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ABSTRACT 1t is expected that peer to peer energy trading will constitute a significant share of research
in upcoming generation power systems due to the rising demand of energy in smart microgrids. How-
ever, the on-demand use of energy is considered a big challenge to achieve the optimal cost for house-
holds. This paper proposes a blockchain-based predictive energy trading platform to provide real-time
support, day-ahead controlling, and generation scheduling of distributed energy resources. The proposed
blockchain-based platform consists of two modules; blockchain-based energy trading and smart contract
enabled predictive analytics modules. The blockchain module allows peers with real-time energy consump-
tion monitoring, easy energy trading control, reward model, and unchangeable energy trading transaction
logs. The smart contract enabled predictive analytics module aims to build a prediction model based on
historical energy consumption data to predict short-term energy consumption. This paper uses real energy
consumption data acquired from the Jeju province energy department, the Republic of Korea. This study aims
to achieve optimal power flow and energy crowdsourcing, supporting energy trading among the consumer
and prosumer. Energy trading is based on day-ahead, real-time control, and scheduling of distributed energy
resources to meet the smart grid’s load demand. Moreover, we use data mining techniques to perform
time-series analysis to extract and analyze underlying patterns from the historical energy consumption data.
The time-series analysis supports energy management to devise better future decisions to plan and manage
energy resources effectively. To evaluate the proposed predictive model’s performance, we have used several
statistical measures, such as mean square error and root mean square error on various machine learning
models, namely recurrent neural networks and alike. Moreover, we also evaluate the blockchain platform’s
effectiveness through hyperledger calliper in terms of latency, throughput, and resource utilization. Based
on the experimental results, the proposed model is effectively used for energy crowdsourcing between the
prosumer and consumer to attain service quality.

INDEX TERMS Energy trading, energy prediction, predictive analysis, machine learning, blockchain.

I. INTRODUCTION

During the last few decades, the primary energy genera-
tion source is non-renewable energy resources, such as coal,
natural gas, and oil. Nonetheless, the non-renewable energy
sources are becoming costly over time and are difficult
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to fulfill the load demand of a large population [1], [2].
Similarly, the non-renewable energy resources are not eco-
friendly, which indicates that the energy generation process
produced high carbon emission [3]-[5]. Therefore, many
eco-friendly organizations have emphasized using renewable
energy sources (RES), such as solar, wind, tidal, biomass,
etc. RES are eco-friendly and are used for producing cheaper
energy with less transmission cost [6], [7]. Furthermore, RES
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is also used to contribute to the main grid to meet the grid load
demand. The evolution in renewable energy resources opens
the door for distributed Peer-to-Peer (P2P) energy trading,
such as home and buildings [8]. The P2P energy trading is
also referred to as trading between consumer and prosumer.
The peers can trade energy with each other without the inter-
vention of any traditional energy distributors, such as grid [9].

The smart grid innovation, such as Distributed Energy
Resources (DER) and microgrids, has to change energy gen-
eration and consumption in two aspects. Firstly, the addition
of a prosumer as a grid participant helps with energy contribu-
tion to main grid storage and provides grid decentralization.
Second, the modification in utility to service providers from
the power retailer, which aims to provide (renting) transmis-
sion line to the prosumer. The shifting of the traditional grid
to the smart grid requires a trusted energy platform, mathe-
matical model, distributed operations, and control algorithms
to facilitate stable grid functions, prosumer interaction, and
business model based on intensive [10]-[12].

Crowdsourcing is the large-scale set off for numerous
industries and has been implemented in many disciplines,
e.g., cyber-physical system, medicine, and engineering sys-
tem [13]. The main aim of crowdsourcing is to use crowds’
services and goods to attain system objectives [14], [15].
Crowdsourcing can also be applicable in the energy sector.
We have studied the most prominent crowdsourcing market,
i.e., Amazon Mechanical Turk, which facilitates customers to
pole their job along with expiry-date and financial rewards.
Similarly, the energy crowdsourcing system (ECS) is useful
for many scenarios, such as charging and discharging of the
battery, electric vehicle charging, meet energy demand(real-
time) via renewable energy resources, such as solar panel,
wind, and other DER [16]-[20]. These scenarios can be
automated by using smart plugs, inverters, and digital meters
with the involvement of a power distributor and blockchain
implementation.

The conversion in the continual energy system, where
prosumer is used for crowdsourcing and expedite in two ways

such as:
« A crowdsourcing based energy system that provides grid

stability via real-time management of the grid.

o A secure computerized framework (e.g., blockchain)
that supports millions of energy trading transactions,
such as prosumer to consumer or prosumer to the utility.

Most of the existing studies rely on optimal power flow,

which is used to estimate the optimal operational level for
a utility to meet the load demand by minimizing the cost
of operations [21], [22]. Moreover, blockchain technology
is also used by many researchers for providing data secu-
rity in the energy system. However, the energy system and
computerized framework have many shortcomings. Firstly,
the existing computerized framework is not scalable in sup-
porting millions of energy trading transactions. Second, there
is an ambiguity of how the trading between the peers took
place. Finally, how the prosumers and crowdsourcees can
adopt the controllable loads and DER. This research study
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attempted to address the issues mentioned earlier, and the
main contribution of this paper is followed as:

o The main aim of this study is to propose an intelligent
peer-to-peer energy trading between the prosumer and
the consumer.

o The proposed system comprised of smart contract
enabled real-time and day-ahead controlling and gener-
ation scheduling of DER, controllable loads in order to
meet the load demand of smart grid based on reward and
agreement.

o The proposed blockchain-enabled intelligent energy
trading platform is modeled and implemented using
a permission blockchain network called Hyperledger
Fabric, which allows the system admin to operate the
network, crowdsourcees to manage their accounts, and
perform energy transactions within the eco-system.

o The data analytics module is implemented based on data
mining techniques to extract the knowledge and hid-
den patterns important for energy distributors to devise
effective decisions and manage energy resources effec-
tively.

o The proposed energy predictive analytics module is
implemented based on machine learning techniques to
predict the short-term energy demand in order to min-
imize the delivery cost of electrical energy for con-
sumers.

The rest of the paper is formed as follows. Section 2
describes the start-of-art comparison of energy trading
platform based on blockchain and machine learning.
Section 3 presents the predictive peer-to-peer energy trading
based on blockchain, including an operational model of dis-
tributed energy resources, smart contract centric energy trad-
ing transaction, and reward model. Section 4 demonstrates the
implementation and development scenario. Section 5 presents
the results and discussion. Conclusion and future directions of
the proposed peer-to-peer energy trading platform are given
in Section 6.

Il. RELATED TERMINOLOGIES

Many studies focus on integrating the distributed energy
resources operation in distributed networks. The operation
includes economic dispatch problems, distributed energy
resources scheduling, grid frequency maintenance, and load
and renewable forecasts. Nowadays, the energy demand and
reward pave away the owner of distributed energy resources
to contribute to eco-friendly production.

A. ENERGY TRADING AND BLOCKCHAIN SYSTEMS

Blockchain is a distributed ledger technology that relies on
a consensus and communication protocol that safeguards
the ledger’s integrity through connected cryptographically
time-stamp block that represents transactions [23]-[29]. The
blockchain approach originates after the bitcoin invention,
which uses the Proof of Work (PoW) concept. The miner
incorporates transactions into tree-based blocks encrypted
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TABLE 1. Characteristic of blockchain with various component.

Platform Component Smart Contract Transactions  Network g;)gnosl?tllsll:lf Cryptocurrency {;(:lggl:;z:ling
Hyperledger Fabric gg?;ﬁ:)de written in anonymous Permissioned PBFT No Java/Node.js
Bitcoin None anonymous Permissionless ~ PoW Bitcoin C++
Ethereum Smart Contracts written public/private  Permissionless ~ PoW Ether C++

in Solidity

with predefined hash range [30]. Nonetheless, the PoW
approach using public ledger has too many shortcomings in
privacy, scalability, numbers of the transaction, and energy
consumption [31]. During the last few years, many new
blockchain technologies have been introduced in order to
overcome the shortcoming mentioned above. These technolo-
gies include privacy and permission mechanism, consensus
mechanism, and smart contracts [31], [32]. The details of

these technologies are mentioned below.
o Privacy and Permission Mechanism: The blockchain

system can be divided into a private and public
blockchain. The private blockchain is an invitation-only
network managed and administered by a set of reg-
istered participants. In permissioned blockchain, only
the registered parties can participate in the block cre-
ation, while in permissionless blockchain, anyone can
participate in the creation of block and consensus mech-
anism [33]. Therefore the permissionless blockchain
is less transparent, less anonymous, and less secure
as it depends on the participants’ integrity. Likewise,
the permissioned blockchain is more secure, high cus-
tomizability, better scalability, and enhanced access con-
trol mechanism [34], [35]. In other words, the private
blockchain is more efficient than the public blockchain;
therefore, in the presented system, we use Hyperledger
Fabric, a permissioned blockchain used for developing
blockchain-based application [33], [36].

