMPP = 239.3 W) in 0.71 s (Fig. 9-(GWO)). In contrast,
HC only tracks (GMPP = 237 W) within 1 s, represent-
ing the slowest response for the conventional algorithm.
Within 2–4 s (i.e. 2.16 s), the SSA can converge and track
the maximum point (Fig. 9-(SSA)) and is thus faster than
other metaheuristic algorithms: GOA, PSO, BOA, GWO, and
HC, the convergence speeds are 2.3 s (Fig. 9-(GOA)), 2.5 s
(Fig. 9-(PSO)), 3.3 s (Fig. 9-(BOA)), 2.71 s (Fig. 9-(GWO))
and 2.3 s (Fig. 9-(HC)), respectively. Within 4–6 s, the SSA
converges and tracks the GMPP (192.6 W) in 4.19 s (Fig. 9-
(SSA)) and is thus faster than the GOA, which tracks the
GMPP (192.2 W) in 4.6 s (Fig. 9-(GOA)), PSO which tracks
the GMPP (192.1 W) in 4.6 s (Fig. 9-(PSO)), BOA which
tracks the GMPP (192.1 W) in 4.56 s (Fig. 9-(BOA)), GWO
which tracks the GMPP (192.2 W) in 4.73 s (Fig. 9-(GWO))
and HC, which tracks the GMPP (191.4 W) within 4.2 s
(Fig. 9-(HC)). The results presented in Fig. 9 further indicates
that the GOA–, PSO–, BOA–, GWO–MPPT algorithm can
reach the MPP but with high oscillation during the initial
exploration process. Fig. 10, Fig.11, and Fig.12 show the
average maximum output power tracked and the maximum
number of iterations for each method in 100 runs under
uniform conditions. In conclusion, the proposed SSA–MPPT
algorithm (Fig. 9-(SSA)) has a relatively low oscillation
during the initial exploration. The conventional HC–MPPT
algorithm produces high steady-state oscillation near the
MPP (Fig. 9-(HC)) during step-down and step-up conditions
with sluggish tracking performance.

B. SIMULATION WITH LARGE STEP CHANGES IN PSC
The capabilities and performances of the HC, GWO, BOA,
PSO, GOA, and SSA based MPPT are further validated with
large step changes in PSCs. Their performances are compared
in terms of their tracking speed and oscillation during the
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FIGURE 9. Tracking responses of SSA, GOA, PSO, BOA, GWO, and HC during large step changes in
uniform irradiance.
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FIGURE 10. Convergence characteristics of output power for 100 runs
(1000 W/m2).

tracking process. Their abilities to track the true MPP for
three different patterns are also compared. Figs. 13 and 14,
respectively show the configurations and P-V curves of the
three different patterns. Pattern (A) produces two peaks with
GP at 177 W. Pattern (B) produces three peaks with GP
at 136.5 W, and pattern (C) produces two LPs with GP at
114.5 W. As for the evaluation of the large step changes in
the three different pattern conditions, the test initially starts
with pattern (B) (point 1) at time t = 0 and then shifts to
the pattern (C) (point 2) at t = 2 s. In the last evaluation,
it changes to the pattern (A) at t = 4 s. Fig. 15 shows the
simulation results of the evaluated MPPT controllers.

The simulation results of the HC, GWO, BOA, PSO, GOA,
and SSA based MPPT during large step changes in PSC from
0 s to 2 s (see Fig. 15-(SSA), pattern B) are evaluated. The
SSA basedMPPT approaches the GMPP (136.3W) in 0.22 s.
During this condition, C1 governs the SSA to converge the
duty cycle at 0.41 to reach the GMPP within 0.22 s. Hence,
the proposed algorithm is superior in terms of convergence
speed, which is 0.51 s faster than GOA, which reaches the
GMPP of 136.2 W, 0.7 s more quickly than PSO that reaches
the GMPP (136.1 W), 0.83 s faster than BOA that reaches the
GMPP of 135.1 W and 0.89 s faster than GWO that reaches
the GMPP at 136W. TheGOA–, PSO–, BOA–, GWO–MPPT
algorithm shows high initial exploration process oscillation

FIGURE 11. Convergence characteristics of output power for 100 runs
(500 W/m2).

as shown in Fig. 15-(GOA), Fig. 15-(PSO), Fig. 15-(BOA),
Fig. 15-(GWO). For HC, the algorithm is trapped at the local
MPP (110.3 W, see Fig. 15-(HC)).