« Consensus Mechanism: The consensus protocol is used
to provide consistency and integrity in blockchain and
assure the sequence of transactions across the distributed
nodes [37]. The existing consensus protocol, like PoW,
which is used by the bitcoin, consumes 47.1 ter-
aWatt/hour energy consumption per annual. Moreover,
the PoW consensus protocol has many shortcomings
in terms of numbers of a transaction, which minimize
the chance of using the system in a high-performance
environment [38]. Many new consensus protocols have
been developed during the last couple of years, e.g., PoS
(Proof of Stake) and Practical Byzantine Fault Toler-
ance (PBFT). Some of these consume more energy, and
some of them are used to reduce energy consumption.
In this work, we use PBFT, which is used to increase
the frequency of transactions between each shared and
eliminate the risk of blockchain centralization [39].
Furthermore, the PBFT minimizes energy consumption
by removing the hash energy to process the block in
blockchain [40].
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« Smart Contract: A smart contract is a type of computer
program which provide the functionality of self-
execution, self-verification, and tamper-resistant abili-
ties. Nick Szabo initially developed a smart Contract
in 1994. [41]. Smart Contract supports turing virtual
machine(VM) and protocol that allow nodes to execute
services based on the results of transaction processor
function and also provide the facility of sophisticated
logic [42]. Smart Contract integrated with offer an
efficient and secure platform for both the consumer and
prosumer to perform energy trading transaction [43].

Table 1 summarized the consensus protocol feature along
with the public and private blockchain platform.

B. MACHINE LEARNING IN MICROGRID
During the past several decades, many machine learning
algorithms have been proposed to discover and investigate the
massive amount of data’s hidden patterns and knowledge.
Nowadays, the enhancement in the machine learning algo-
rithm provides a way to discover hidden information from
the large volume of data to construct a predictive model to
drive a conclusion [44]-[46]. In every prediction system,
the important part is the prediction algorithm that influ-
ences the system’s prediction result and performance. Deep
neural network (DNN) is widely used in computer science,
energy management, speech recognition, computer vision,
etc. Several researchers use DNN to build a prediction model
using several algorithms like data mining and text mining to
enhance the system performance. The LSTM is a renowned
machine learning approach used to prediction, classifying,
and processing using time-series based data [47]-[49].
Utility companies and energy sector decision-makers have
claimed that blockchain can solve the challenges of the
energy sector. Nowadays, many energy trading platforms
integrated with blockchain have been introduced to solve
the energy sector problem while providing an eco-friendly
environment. The German Energy Agency [50] suggested
that the current blockchain technology have the potential to
enhance the efficiency of energy sectors and expedite the
research and development of IoT based application which
boosts the innovation in the P2P energy trading solutions.
Furthermore, blockchain technology also facilitates the usage
of energy trading by the utility companies and local residen-
tial consumer and prosumer, which improve customer costs
and services [2].
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In the energy trading market, the P2P network model
provides and manages consumers and supports the pro-
sumer, which improves traditional energy trading to a flex-
ible energy market. The author in [51], presented a P2P
network model that is used to enhance the energy market
efficiency. Furthermore, the distributed system also con-
tribute to improving the high rigor demand response sig-
nal [52], minimize cost, and boost speed [53]. The energy
system endures a transformational change provoked by the
upgrading of distributed energy resources and information
technology. One of the main challenges of the energy sys-
tem is digitization and decentralization, which requires the
adoption, consideration, and exploration of unique distributed
technologies. Blockchain provides a solution to manage
and control complex decentralized microgrids and energy
systems due to the inherent nature. Integrating consumer
participants, small-scale renewables, flexibility services, and
distributed generation in the energy sector is challenging. The
author in [50] discussed that blockchain technology provides
an innovative and secure energy trading system where the
consumer and the prosumer can trade surplus energy on
a P2P basis. The operating consumer record is stored in
tamper-proof, immutable, and transparent smart contracts.
The development of such an energy trading platform can
provide information on energy cost and price signals to the
consumer efficiently.

During the last few years, many blockchain-enabled energy
trading platforms have been introduced, which improve the
consensus mechanism, cost minimization, energy consump-
tion, and security of personal data. In [54], Brooklyn micro-
grid, the first blockchain-based energy trading platform, was
introduced by the exergy team in April 2016. Similarly,
in [55], Sunchain project is presented using Hyperledger Fab-
ric, which provides virtual network support for solar energy
and improves energy transactions at minimum cost. The Sun-
chain startup did not get success as few users involved in
sharing the surplus solar energy. The project traces the com-
plete trail of energy generation and sharing. In [56] author
presented the interoperable, transparent, and trustless energy
trading platform named Power ledger. The Power Ledger is
an Australian startup that supports token-based transactions
that provide users to receive real-time payment in exchange
for energy trading. In [57], the author presented a Pylon
network, an open-source P2P energy trading system that
complete store record of each energy transaction and provide
transparency and security while energy payment. SolarCoin
[58] a global incentive solution that provides rewards to
prosumers for selling surplus solar energy. The SolarCoin
foundation rewards solar energy producers one solar coin
for one megawatt/hour of energy. SolarCoin is open-source,
decentralized, and decoupled from any government organi-
zation. SolarCoin is based on blockchain that creates a P2P
network that allows energy trading across the distributed
global network. Grid Singularity is an open-source energy
trading platform that connects individuals to the marketplace
through smart contracts [59]. The author in [60], presented
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an NRGecoin, an open-source Belgium based energy trading
platform that uses individual renewable energy and pays
NRGCoin. The NRGcoin is a virtual crypto-currency and
easily convertible with euros. Table 3 summarized the com-
parison of the existing energy trading platforms.

IIl. LITERATURE REVIEW

The scientific community has produced various techniques
concerning optimization in microgrids and effectuate the
energy trading process. Optimization is the selection of the
best option from a set of available alternatives. Beside Energy
optimization is used in other field of sciences such as sustain-
able smart solutions [61]-[64]. An optimization model [65] is
presented to optimize energy trading between two microgrids
operating in islanded modes using a central controller. The
model meets the power demand for a microgrid and reduces
energy production costs. In a study [66], authors have intro-
duced an incentive-based renewable energy sharing technique
to meet load demands with surplus energy through which
energy is traded among multiple users in a simultaneous man-
ner. An optimal electricity price for energy trading is derived
using coalitional game [67]. The model results in balanced
revenue for small-scale energy producers and consumers. The
study [68] presents a cooperative distributed power gener-
ation and trading mechanism to enable multiple prosumers
for energy trading in a cost-efficient manner. Besides, various
ML [45], [69]-[73] and blockchain techniques can be proven
useful in solving prediction to optimization-related issues
for energy trading in smart grid [74]-[77]. The author in
[78] presented an approach to optimize microgrid based on
machine learning. The developed system forecasts the stan-
dalone microgrid’s security and energy demand. In another
study, a hybrid energy management system based on machine
learning, fuzzy logic, and multi-objective optimization using
linear programming. This system’s main purpose is to mini-
mize renewable energy’s operational cost while maximizing
the energy generation [79]. The author in [80], presented an
energy trading system on a vehicle to grid-based on edge
computing and blockchain. The efficient and secure trading
system is a two-stage model comprised of the Stackelberg
leader-follower game and backward induction approach. The
model is evaluated using numerical and theoretical anal-
ysis. In [81], the industrial internet of thing (IloT) based
blockchain-enabled energy trading is presented known as
FeneChain. The FeneChain is a secure energy trading plat-
form based on industry 4.0, which improves and manages
energy management in buildings. The following table reca-
pitulates the pros and cons of the state-of-the-art in microgrid
energy trading.