At t = 2 s, the PS pattern changes from pattern B to pat-
tern C and remains the same for around 2 s. The SSA detects
a change in power that satisfies the re-initialization condi-
tion and accordingly reacts to swiftly reach a new GMPP
(114.3 W) within 2.3 s. Relative to SSA, the GOA–, PSO–,
BOA– reaches the GMPP (113.9W) in 2.4 s (Fig. 15-(GOA)),
GMPP (114 W) in 2.9 s (Fig. 15-(PSO)), GMPP (112.6 W)
in 3.1 s (Fig. 15-(BOA)) and GWO–MPPT trapped in local
MPP (95.56 W) with steady-state oscillation at MPP point
(Fig. 15-(GWO)). An apparent oscillation can also be
observed during the tracking process (2 s – 4 s), as shown
in Fig. 15 for GOA–, PSO–, BOA–, GWO–MPPT. For HC,
it is trapped again at the local MPP (55.01 W) at 2.3 s
(Fig. 15(HC)).

At t = 4 s, another change in PSC occurs. The PS pattern
shifts from pattern C to pattern A. The SSA successfully
tracks the GMPP (176.9 W) in 4.2 s (Fig. 15-(SSA)). The
convergence speed for reaching the GMPP is around 0.2 s,
which is 0.42 s faster than that of the GOA algorithm.
GOA successfully tracks the GMPP (176.5 W) in 4.62 s
(Fig. 15-(GOA)). The SSA is 0.5 s faster than that of the PSO
algorithm. PSO successfully tracks the GMPP (176.5 W)
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FIGURE 12. Convergence characteristics of output power for 100 runs
(800 W/m2).

FIGURE 13. PV array configurations of tested patterns.

in 4.7 s (Fig. 15-(PSO)). BOA and GWO successfully track
the GMPP (176.4 W) in 4.56 s (Fig. 15-(BOA)) and the
GMPP (176.4 W) in 4.84 s (Fig. 15-(GWO)). The conver-
gence of SSA is 0.36 s and 0.64 s faster than BOA and
GWO, respectively. The HC algorithm trapped at the local
MPP (111.3 W). As shown in Fig. 15-(HC), high steady-state
oscillation is apparent near the MPP. The average maxi-
mum output power tracked versus the maximum number of

FIGURE 14. P-V curves of different partial shading patterns.

iterations for each method in 100 runs under PSCs are shown
in Fig. 16, Fig. 17, and Fig. 18.

According to the simulation results of (1) large step
changes in uniform irradiance conditions and (2) large step
changes in PSCs, the SSA achieves exceptional tracking per-
formance in terms of tracking accuracy, convergence speed,
and oscillation around the MPP. It outperforms GOA, PSO,
BOA, GWO, andHC in all tested criteria. Table 1 summarises
the tracking performances of SSA, PSO, GOA, GWO, BOA,
and HC under the tested conditions. The SSA achieves the
highest average tracking efficiency under uniform conditions
of 99.87%, followed by PSO, GOA, GWO, BOA, and HC
with 99.66%, 99.73%, 99.70%, 99.66%, and 99.06%, respec-
tively. For the large step changes in PSC, the average MPP
tracking efficiency of SSA is 99.87% followed by PSO,
GOA, GWO, BOA, and HC with 99.66%, 99.65%, 94.25%,
98.99%, and 63.91%, respectively.

The qualitative comparison in terms of periodic tuning,
tracking speed, convergence speed, sensed parameter, steady-
state oscillation, dynamic response, tracking accuracy, and
initial MPP tracking process are presented in Table 2. The
efficiency for MPPT is estimated by the trade-off between
LMPP and GMPP. A proper trade-off between these two
search processes can lead to a precise approximation of
GMPP position. If the optimization process focuses closely
on the local search process, then the MPPT achieves a high
converge speed but is likely to become trapped at the local
optima. Minimizing this probability calls for a large explo-
ration search coefficient, C1, for a global mode search. In the
proposed SSA, only one salp leader is utilized to balance the
local and global MPP search. By controlling the coefficient,
C1, the global MPP search coefficient gradually decreases as
the number of optimization iterations increases.