IV. INTELLIGENT PEER-TO-PEER ENERGY TRADING

A. CONCEPTUAL SCENARIO OF INTELLIGENT ENERGY
TRADING

Figure 1 presents the model of an intelligent peer-to-peer
energy trading platform based on blockchain. The smart
contract-enabled intelligent energy trading consists of two
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TABLE 2. Comparison of energy trading platform.

Platform Privacy Pricing Consensus Crypto- Data Storage Access Polic Mining
Protection = Mechanism Mechanism  Currency Protection y Required
Permissionless/
NRGcoin [60] No Yes PoW/PoS Yes No Consortium Yes
blockchain
Sunchain [55] Yes No PoW No No Permissionless
blockchain
Permissionless/
GridSingularity [59]  Yes No PoA Yes Yes Consortium Yes
blockchain
Permissionless
Exergy [54] Yes Yes PoS Yes No blockchain Yes
SolarCoin [58] No Yes PoS Yes No Permlssu_mless Yes
blockchain
Pylon network [57] Yes Yes PoW Yes No Perrmssm_ned Yes
blockchain
Permissionless/
Power Ledger [56] No Yes PoW/PoS Yes No Consortium Yes
blockchain
Permissioned
Proposed System Yes No PBFT No Yes blockchain No
TABLE 3. Critical analysis of machine learning based blockchain-enabled energy trading platform.
Approach  Optimization Technique  Trading model Type Pros Cons
Optimization method
adopted to meet demand
and response is centrally The authors have not focused on
(65] Centrally controlled tE)lnergy Tradmg ) controlled and rgllance issues like uncertainty )
etween two microgrids on a central entity in energy production and privacy.
leads to stability Limited to only two microgrids.
between connected
microgrids.
The technique adopts two
optimization methods
. . (centrally controlled and . . .
Centrally controlled and Connection of multiple ) . . . The issues like energy production
[66] . . . . . incentive-driven) which I
incentive driven users to a same microgrid b . L. . uncertainty is not focused
eneficiates in improving
accuracy. Also, privacy among
the connection is also maintained.
Centrally controlled and Trading among local The employed game—thcorenc Issues like privacy, energy production
[67] . model leads to an efficiency of .
game theoretic consumers and prosumers S uncertainty have not been focused.
optimization model.
E . Mutual benefit is a k«;y Similar to [67], issues like privacy,
. nergy Trading between concern for cooperative . .
[68] Cooperative RS energy production uncertainty
a group of prosumers optimization models that
) . are not been focused on.
cause model stability.
Privacy is ensured and adopted
Game theoretic and Energy Trading multileader multl_fouower Uncertainty of energy production
[82] . . Stackelberg game improves .
centrally controlled between microgrids is overlooked.
the performance of
optimization models.
The model addresses the
(83] Game theoretic Energy trading between multiple  issue of uncertainty of The privacy issue has not

prosumers and a single consumer

energy trading between
microgrids

been addressed.

distinct modules, i.e., real-time and day-ahead energy trading
based on pre-processed data and short-term energy predic-
tion. Each node of the proposed platform is used to store and
process energy trading data. In this study, we have considered
solar energy generation (PV), dispatchable load (e.g., ESS),
and shapeable load(e.g., electric vehicle). The energy con-
sumption data from these sources are analyzed using different
machine learning and data mining approaches to discover the
useful time-series pattern and hidden knowledge from the
data to meet future energy demand. The pre-processed data is
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used for real-time and day-ahead controlling and scheduling
of distributed energy resources. Moreover, the discovered
time-series features, such as hourly, daily, weekly, yearly, and
seasonally, are used to predict the short-term energy demand
using machine learning models. Every transaction between
the nodes that act as prosumers and consumers is stored in
the state database in the form of an Energy trading transaction
(ETT). The participants, such as prosumer, consumer, and
utility operator, can interact with the system through the
client application, which is used for secure energy trading.
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FIGURE 1. Intelligent energy trading platform conceptual scenario.

The communication between the blockchain network and the
client application is established through the RESTFul API,
which used the HTTP protocol to handle user requests.

B. INTERACTION MODEL FOR INTELLIGENT ENERGY
TRADING

The proposed blockchain-based intelligent energy trading
workflow is presented in Figure 2. The designed system com-
prises technical infrastructure that consumes the distributed
ledger technology(DLT) and smart contract as a service to the
blockchain through a user service framework. The intelligent
energy trading platform contains a set of peers or nodes as
illustrated in Figure 1, where each peer maintains the ledger
copy to sustain the consistency of the distributed ledger tech-
nology. The distributed ledger (DL) is responsible for storing
the immutable energy trading transactions into the chain of
blocks. In contrast, the proposed system data lake main-
tains and store the information related to distributed energy
sources, system participants, and energy trading transactions.
The blockchain network store and keep all the modification
arise in the data lake. The data lake is considered as an
off-chain database that maintains the data related to energy
trading transactions and is also used for the data analytics
model. Moreover, the proposed system also provides the
functionality RESTfull API in order to provide the back-end
services to the front-end energy trading client application.
Each participant must be enrolled using the identity manager
before committing the blockchain network’s energy trading
transaction. Similarly, the participants, like prosumer, con-
sumer, and utility, can submit the energy trading transaction
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by retrieving surplus energy from energy sources. Afterward,
the energy consumption data is analyzed and used in an
intelligent smart contract in order to perform real-time and
day-ahead energy trading. Similarly, the analyzed data is also
used by a machine learning model to predict future energy
demand. Each energy trading transaction data is stored in
the blockchain. The notification is sent to the respective user
upon the successful energy trading transaction.

C. BLOCKCHAIN MODEL FOR INTELLIGENT ENERGY
TRADING

The proposed blockchain-enabled predictive energy trading
platform is a modular architecture where each layer is inde-
pendent of other layers so that the developer can easily mod-
ify existing components or new components without changes
the rest of the system. The distribution grid network model
consists of various distributed energy resources, e.g., solar
energy and dispatchable loads connected via a bus trans-
mission line. Each node in the grid distributed network is
equipped with distributed energy resources such as shapeable
loads, dispatchable loads, and solar energy with the ability
to generate and consume energy. Finally, each bus is used
to connect the grid with a node in order to consume and
transmit energy. The blockchain-based energy trading service
layer provides several features of blockchain such as identity
management, API Interface, distributed ledger, P2P com-
munication, and consensus manager. The distributed ledger
comprises synchronized, shared and replicated digital data
distributed across the blockchain network where all the net-
work participant maintains their ledger replica. Furthermore,
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FIGURE 2. System workflow of the intelligent blockchain based energy trading platform.

the distributed ledger also provides secure data storage capa-
bility to store microgrid configuration and energy consump-
tion and generation between the consumer and prosumer. Any
modification in the ledger is reflected in all the replicas in a
minute or seconds. The blockchain’s ledger can be permis-
sionless or permissioned, concerning anyone or an approved
network member who can run a peer and validate the trans-
action. The smart contract is a chaincode triggered by the
client application to perform defined operations. We defined
several transaction processor functions such as the Real-time
reward model and Day-ahead scheduling, to name a few. The
smart contract is initiated and install on every peer within
the blockchain network. The application programming inter-
face is used to visualize the back-end blockchain services
managed and accessed through a client application. Simi-
larly, the application layer provides the services to render the
services-oriented data from the distributed network model.
Lastly, the system’s users are prosumer, consumer, and utility
operators responsible for selling, buying, and managing the
distributed energy resources. The prosumer in the proposed
system aims to sell the distributed energy resources to the
utility or consumer. Similarly, the consumer is the one who
consumes the energy, whereas the utility operator is responsi-
ble for managing the distributed energy resources of the user
based on mutual consensus. The layered architecture of the
proposed system is presented in Figure 3.
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We have used a single feeder based on a radial distribution
network linked with utility-scale renewable and traditional
generation in a blockchain-based predictive energy trading
platform. We consider a scenario where crowdsourcees are
connected at the feeder level with n-buses modeled as tree
graph structure (Ty, Tr). The T, is the set of nodes connected
on the lines 7;, C (Tn)z. The T, in the radial distribution
network can be defined as 7,,= {U, U L, U C,}, where U,
denotes utility-scale power generation attached to the feeder;
C, which connects with buses containing user who agree for
energy crowdsourcing. L, denotes load on buses.