Relative to all metaheuristic algorithms and conventional
algorithms in Table 1 and Table 2, the proposed SSA can
easily track the real MPP in any environmental circumstance
by using a small particle population and exploiting the advan-
tages of bioinspired group behaviour. Another critical aspect
of dealing with the MPPT problem is the algorithm’s ability
to deal with dynamic environments. The initially formed pop-
ulation of the SSA is dispersed randomly in the search space.
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FIGURE 15. Tracking responses of SSA, GOA, PSO, BOA, GWO and HC during large step changes
in PSC.
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FIGURE 16. Convergence characteristics of output power for 100 runs
(Pattern B).

This feature enables the algorithm to explore in a larger area.
The SSA converges to an optimal solution with all particles
and leads to loss of diversity. However, the loss of diversity
is not tricky in static locations. While it is not acceptable in
a dynamic MPPT condition. It is necessary to identify the
GMPP whenever changes occur in atmospheric conditions.
To overcome this issue, the proposed SSA refreshes the
information via re-initialization to adapt to dynamic environ-
ments. With the proposed modifications, the proposed SSA
is envisioned to become one of the superior choices of MPPT
algorithms.

VI. EXPERIMENTAL VALIDATION
An experimental setup shown in Fig. 19 is developed to
validate the performance of the proposed SSA–MPPT algo-
rithm. The commercial PV array simulator by Chroma ATE
Inc. (Model: 62050H-600S) is employed to emulate the PV
arrays’ real characteristics. The PV simulator is connected
to a load via the 500 W DC-DC buck-boost converter. Its
component specifications are similar to the parameter spec-
ifications used in simulations. MOSFET and fast recovery
diode are utilized for power switching devices. The proposed
MPPT technique is implemented on the Texas Instruments
TMS320F28335 DSP controller. The programming is devel-
oped in a MATLAB/Simulink R© embedded coder platform

FIGURE 17. Convergence characteristics of output power for 100 runs
(Pattern C).

integratedwith Code Composer Studio (CCS) for a rapid soft-
ware development process. Similar to the simulation setup,
four series-connected PV modules (MSX-60 by SOLAREX)
are considered for the experimental work. The PV array
(MSX-60) has the following specifications: maximum power
(Pmax) = 59.85 W, voltage at MPP (Vmpp) = 17.1 V, current
at MPP (Impp) = 3.5 A, short circuit current (Isc) = 3.8A and
open-circuit voltage (Voc) = 21.8 V.
The proposed MPPT algorithm is tested under four differ-

ent scenarios: (1) under uniform irradiance, (2) under static
PS, (3) under step change between uniform irradiances, and
(4) under transitions between uniform irradiance and PSCs.
The maximum PV output power for 4 × 1 array at standard
test conditions (STC) is 240W.

For uniform test conditions, the level of irradiance starts
at 1000W/m2. It is then followed by a step-change in irradi-
ance where the irradiance level drops to 500W/m2. Finally,
the level of irradiance increases back to 800W/m2. Fig. 20
shows the waveforms of power, current, and voltage during
the MPP tracking process. The MPP tracking point with a
red dot represents the exact operating point of the system on
I-V and P-V curves. In the first condition, when irradiance
is at 1000W/m2, the real output power is 239.3 W. As can
be seen in Fig. 20 (a), the proposed algorithm successfully
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FIGURE 18. Convergence characteristics of output power for 100 runs
(Pattern A).

FIGURE 19. Laboratory prototype of the proposed MPPT system.

tracks the MPP at 239.1 W. The MPP tracking efficiency
of 99.95% is achieved. For the transition from condition 1
(1000W/m2) to condition 2 (500W/m2), the accuracy of salp
during MPP exploration is clearly demonstrated. It tracked
power is 120.1 W, where the PV array model output power is
120.3W. Thus, the tracking efficiency of 99.9% is achieved as
shown in Fig. 20(b). Fig. 20 (c) shows the transition between
condition 2 to condition 3. Again, high accuracy, fast-tracking
ability, and high convergence speed are proven. The MPP is

successfully tracked with 99.95% efficiency, as can be seen
in Fig. 20 (c).