The crowdsourcer is the residential building or house
equipped with distributed energy resources like PV, WT, and
ESS. The crowdsourcer in C, also act as a participant in the
proposed system which is of two types, i.e., CType;, CTypes.
CType; are the user responsible for committing a day-ahead
market (weekly or monthly) according to the plan assigned by
the grid operator. The grid/operator, in return, provides ben-
efits in terms of bill discounts or social-economic incentives.
Similarly, CType, users are responsible for committing a
real-time decision and notification based on the task assigned
by the operator/grid, e.g., charging and discharging of electric
vehicle based on the location of the user and grid physi-
cal state. In other words, the CType; users contribute with
the day-ahead policies as per the grid/operator suggestion,
whereas CType; is aimed to provide real-time support. The
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FIGURE 3. Block diagram of energy trading and distribution network model based on blockchain.

proposed blockchain-based radial distribution network model
is presented in Figure 3.

The proposed system also support energy trading trans-
action and is of two types, i.e., ETp.1 and ET7pyp.o. The
ETryper is used solely between the crowdsourcees (CType;
and CType;) and the grid. In ETrype) transaction, the crowd-
sourcees act as prosumer and feed the utility/grid with the
power generated from the distributed energy resources. Like-
wise ETrpeo is only committed between the CType; users.
In ETrype transaction, the user CType; can trade energy
with each other generated from distributed energy resources.
The flow of transaction, according to the crowdsourcees, are
shown in Figure 4.

D. OPERATIONAL MODEL OF DISTRIBUTED ENERGY
RESOURCES

In the proposed system, we consider a scenario in which
energy is generated from multiple sources, e.g., energy
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storage system, dispatchable, and non-dispatchable gen-
eration. The dispatchable energy generation is generated
by the grid/utility to meet the energy load demand.
In contrast, non-dispatchable energy generation includes
renewable energy sources like wind power and solar
power.

1) SOLAR ENERGY GENERATION

In this article, we consider only solar power as a
non-dispatchable energy source. Let assume that index
€ T, represents the distribution system and the time
period is denoted by t. The solar power generation is for-
mulated as Sf:gevx’t for bus index € C, at time t. The
CType, crowdsourcees feed the S{::;lv:x,z into the grid, but
the controlled authority only lies with the grid. Likewise,
the CType, crowdsourcees have the choice to feed the
SP?" to grid or sell or trade it locally with other CTypes

index,t
crowdsourcees.
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FIGURE 4. Energy trading transactions types.

2) DISPATCHABLE LOADS

The dispatchable loads are the batteries that are used to with-
draw or inject energy. The output of the battery is formulated
as Bmdex ; Where index € C,. The Bm dex,; €N be positive or
negative, which implies the power is injecting or withdrawn
from the battery. The operational model of the battery can be
expressed as

Ettiec.s = Ettier.i -1 + Bl ki ~ DBinden.t. K (D
Binder.: = PBldexs = CBingex.s @
0= DBi)naav";x t = Bf):dv:x t,rel 3

0 =< CBiers = Blindex t.inj @
Enbovmin < B0 < pppowmar )

In the above model, the En‘l”n dex.; Tepresents the battery’s
energy at time t. K, and K, denotes the efficient con-
stant of the charging and discharging of the battery. The
DBY?”  and CB.’ is the discharging and charging of

index,t mdex t
battery. The net power BY’,  is calculated by subtracting
POW

index,t
the battery discharging and charging power. The B; ;. ; o/
and BY?) is the discharging and charging limitation
power of the battery. In the designed system, we modeled the

index,t,inj
dispatchable load into a single vector variable as mo ;ZX ;o
pow ow POW DOW ’
mdex t’ ni)ndex t? DB index,t> CB index,t*

3) SHAPEABLE LOADS

In the proposed system, we consider the shapeable load as
an electric vehicle that takes fixed power input 24 hours. The
shapeable load can be formulated as

index,t + lena'ex t (6)

where index € L, which implies load on bus. The electric
vehicle is defined with constant energy demand Enm dex.dem
for 1 day. The Pingex + iXindex 1S the power flow in the bus
index to index,. Furthermore the electric vehicle must be
contented between start and end time represented as fingex s

3 =P

index,t —
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and fipdex . ena respectively. The electric vehicle model can be
defined as

Z index, t (7)

mdex dem —
Vindex,t = fO}’l =0, 1, ..., lindex,st» tindex,end» - - - » L~ (8)
s,min s §,max
Vindex = Vina’ex,t = Vindex (9)

where the time-horizon length is denoted by t, At denotes
time interval. we modeled shapeable load into single vector
that can be represented as Q7 ;.. , = Viyger -

The net power injection for every bus index at time inter-
val t can be formulated as presented in Equation 10. Let
assume that for every buses in the network we defined Q; =
(Qdex.t» Dnder.o )i @ @ vector variable which is used to con-
trol variables related to shapeable loads and batteries. For
crowdsourcees CType; and CType; we divide the controlling
vector Q; into Qg for CTypey and Q, for CType,. Likewise

for solar energy S i d ex, We defined R variable.

PI index,t = Spow + Bpow ; (10)

index,t index,t — ' index,t

In the proposed system, the crowdsourcees configuration
and desire parameter, e.g., eagerness to sell energy, criterion
relevant to load, batteries, and solar panel are disseminate
with the utility/operator.

E. SMART CONTRACT CENTRIC ENERGY TRADING
TRANSACTION AND REWARDS DESIGN MODEL

This section discussed different types of energy trading
transactions and defined a reward mechanism that urges the
crowdsourcees to participate in the design platform. The
proposed system comprised of two energy trading transac-
tion, i.e., ETrype1 and ETrype. These types of transactions
are committed between the crowdsourcees and the utility.
Furthermore, the design system supports P2P energy trading
between the prosumer and the consumer and prosumer and
the utility, while awarded crowdsourcees with an incentive so
that they can contribute to the energy trading eco-system. The
proposed system supports two types of algorithms for crowd-
sourcees, i.e., day-ahead scheduling and real-time reward
model. In day-ahead scheduling, we consider the energy
load demand, solar energy forecast, and crowdsourcees
day-ahead energy trading transaction scheduling. Similarly,
in the real-time reward model, the CType; users get rewarded
by selling the surplus energy either to the grid or other CTypes
users in order to full their load demand. The details of these
two algorithms along with users and transaction type are
presented in Table 4.

1) DAY-AHEAD ENERGY SCHEDULING

In day-ahead scheduling, the distributed energy resources of
CType; users’ is controlled by the utility as per the agreement
signed on the mutual concern. Similarly, the CType, has a
choice to participate or not in the crowdsourcing process
based on the offered rewards. The CType, can trade the
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TABLE 4. Energy trading transaction types along with corresponding user and algorithm.

Transaction Type  Seller Buyer Cost Algorithm

ETType1 CType;  Utility Agreement Day-ahead scheduling
ETrype1 CTypey  Utility Reward Real-time reward model
ETrype2 CTypes  CTypezx  Mutual Concern  Day-ahead scheduling

surplus solar energy either to the utility or other CType;
users if the offered reward is sufficient in the hour-ahead or
real-time markets. Furthermore, for CType; users, the out-
put energy from dispatchable loads Bf; dtx , and solar energy
Sﬁ'g:xy ; Where index € CTjpe; are not managed by the utility.
Therefore, if CType; made decision to not to trade energy
with other CType; users as mentioned in ET7yp> then these
parameter are set to zero in (10) as presented in (11).

pOW  __ HpOW

index,t — Bindex,t

= 0, index € CType, (11)

In other cases, the seller and buyer can trade energy
based on the energy supply-demand request. The energy
trading request for CType, users can be expressed as
EnergyTradingTransaction(Qa, R).

2) REAL-TIME REWARD MODEL

In the real-time reward model, the CType; users are rewarded
whenever the surplus solar energy is trade to meet the grid’s
energy demand load. In this model, the real-time energy ser-
vices are provided like charging electric vehicle and real-time
energy trading, which is used to meet the real-time load
demand using surplus solar energy. In exchange for these
services, the crowdsourcees will get rewarded based on the
amount of energy unit. The amount of energy trade in terms
of net power can be computed as

net _ SPOW _ pS
index,t — Mindex,t index,t

+ BpOW

index,t’

index € CType; (12)

In (12), the shape load that consumes energy can be
reduced from the surplus solar energy afterward; the com-
puted net power can be used to trade either to CType, users
or grid. If the (P?,fﬂ’,ex , < 0) then the crowdsourcees has no
energy to sell at time interval t. Similarly if the (P;‘,fé et > 0)
then the crowdsourcees have surplus solar energy to trade
either with grid or other CType; users.