Fig. 21 shows the waveform of PV power, current, and
voltage for experimental validation of the proposed method
under step change in PSCs. For PSC-Pattern B (condition 1),
as shown in Fig. 21, the GMPP is tracked at 136.0W, in which
the PV array model output power is 136.1 W. The MPP
tracking efficiency reached up to 99.96%, with low steady-
state oscillation around MPP as displayed in Fig. 21(a).
For the second condition (transition from pattern B to pat-
tern C), the proposed method successfully tracked the GMPP
at 113.6 W. The MPP tracking efficiency is 99.21%. Finally,
the last transition is from PSC-Pattern C to PSC-Pattern A.
The tracking efficiency ismaintained at around 99%, inwhich
the tracked power is 175.7 W. For all three conditions tested,
the tracking response of the proposed method exhibit excel-
lent performance. The tracking accuracy achieved more than
99% for all conditions tested with fast-tracking and conver-
gence speed.

For the third test, the proposed SSA’s performance is val-
idated for a transition from uniform condition (1000W/m2)
to PSC-Pattern C. The tracking response of voltage, cur-
rent, and power is shown in Fig. 22. The tracked power
at 1000W/m2 is 239.2 W, which corresponds to 99.96%
efficiency. As soon as the partial shading conditions occur
(PSC-Pattern C), the algorithm detects the significant vari-
ation in array power. The algorithm again sends the initial
particles to the converter. Fluctuations in the operating point
can be seen during the exploration stage. This is due to the
multimodal P-V landscape as illustrated in Fig. 22 (b). The
new global MPP is achieved in the third population and the
array power, voltage, and current are valued at 114W, 32.6 V,
and 3.5 A, respectively. Until the next change is able to satisfy
the threshold value in equation (6), the algorithm continues to
operate at this operating point.

Further tests are performed for 4 × 1 array with a maxi-
mum output power of 60 W at STC. Firstly, evaluation under
a static uniform condition test is done. The PV array is set
to 800W/m2 irradiance (Fig. 23). The tracking response is
shown in Fig. 24. The proposed SSA method accurately
tracks the GMPP (48.07 W). Moreover, the SSA tracks the
MPP in less than 500 ms with an efficiency of 99.92%. Under
PSC, the proposed SSA is verified for pattern 1 (Fig. 25)
(where the modules’ irradiances are 1,000, 800, 500, and
300 W/m2, respectively). Fig. 25 shows the I-V and P-V
curves for the PS test of condition 1. The tracking response
in Fig. 26 indicates that the proposed SSA successfully and
accurately finds the true GMPP (23.03 W) under PSC. The
tracking speed is less than 1.5 s, and the MPPT efficiency is
99.96% based on Equation (7).

The next experiment is conducted to assess the proposed
SSA performance during a step change in irradiance under
uniform irradiance conditions. During this test, the irradiance
remains at 800 W/m2 for 6 s and then falls to 700 W/m2.
Figs. 23 and 27 illustrate the I-V and P-V curves for both
conditions. The MPP tracking result in Fig. 28 shows that
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FIGURE 20. I-V and P-V curves under step change for uniform conditions.

FIGURE 21. I-V and P-V curves under step change for PSCs.

the proposed SSA successfully finds the GMPP (48.07 W)
within 0.3 s under a uniform condition at 800 W/m2. At the
transition from 800 W/m2 to 700 W/m2, the proposed SSA

swiftly reacts to the dynamic change in the environment
(step change in irradiance) and successfully reaches the
GMPP (42.18 W). The tracking time to reach the new
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TABLE 1. Tracking efficiencies of proposed SSA, conventional and metaheuristic method under large step changes.

FIGURE 22. I-V and P-V curves under uniform conditions to PSCs (Pattern C).

MPP is less than 0.5 s, and the tracked power efficiency
is 99.97%.

The final test is designed to validate the tracking perfor-
mance during extreme dynamic environmental conditions.
Initially, the I-V curve is uniform at 800 W/m2. After 10 s,
the condition changes to PS (I-V curve for pattern 2; see Fig.
29) and remains the same for 15 s before changing back to
the uniform condition at 700 W/m2. This test demonstrates
the tracking effectiveness of the proposed SSA (Fig. 30).