V. ENERGY TRADING ANALYTIC MODEL

This study introduces an integrated operational model of
blockchain-enabled intelligent energy trading platform that
contemplate an immense domain of distributed energy
resources, energy trading transaction, and several types of
crowdsourcees in a distributed network. The main aim is
blockchain-enabled secure energy trading based on energy
crowdsourcing between the prosumer and the consumer and
intelligent energy model to predict energy utilization to meet
short term energy demand. In other words, the proposed sys-
tem is divided into two modules, the secure blockchain-based
P2P energy trading and intelligent energy prediction model to
fulfill energy demand in a distributed network.
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A. SMART CONTRACT ENABLED PREDICTIVE ANALYTICS
MODEL FOR ENERGY TRADING

The proposed approach is evaluated using real-time data from
smart grid institute Jeju, South Korea. The dataset contains
time-series energy consumption(MW) data. The dataset con-
sists of 116,189 energy consumption records from the time
period of 2002 to 2018. The proposed energy data analytics
model consists of an input layer, energy data pre-processing,
energy predictive analysis, performance analysis, and valida-
tion layer, as shown in Figure 5.

First, the data is prepared for the analysis models; the
final dataset contains two features: time(hr) and energy con-
sumption. The raw data is transformed into reliable data
using different data pre-processing techniques and statistical
measures. In the start, all redundant records from the energy
consumption dataset are identified and removed. Hence this
reduces dataset size and also the computation cost of data
analysis. Similarly, the tuples with the missing values are
also removed from the dataset. The missing values represent
that the energy consumption tuples don’t have date-time
or energy consumption data for the specific record. The
time-series attribute, which represents the time and date of
the energy consumption data, is used to extract the underlying
time-series hidden patterns to predict the short term energy
prediction. The short-term and long-term analysis enable to
plan and minimize the cost of delivering electrical energy
for consumer and thus is significant to economize power
engineering. Furthermore, accurate electricity consumption
prediction is essential for policymakers to formulate electric-
ity supply policies such as meet load demand.

The next layer is the energy data analysis layer, which
uses descriptive data analysis methods to find hidden patterns
from the pre-processed dataset. The extracted features using
descriptive analysis can effectively enhance machine learning
models’ training process for short-term and long term energy
prediction. Time-series pattern discovered using descriptive
analysis is short-term energy analysis such as hourly and
daily energy consumption and long-term energy analysis such
as weekly, monthly, yearly, and seasonally. These extracted
features are used as input to the proposed predictive analy-
sis models. Descriptive and predictive analysis will enable
accurate prediction to minimize the cost of delivering elec-
trical energy for the consumer. We proposed Bi-directional
Long Short Term Memory (Bi-directional LSTM) predict
the short and long term energy prediction in a predictive
analysis approach. A Bidirectional LSTM consists of two
LSTMs: one for input in a forward direction and the backward
direction. LSTM is a type of RNN that recognizes value
after a random layoff. LSTM is useful to process, classify,
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FIGURE 5. Proposed model of the blockchain-based predictive energy trading.

and predict the time-series energy data. Every node specifies
the neuron of an individual time step. Every block in LSTM
contains self-connected solo or multiple memory cells and
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multiplicative entities, such as input and output gates. These
layers present continuous analog of reading, write, and reset
transactions for the memory cell. Similarly, the RNN training
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FIGURE 6. Predictive energy trading platform implementation and use-case deployment.

process consists of a forward and backward pass. The RNN
forward pass is similar to multi-layer perception with a solo
layer. Likewise, the backward pass is the same as propagation
through time which is used to compute weight derivative for
RNN.

The final layer is the energy prediction performance mea-
sure, as the problem discussed in this paper is a regres-
sion problem. Therefore, we will evaluate the proposed time
series-based prediction models in terms of R2 score, Mean
square error, mean absolute error, and root means square
error.

VI. IMPLEMENTATION ENVIRONMENT OF THE
INTELLIGENT ENERGY TRADING PLATFORM

Figure 6 presents the case study’s development environment
for the proposed blockchain-enabled predictive energy trad-
ing platform and shows the link between the distributed
grid network and the blockchain network. The distributed
grid network consists of distributed energy resources used
to buy and sell surplus solar energy. In the design sys-
tem, we use Hyperledger Fabric, an open-source framework,
to develop a blockchain-based application. The predictive
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energy trading blockchain network consists of four peers,
an orderer node running as an image in the container. Each
peer in the blockchain network consists of data storage and
smart contract to record the transaction block to the ledger.
We have used CouchDB, which acts as a state database, and
support enriches queries used to retrieved customized data
from the database. The data record in the state database is
in key-value format, and the datatype is JavaScript Object
Notation (JSON). Furthermore, the composer-rest-server is
used to generate the RESTful API that exposes the distributed
grid network services like real-time reward model, day-ahead
scheduling, to name of a few, to the client application through
client SDK. The blockchain is based on distributed ledger
technology, where each block in the network is cryptographi-
cally secured to form a block sequence of transactions. Prac-
tical Byzantine Fault Tolerance (PBFT) is installed on the
orderer node to maintain the ledger consistency. Moreover,
the orderer node runs independently of the peer process and
arranges the transaction in FCFS( first come, first serve) order
across the entire blockchain network. Finally, the system user
gets a notification from the blockchain network in case of the
transaction response.
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TABLE 5. Smart Contract modeling for predictive energy trading platform.

Type Component Description
Energy asset is used for trading of energy data from utility to
Energy consumer and prosumer. We define two types of energy solar
and utility.
The reward is the asset used as incentive in exchange of
Assets Reward - .
energy while trading.
SolarEnergy Solar energy is the energy generate from solar panel.
EnergyStorage The energy storage system (ESS) is an asset used for storing
energy.
. The energy trading represents the energy trading record of
EnergyTrading each user that are equipped with solar panel.
Utility The utility is the source of energy generation that records the

information of grid utility.

Utility Operator

The utility operator is responsible for selling energy to
prosumer and consumer.

Participant Prosumer is the person who generate energy and sell to consumer
Prosumer o
and utility.
Consumer Consumer is the person who consumed energy from the grid and utility.
EnergyToReward  Convert energy into rewards based on per Unit price ($).
Transaction CTypel can sell the surplus solar energy to utility based on the agreement.
ETrype1 CType2 users can sell the surplus energy to utility in real-time based on
reward model.
ET CType2 users can only sell surplus solar energy to CType2 users to meet
Type2 the demand load.

A. SMART CONTRACT MODELING OF PREDICTIVE
ENERGY TRADING PLATFORM

The smart contract in the designed system is implemented
using an open-source framework and toolset to facilitate the
development of the blockchain applications. The smart con-
tract is model as Business Network Archive (.bna), which
comprises assets, participants, transaction processor function,
access control rules, and query definition. The assets are
services, goods, or property, which are the smart contract
and modified based on the defined transactions. Participants
can also interact with assets that are directly linked with
task and identity across the entire blockchain network. The
participants can perform a particular operation like create,
delete, update, and reading on assets to perform user-specific
tasks. We define multiple assets like solar energy, shapeable
loads, dispatchable loads, utility, ESS, reward, and energy,
to name a few used to perform a specific task in the proposed
system. Like assets, participants are also defined in the smart
contract as a part of a business network whose responsibil-
ity is to submit transactions and interact with assets. The
prosumer, consumer, and utility operator are the participant
defined in the blockchain network. The transaction processor
function specifies logical actions performed on the assets
defined as a part of a smart contract. In the proposed system,
we develop a transaction processor function in JavaScript
language. In the design system, we defined multiple transac-
tion functions that include, but are not limited to, a real-time
reward model, day-ahead scheduling, energy trading, and
transfer rewards. In the real-time reward model, the CType;
participants sell the surplus solar energy to other participants
types(i.e., utility and CType,) in exchange for rewards. In a
smart contract, we defined an access control rule in order to
provide authorization and authentication to the user of the
system within the blockchain network. Each participant in
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the specified network has the privilege to access certain types
of resources across the entire blockchain network. Lastly,
queries are written in a bespoke language as a separate file in
the smart contract. The queries are used to fetch customized
data based on the user-defined operation from the world state
database. Table 5, summarized the types and definition of the
assets, participants, and transaction processor function.

In this work, we use Hyperledger Composer to create a
smart contract(.bna) which is further used in developing the
representational state transfer application program interface
RESTful APIL. The composer-rest-server is used to generate
the platform-independent RESTful API and provide interop-
erability between the platform worldwide. In the presented
system, the RESTful API is used to connect the client appli-
cation, and the blockchain back-end service like energy trad-
ing, scheduling, and managing distributed energy resources,
to name a few. Generally, the RESTful API is comprised of
three-part, i.e., resource, verb, and action. The resource is the
HTTP request, while verbs execute a singular resource, like,
PUT, POST, GET, and DELETE. The RESTful API works
based on HTTP based protocol where the request header
consists of the following parameters such as media type,
verb, and base URI. The media type represents the transition
state element, e.g., Application/JSON. In contrast, the URI
determines the path of the data request, e.g., a POST request
to the resource like /api/EnergyTrading will update
the assets in the registry in the encrypted form. Table 6,
summarized the RESTful API used in the proposed system.

B. TRANSACTION PROCESS OF PREDICTIVE ENERGY
TRADING PLATFORM

The energy trading platform aims to enable monitoring, man-
aging, originating, and trading distributed energy resources
in a decentralized manner. Hyperledger Fabric blockchain is

39205



IEEE Access

F. Jamil et al.: Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning

Prosumer Blockchain ESS Consumer

T T T T

I I I I

I I I I

I Sell energy S | : :

I i I I

| transaction :—I | |

: Record transaction in blockchain : :

I I I

I I I I

| K Acknowledgement —: : :
r€—Generate solar energy—— I I I
l—l I I I I
I I I I I
Collect Solar Energy : : : :
I I I I

I | | |

Sltore energy in ESS t »l_l :

| i< Acknowledgement —| |

K Acknowledgement — Initiate !

: :_I energy trlansactlon :

: Record the tx in block : :

I

I I I

: : ! Transfer energy_ | !

! Energy transfer ! : !

successful ! . __ _Recieve energy transaction _ __

o

1.Retrieve energy Info |
2. Convert consumed energy into coins I

Convert cash into coins

< Acknowledgement—]

| acknowledgement
I

! |
Initiate
| billing Request
| ! |
IN—Transfer energy payment————
|

1

. A R

I
I
I
I
I
}— — — — ‘Acknowledgement— — —

|
|
>
|
|

FIGURE 7. Execution process for the predictive energy trading platform between Prosumer to Consumer.

used to streamline the distribution, tracking, and trading of
energy. The smart contract automates the processes without
third-party intervention. The residential can either be the
prosumer who produces the energy or the consumer who
purchases the energy. The execution process between CTypes
users of the proposed predictive energy trading platform is
presented in Figure 7.

In this transaction ET7yp.2, the CTypes users are divided
into two types, i.e., prosumer and consumer. Prosumer moni-
tors the energy status collected from the solar panel. Prosumer
invoked energy transactions to record the amount of energy
from the solar panel into the blockchain and stored it in the
energy storage system (ESS). The user sells the energy stored
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in the ESS based on mutual concern. The consumer can get
available energy on the market by sending a query request to
the blockchain. To purchase the energy, the consumer invokes
the energy purchase transaction, and the ESS transfers the
corresponding energy to the consumer. Once the required
energy is successfully transferred to the consumer, the reward
model will be initiated by the smart contract. The smart
contract converts the required energy into coins. Afterward,
the payment is sent to the prosumer account and also notified
both prosumer and consumer.

In prosumer to Utility energy transaction E77yp,1, the util-
ity request the energy demand to meet the load demand. The
system will notify the prosumer to start an energy trading
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TABLE 6. RESTful API for blockchain-enabled predictive energy trading
platform.

Operation Action URI
ESS Management All /api/ESS
Prosumer Management All /api/Prosumer
Consumer Management All /api/Consumer
Utility Management All /api/Utility
Solar Energy Management All /api/SolarEnergy
Moneypool All /api/Moneypool
Real-time Reward Model Get,Post  /api/RealTimeReward
Day-ahead Scheduling Get,Post  /api/DayScheduling

Blockchain Network Text Get /api/system/ping

Identity Issue of participant ~ Post /api/Systemldentities/issue
Retrieve Identities Get /api/System/identities
Fetch historian records Get /api/System/historian

process. The surplus solar energy will be transferred to the
utility in exchange for reward based on mutual concern and
agreement. The surplus solar energy is stored in the ESS
using the blockchain platform. On a successful transaction,
the notification is sent to every participant of the system. The
energy is converted into a reward based on the per-unit price.
Afterward, the reward is transferred to the prosumer money
pool, and an acknowledgment is sent to the prosumer and
utility.

VIl. DEVELOPMENT ENVIRONMENT

The tool and technologies used in the proposed intelli-
gent energy trading blockchain platform are summarized
in Table 7. The proposed system development environment is
segregated into two parts, i.e., the intelligent energy trading
blockchain network and the front-end client application.
In the back-end blockchain network, we have used the Intel
central processing unit with 3.0 GHz computation power.
Similarly, the operation used is Ubuntu Linux 18.04 LTS
with the run-time support of docker composer and engine.
The docker composer is used to configure the docker con-
tainer and docker image in the Ubuntu operating system.
Furthermore, Hyperledger Fabric V — 1.2 is used to develop
a blockchain network, which supports intelligent smart con-
tract construction. The smart contract is furthered managed
using the administrator’s command-line tool to deploy the
proposed intelligent energy trading chaincode. Likewise,
the participant uses the front-end intelligent energy trad-
ing application, like consumer, prosumer, and utility oper-
ator, to consume the back-end blockchain services, such
as secure energy trading, energy prediction, and energy
reward/incentive model. The web application is implemented
using multiple programming languages, such as HTML,
CSS, JavaScript, and Node.js and the JQuery, Notify.js, and
Bootstrap library.

The blockchain-enabled intelligent energy trading
web-interface is presented in Figure 8. The proposed sys-
tem prototype is implemented using the Hyperledger Fabric
framework. The developed interface provides the functionally
of complete CRUD operation on Prosumer, Consumer, and
Utility operator. Moreover, the Records dashboard shows
the energy trading record and the renaming energy and energy
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FIGURE 8. Web application for intelligent energy trading blockchain
platform.

coins. The proposed model support two types of energy trad-
ing transaction, i.e., ETrype1 and ETgyp.2 Which is also shown
with Type-1 and Type-2 transaction along with consumer and
prosumer details. The dashboard also provides the energy
prediction functionality that uses the computed features to
predict the future energy load and demand. Finally, the update
button fetches the updated energy trading transaction records
through the RESTful APL

VIIl. RESULTS AND DISCUSSION

A. DESCRIPTIVE ANALYTICS

Descriptive analysis is used to process the data and convert
it into meaningful knowledge. In contrast, the energy load
dataset is used to predict short-term energy load prediction.
In the proposed descriptive analytics model, we have col-
lected the Jeju, South Korea energy consumption data from
the mid of 2002 to 2018. The data is stored on an hourly basis.
In order to perceive the data hidden knowledge, we carry out
a descriptive analysis of energy data. We analyze the energy
consumption data into short-term and long-term. In short-
term, we consider hourly (9a), and daily (9b) analysis, sim-
ilarly, for long-term we consider, weekly (1la), monthly
(11b), and yearly (11c), and quarterly (11d) analysis.

As stated earlier, in short-term energy consumption anal-
ysis, we examine the hourly and daily energy consumption
in Mega Watt(MW) as shown in Figure 9. The Figure shows
the relationship between the hours of the day and energy con-
sumption. In Figure 9 (a) shows whereas 9 (b) shows day-wise
analysis. The hourly analysis shows that energy consumption
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TABLE 7. Development environment for the proposed patient vital sign monitoring.