The results reveal that the proposed SSA achieves the cor-
rect MPPs in all conditions. For the first condition, the GMPP
(48.07W) is reachedwithin 0.2 s with an accuracy of 99.92%.
When PS occurs (pattern 2, Fig. 29), the algorithm detects
a change in power and initiates PS event checking based on
Equation 6. The algorithm then decides that PS occurs and

FIGURE 23. I-V and P-V curves under uniform conditions at irradiance
of 800 W/m2.

responds by reinitializing the search process. It randomly
scans the P-V curve and converges to the GMPP at 23.69 W.
The proposed SSA only takes 25 perturbations or around 0.5 s
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TABLE 2. Performance and qualitative comparison of proposed SSA, conventional and metaheuristic method.

FIGURE 24. Current and voltage tracking responses for the SSA under
static MPPT test (uniform condition at 800 W/m2).

to reach this point. After 15 s, uniform irradiance is restored
at an irradiance of 700 W/m2. Again, the algorithm detects a
change in power and decides to restart the searching process.
As the P-V curve only exhibits a single MPP, the algorithm
is able to converge at the MPP within 0.22 s. The tracking

FIGURE 25. I-V and P-V curves under PSC for pattern 1.

accuracy at this point is 99.97% (42.18W). The experimental
results show good agreement with the simulations. For all
the tested conditions, the MPP is achieved in a relatively
short time. Hence, the superiority of the proposed algorithm
is proved.
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FIGURE 26. Current and voltage tracking responses for the SSA during PS.

FIGURE 27. I-V and P-V curves under uniform conditions at an irradiance
of 700 W/m2.

VII. LIMITATION OF PROPOSED SSA
The main limitation of the proposed method and other
metaheuristic-based algorithms is their ability to deal with a
dynamic environment. The frequency of the environmental
changes highly influences the probability of achieving global
MPP. Thus, the algorithms that perform well on the static
optimization problem could probably fail or give unsatisfac-
tory results if they are directly implemented to deal with
dynamic environments. For the MPPT problem with a very
low frequency of irradiance changes, ample time is avail-
able for the algorithm to run and a considerable number of
iterations can occur before the change is encountered, hence
increasing the chance of those global optima being achieved.
Contrarily, for the high frequency of changes, where time
is the limitation, very few iterations can occur. Thus,
it reduces the probability of the GMPP to be reached by the
algorithm.

Another limitation of the proposed algorithm is the infor-
mation on the severity of change in fitness landscapes
(P-V curve) before and after the change has occurred is not
considered during the tracking process. As a result, the algo-
rithm has not used the information gathered from the previous
landscape and must re-initialize and restart the new MPP
search. This aspect could be improved if the pre-change
fitness landscape information can be re-utilized in the post-
change fitness landscape. For small changes that have low

FIGURE 28. Current and voltage tracking responses for SSA during
dynamic MPPT test (transition from 800 W/m2 to 700 W/m2).

FIGURE 29. I-V and P-V curves under PSC for pattern 2.

FIGURE 30. Current and voltage tracking responses for SSA under
transition from uniform condition (800 W/m2) to PSC (pattern 2) and
uniform condition (700 W/m2).

severity, the P-V curve transformation keeps the new MPP in
the vicinity of old GMPP locations. Therefore, the algorithm
can exploit the information from previous positions of MPP
to locate and achieve the new global MPP. If the changes are
small and ample information can be re-utilized, the algorithm
may recover from the change in a short span. By doing so,
the tracking performance, especially during a gradual change
in irradiance can be significantly improved.
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VIII. CONCLUSION
The SSA–MPPT technique is proposed in this work to
track the MPP of a PV system at various environmental
conditions. The proposed SSA can track the GMPP effi-
ciently under dynamic irradiance conditions, including PS.
The proposed algorithm’s key merits are its ability to deal
with dynamic MPPT problems with a straightforward struc-
ture and its only needs few steps to track the real MPP.
The results reveal that the proposed SSA outperforms HC
and other popular metaheuristics algorithms in all aspects,
particularly in terms of tracking speed and accuracy. The
simulation and hardware results also clarify the algorithm’s
superiority in terms of its average efficiency of around 99%
under various environmental conditions. The proposed algo-
rithm is expected to attract PV researchers and professionals
seeking an efficient PV system operation.
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