Name

Component

Description

Intel(R) Core(TM) i5-8500
CPU @3.00GHz

Og’er"‘“ng Ubuntu Linux 18.04 LTS
ystem
Intelligent Energy Trading Docker .
Blockchain Engine Version 18.06.1-ce
Network Docker Version 1.13.0
Composer T
Composer Playground
Programming .
Language Node.js
Hyperledger Version 1.2
Fabric )
Node Version 8.11.4
Database Couch DB
Memory 12 GB
Intelligent Energy Trading Oé);:f;ﬁg Window 10
Blo\c?\l;ct})l am Browser Chrome, Firefox, IE
li © i Programming HTML, CSS,
apphication Language JavaScript, Node.js
Library/Framework Notify;s

JQuery, Bootstrap

increase from the morning slot of the day. The maximum
energy load at 6 PM is 62000 MW, whereas the minimum
energy load is 41500 MW at 3 AM midnight. Similarly, in the
case of Day Wise analysis, the x-axis of the graph represents
the day of the week, and the y-axis represents the energy
consumption.

As stated earlier, in long-term energy consumption analy-
sis, we analyze the energy consumption distribution based on
the season. Seasonally energy consumption analysis is given
in Figure 10. The analysis results are categorized into four
seasons of the year, winter, summer, spring, Autumn. It is
evident from the graph that the energy load is more in winter
and the least in autumn.

Finally, we consider weekly, monthly, yearly, and quar-
terly analysis of energy consumption, as shown in Figure 11.
Figure 11-(a) represents weekly analysis, Figure 11-(b) rep-
resents monthly analysis, Figure 11-(c) represents yearly
analysis, whereas Figure 11-(d) represents quarterly analysis.
Y-axis in Figure 11 represents energy consumption, whereas
X-axis represents weekly, monthly, quarterly, and yearly dis-
tribution. The figure’s illustration shows that the energy load
is high in the last quarter of the year when the temperature is
cold outside.

B. PREDICTIVE ANALYTICS

In this section, we present the predictive analysis performed
on the energy consumption blockchain data. Predictive
analysis methods are used to predict future events based on
historical event data. Previously, predictive analysis is used
for optimal decisions and making effective policies [44],
[84], [85]. For predictive analysis, we propose a prediction
model based on Bi-directional LSTM. We also trained other
models such as LSTM, RNN, Random Forest, and XGBoost
for long and short-term energy prediction. The proposed
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prediction mechanism considers user preference parameters
and parameters discovered during descriptive analysis. Firstly
we prepared the data for building our proposed model. Apart
from traditional data processing techniques, we also applied
the data partitioning approach to split the data into training
and testing energy consumption datasets. The split ratio of
the training and testing dataset is 70-30 %, 70 % of the
energy consumption data is used for training, and 30 %
data is used for testing purposes. Furthermore, we consider
the time of data instances while splitting the dataset; for
instance, the energy consumption data from 2002 to 2017 is
used as a training dataset, and the remaining instances
of 2018 are used for testing purposes. In terms of the number
of instances, training set instances are 110,000, and the testing
set is 6189 instances. Now, we discuss the experimental
environment of the proposed blockchain-enabled predictive
energy trading platform. The proposed system’s experiment
is carried out on tensor flow version 1.15.0, python, hardware
configurations included 24 GB RAM and core-i7 proces-
sor. However, minimum configurations could be followed
per the requirement of tensor flow and python integrated
development environment such as anaconda. As stated ear-
lier, the dataset consists of 116,189 data instances from
the time period of 2002 to 2018. Each instance of energy
consumption data depicts the hourly energy load of south
Korea. Table 8 summarized the proposed blockchain-enabled
predictive energy trading platform’s implementation and
experimental setup.

Figure 12-(a) present the comparison between the actual
and predicted energy prediction data using the RNN model.
We used the RNN model for the energy consumption
sequence of data; each energy consumption sample data can
be assumed to be dependent on previous energy consump-
tion sample data. As RNN is recurrent, it repeats the same
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FIGURE 9. Short-term energy consumption analysis based on hourly and daily analysis (2002-2018).

TABLE 8. Implementation and experimental setup.

Parameters Description
Operating System Window 10
System Configuration Core i3-2150
3.56 GHz
Memory 24 Gigabyte
Programming Language = Python
Development Toolkit PyCharm

function for input energy consumption data, while output
energy consumption data depends on the past computation
of energy consumption data. RNN used its internal state
called memory for processing the sequence of input energy
consumption data. Figure 12-(b) present actual and predicted
energy consumption in term of power consumption data using
the LSTM model.LSTM model for energy consumption pre-
diction is trained using Backpropagation Through Time series
data of the energy consumption. LSTM is a type of RNN that
can address difficult sequence problems such as energy con-
sumption prediction from time-series data to achieve the best
results than other traditional regression approaches. Forget
Gate decides what energy consumption information to forget
and throw away from block-based on conditions. Input Gate
decides which input energy consumption sequence should be
used to update the state of the memory. Output gate used the
status of input and memory block to determine the output
energy consumption sequence. As discussed earlier, a Bidi-
rectional LSTM consists of two LSTMs: one for input in a
forward direction and the second for the backward direction.
Figure 12-(c) present the comparison between the actual and
predicted energy prediction data using Bidirectional LSTM
Model. For evaluating the accuracy of these models, we used
regression model performance matrices such as R2 score,
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FIGURE 10. Seasonally energy consumption analysis.

mean square error, mean absolute error, and root mean square
error, mean absolute percentage error. We also trained other
traditional regression models to compare the accuracy of
LSTM and RNN, such as XGBoost and random forest. Com-
parative analysis of the proposed model with these models is
discussed in detail in the performance analysis section.

C. PERFORMANCE ANALYSIS

In this section, we conducted numerous tests in order to assess
the performance of the proposed blockchain-enabled predic-
tive energy trading platform. We have considered several per-
formance measures, such as throughput latency, and resource
utilization, and block size. For simulation, we have used
an open-source framework known as Hyperledger Calliper,
which evaluates the blockchain performance. Similarly, some
parameters have been defined for the experiment, i.e., four
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FIGURE 11. Long-term energy consumption analysis based on Energy Consumption Data of the years(2002-2018).

peer and solo orderer nodes. In this study, we evaluate the
throughput in two ways, i.e., read and transaction throughput.
Equation 13 define the formulation of transaction throughput,
which indicate the number of invoked transaction in a defined
time. In the case of read throughput, the number of read
operations is calculated in a blockchain using an Equation 14.
The overall throughput is measured by differing the trans-
action send rate with an arbitrary configuration of machine
utilization. The read transaction throughput is accessed with
an arbitrary send rate of 500 tps to 3000 tps, whereas the
transaction throughput is measured by a varying send rate
of 200 tps to 1300 tps as shown in Figure 13.

In Figure 13a, the transaction throughput is investigated
with the transaction send rate of 500 to 3000 transaction
per second. The throughput increases with the increase of the
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transaction send rate. The transaction throughput decreases
after the optimal send rate of 2500 #ps. Similarly, in the case of
transaction throughput, as shown in Figure 13b, the through-
put increases after the optimal send rate of 1100 tps.
cT
TS@C
where TT denotes transaction throughput, TCT represents the
total committed transaction, and finally, the T, is the time.
TRO
TS@C
Likewise, RTT stand for read transaction throughput and

TRO denotes total read operation, and finally the T, is a time
per second.

T =

(13)

RIT =

(14)
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FIGURE 12. Comparison of proposed Bidirectional LSTM approaches with traditional deep learning approach for energy consumption Prediction.

The transaction latency in the proposed system is measure
in two ways, read and transaction latency, as shown in Equa-
tion 15 and 16, respectively. The total time required to execute
the transaction in a blockchain network is called transaction
latency. The transaction latency consists of transaction broad-
cast, submission, and consensus time. Likewise, the trans-
action round trip time is computed as the time response of
transaction from submission to the execution, as mentioned
in Figure 14.

Figure 14a illustrate the transaction latency of the pro-
posed blockchain-enabled predictive energy trading platform,
which increases as the number of user request increase in
the blockchain network. It is investigated from the graph that
the transaction latency rise after the optimal transaction sends
rate of 1100 transaction per second. Likewise, in Figure 14b,
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the read latency is measured as varying the transaction send
rate from 500 tps to 3000 tps with arbitrary machine uti-
lization resources. It is estimated from the graph that read
latency increases comparatively less as the send rate increase.
However, the read latency notably increased with the rise of
the send rate after 2500 transactions per second.

RL = TRTT — TIr (15)

where RL is the read latency, transaction round trip time is
denoted by TRTT, and TI7 represents the invoke transaction
latency.

TL = (TEy x NTy) — Ty (16)

Similarly, transaction latency is represented as 7L, TET
denotes as transaction execution time, NT7 is the network
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FIGURE 14. Transaction latency analysis.

threshold time, and finally, the transaction invokes time is
denoted as T1r.

The intelligent peer-to-peer energy trading platform’s per-
formance is also evaluated by changing the number of
endorser peers in terms of latency and throughput. The
endorser peer is responsible for endorsing the transaction
once it is proposed. The endorser peer contains the chain-
code, which is used to endorse the transaction when it is
triggered. Figure 15 demonstrates the performance of the
proposed platform by varying the number of peer nodes.
Figure 15a shows the proposed platform’s latency by chang-
ing the number of peer nodes with a send rate between
25-200 transaction per seconds. It is investigated from the
results that increasing the number of peers node will increase
the network latency. Furthermore, the network traffic volume
is also increased by increasing the number of peer nodes,
which conclusively decreased the proposed network through-
put, as shown in Figure 15b.

Similarly, the performance of the proposed system is also
accessed by changing the ordering service in terms of latency
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and throughput, as shown in Figure 16. In Hyperledger Fab-
ric, the ordering service is responsible for transactions order.
We have considered three types of ordering services in the
proposed system: solo, solo-raft, and raft over different send
rates between 25-200 transactions per second. It is found from
the graph that the solo ordering service has less latency as
compared to solo-raft and raft because of the extra processing
of transaction layer security (TLS) among the peer nodes.
Figure 16a presents the orderer node latency over the different
send rates. Likewise, the throughput of solo ordering service
is higher than the solo-raft and raft because the solo ordering
service contains a single node and doesn’t require additional
TLS support in processing, as shown in Figure 16b.

The performance of the proposed system is also evaluated
in terms of resource utilization. The Hyperledger Calliper
with five rounds is used for the experimental environment.
The average memory and CPU utilization of a peer node in
the network is recorded as 92.21 MB and 4.65 %, respectively.
Likewise, in the case of the orderer node, the average CPU
and memory utilization is noted as 1.20% and 24.5 MB,
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respectively. Lastly, the machine and memory utilization for
certificate authority is reported as 1.50 % and 5.1 MB. Table 9
summarized the resource used in the proposed system in
terms of the memory and CPU.

In this section, we evaluate the performance of the
energy consumption prediction models in terms of a regres-
sion performance measure, such as R? score, Mean Square
Error(MSE), Mean Absolute Error(MAE), Mean Abso-
lute Percentage Error(MAPE), and Root Mean Square
Error(RMSE). First, we explain these measures in detail.

1)

2)

R? score is also known as coefficient of determina-
tion (CoD) and used for evaluating regression model
using statistical measures. The formulation of R? is
given in Equation 17

Yi = Vi
R =1-3 (——)

Mean Square Error is used to eliminate the below
zero values and determine the average among the pre-
dicted and the actual values. The formula of Mean

A7)
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Square Error is given in Equation 18

n 232

msk = =101 =50 (18)
n

Mean Absolute Error is used for evaluating the per-
formance of the regression model which determine
the deviation among the actual and predicted values.
The formulation of Mean Absolute Error is given in
Equation 19

n

MAE = (19)
Root Mean Square Error is used for regression model
to determine the error rate and accessed whether the
size of target is same as the size of error. It is computed
by taking square root of Mean Square Error as given in
Equation 20

n

RMSE = (20)
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TABLE 9. Utilization of resources of proposed blockchain platform.

Name CPU CPU Memory Memory Traffic Traffic
(max %) (avg %) (max) (avg) In Out
peer0.com 12.44% 5.59% 106.6 MB 98.5 MB 4 MB 4.2MB
peerl.com 17.09% 6.24% 93.5MB 85.7 MB 4.3 MB 5.2MB
peer2.com 15.02% 4.56% 1105MB  9221.3MB 5.6MB 10 MB
peer3.com 0.00% 5.54% 90.8 MB 85.8 MB 4.8 MB 5MB
orderer.com 4.95 % 1.20% 34.5 MB 24.5 MB 5MB 10.6 MB
CertificateAuthority_0 0.00% 1.50% 5.5MB 5.1 MB 546 B 0B
CertificateAuthority_1 0.00% 2.00% 52 MB 5.2 MB 430 B 0B

TABLE 10. Comparison of the proposed approach with state of art
prediction methods.

Model RMSE MAE R2 MAPE
RNN 567.585 422277 0947 2977
LST™M 519.95 377245 0956  2.611
Random Forest 1064.23 132823  0.45 14.77
XGBoost 793.1 943.43 0.51 9.91
Proposed Model ~ 419.047  284.616 0971 1.98

Mean Absolute Percentage Error (MAPE) is used to compute
an average deviation found in energy consumption value from
actual energy consumption value. MAPE is calculated by
dividing the sum of absolute differences between the actual
and predicted energy consumption by the machine learning
algorithm we applied in this study with the total number of
energy data records such as n.

100% &
MAPE =
=2

€t

Vi

2

=1
We present the performance comparison of the smart
contract enabled predictive analysis using state of the art
predictive analysis method RNN, LSTM, and Bi-directional
LSTM. The energy prediction analysis models are evalu-
ated in two steps. First, we compare RNN, LSTM, and
Bi-directional LSTM in terms of MAE, MSE, RMSE, and
MAPE. The second step of the prediction performance anal-
ysis is R? score. Table 10 presents the performance analysis
comparison of proposed Bi-directional LSTM and sate of art
prediction methods in MAE, MSE, RMSE, R? and MAPE.
The models’ prediction performance shows the robustness of
the proposed prediction model based on Bi-directional LSTM
for long-term and short-term energy predictions. Proposed
approach regression score in term of R> score is more as
compared to the previously used state of the art prediction
methods.

IX. CONCLUSION AND FUTURE DIRECTION

In this research, we proposed a blockchain-enabled pre-
dictive energy trading platform that is based on the inte-
gration of machine learning and blockchain model. The
proposed platform comprises three modules, i.e., intelli-
gent peer-to-peer energy trading, data analysis, and smart
contract-enabled predictive analysis. Predictive analysis is
made using deep learning approaches based on RNN,
LSTM, and Bi-directional LSTM for predicting short-term
and long-term energy demand. The predictive peer-to-peer
energy trading platform is developed based on a permis-
sion blockchain network known as Hyperledger Fabric,
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which provides the functionality of securing crowdsourcees
energy trading transaction records and real-time energy trad-
ing, day-ahead energy trading, predictive short-term energy
results, and personal user records in a decentralized manner.
It also provides support of energy reward and incentive model
in case of successful energy trading transaction. The proposed
predictive energy trading platform is implemented based on
PBFT to address the issue of security, interoperability, trans-
parency, accountability, and reliability. Similarly, an inter-
active front-end application is developed, which is used to
expose the blockchain back-end services through RESTful
APIs. For experimental analysis, we have used Hyperledger
Caliper in order to evaluate the performance of the proposed
system. The results show that the proposed predictive energy
trading platform performs better in terms of latency and
throughput. Secondly, the data and smart contract-enabled
predictive analytics module are designed using several data
mining and machine learning approaches where the data is
taken from the renewable energy department of Jeju province,
Republic of Korea. The hidden and discovered patterns are
useful to minimize the cost of electrical energy consump-
tion for customers and are very important to economize
power engineering. The proposed data exploration is based on
the comprehensive analysis of 116,189 energy consumption
data instances over the time-span of 16 years (2002-2018).
Furthermore, the smart contract-enabled predictive analyt-
ics model aimed to develop an intelligent prediction model
using RNN random forest, XGBoost, and LSTM to predict
the short-term energy demand. The prediction results show
that the LSTM has the minimum MAPE value compared to
other machine learning models using time-series data. In the
future, we can improve the performance by integrating the
hybrid machine learning model to make the system robust.
Furthermore, in the future, we may consider other features,
such as humidity, temperature, and wind speed, which can be
selected using optimization algorithms.
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