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ABSTRACT Stress is one of the major causes of diseases in modern society. Therefore, measuring and
managing the degree of stress is crucial to maintain a healthy life. The goal of this paper is to improve
stress-detection performance using precise signal processing based on photoplethysmogram (PPG) data.
PPG signals can be collected through wearable devices, but are affected by many internal and external
noises. To solve this problem, we propose a two-step denoising method, to filter the noise in terms of
frequency and remove the remaining noise in terms of time. We also propose an ensemble-based multiple
peak-detecting method to extract accurate features through refined signals. We used a typical public dataset,
namely, wearable stress and affect detection dataset (WESAD) and measured the performance of the
proposed PPG denoising and peak-detecting methods by lightweight multiple classifiers. By measuring
the stress-detection performance using the proposed method, we demonstrate an improved result compared
with the existing methods: accuracy is 96.50 and the F1 score is 93.36%. Our code is available at
https://github.com/seongsilheo/stress_classification_with_PPG.

INDEX TERMS Health, health care, time series analysis, signal processing, affective computing, feature
extraction or construction, machine learning, mental health, feature engineering, PPG, ensemble method,
denoising method, peck detection.

I. INTRODUCTION
When faced with environmental changes, we tend to keep
our internal state constant. This mechanism is called home-
ostasis. Stress can be defined as a state of threatened
homeostasis [1], [2]. Stress is one of the common problems
in modern society. Long-term stress can lead to chronic acti-
vation of the stress response. Chronic stress even threatens
physical and mental health. For example, it breaks down a
body’s immune system and causes cardiovascular disease,
diabetes, depression, and other illness [3], [4]. Thus, it is
important for us to detect and manage stress to improve the
quality of life and reduce the threat of physical and mental
health.

Accurately measuring stress has become an important
task for people. In the past, stress was assessed by
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FIGURE 1. Global healthcare wearable device market revenue and
growth.

directly answering questionnaires [5]. Recently, the demand
for wearable devices that monitors our health condition
in real-time has increased, as shown in Figure 1, and
detecting stress by measuring physiological signals via
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FIGURE 2. The overall process of the proposed method.

wearable devices has become possible. The typically used
physiological signals are electrocardiogram (ECG) and
photoplethysmogram (PPG).

ECG is an electrical signal in fine muscles around the heart
activated during a cardiac cycle, and the data are collected by
attaching sensors to the chest near the heart [6].

PPG is a signal that represents a changing arterial wave
during each cardiac cycle, and the data are collected by
attaching sensors to the wrist [7]. Therefore, setting up
devices is inexpensive and convenient. The PPG signal con-
tains more noise than the ECG signal. Most previous studies
used relatively less noisy ECG signals or other types of
signals [8], [9]. However, our current research focused on
using only a single PPG signal, which is simpler and more
convenient in everyday life.

Previous PPG studies focused mainly on denoising
or peak-detecting method. Denoising techniques are typ-
ically performed in terms of frequency [10]–[12] and
time [13], [14]. However, the current methods have limita-
tions in noise reduction since the denoising techniques are
applied independently.

FIGURE 3. Typical PPG signal form.

The current peak-detecting methods mainly focus on atten-
uating the non-systolic peak, especially the diastolic peak or
the peak triggered by noise. Figure 3 shows a typical PPG sig-
nal form. The circle indicates the systolic peak, and the trian-
gle indicates the diastolic peak. The proposed method detects
the peaks by extracting only a peak with the largest amplitude

value per block [15], [16], attenuating the non-systolic peak
signals through signal transformation [16]–[19], and remov-
ing the non-systolic peak through thresholding [17]–[20].
However, each method can still detect incorrect peaks since
the PPG signal comes in diverse forms, and the distribution
depends on an individual characteristics.

The objective of this paper is to improve the performance
of stress detection by extracting accurate features using
orchestrating multiple denoising and peak-detecting meth-
ods (OMDP) with PPG signals to overcome the limitations
of the previous PPG signal analysis. The contributions in this
paper are as follows.
(1) We present an effective two-step denoising method in
terms of frequency and time.
(2) We extract more accurate peak points by applying an
ensemble-based multiple peak-detection method.
(3) We demonstrate the superiority of our proposed method
through seven lightweight classifiers for stress detection.

II. METHODOLOGY
Figure 2 shows the entire process of this work. It consists of
denoising, peak detection, and feature extraction. It finally
measures the performance of stress detection by training
seven lightweight machine-learning classifiers available on
low power wearable devices.

A. ADAPTIVE TWO-STEP DENOISING METHOD
Figure 4 shows that the PPG signal-denoising process con-
sists of two steps: noise filtering and noise elimination.

In the noise filtering process, we use a band-pass fil-
ter to compensate the signals in terms of the frequency
[10], as shown in Figure 4(a). After applying the band-pass
filtering, we use a three-point moving average filter for
smoothing.

To deal with the remaining noise after the noise filtering
process, we remove the noisy segment in terms of time using
a statistical method [14]. Figure 4(b) shows the noise elimi-
nation process.
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FIGURE 4. Adaptive two-step denoising process.

Wefirst extract the valley from the signals and divide it into
segments per cycle. The previously proposed valley-detecting
method, an improved moving-window method, resulted in
an inaccurate valley-detection problem because all signals
continuously detect incorrect valley due to noise. To address
this problem, we devise the method that calculates the mean
of the entire signal amplitude and sets each segment from
the previous to the current points, which contain the mean
values of the entire signal amplitude, as suggested in [15].
We calculate the standard deviation, kurtosis, and skewness
of all segmented data. The measurement method is expressed
as follows:

σ =

√√√√1
n

n∑
i=1

(xi − x̄)2 (1)

kurtosis =
1
n

∑n
i=1(xi − x̄)

4

std4
(2)

skewness =
1
n

∑n
i=1(xi − x̄)

3

std3
(3)

where x̄ is the mean value and σ is the standard devia-
tion. When one of the three statistical parameters is beyond
the threshold, the corresponding segment is eliminated.
We extract the part with high-quality signals as a reference
signal, and set it as the threshold. In this approach, we extract
the reference signals by ourselves. We can obtain better per-
formance when experts directly extract high-quality signals.

The threshold Tσ , Tk , and Ts1 formulas are as follows:

Tσ = σ̄ + α, Tk = k̄ + β, (4)

Ts1 = s̄− γ, Ts2 = s̄+ δ (5)

where σ̄ , k̄ , and s̄ represent the mean of the three-reference
signal, i.e., standard deviation, kurtosis, and skewness,
respectively. The optimal parameters obtained from our
experiment are as follows: α = 1.0, β = 2.0, γ = 1.8, and
δ = 1.5. We reconstruct the signal by removing all the seg-
ments beyond the threshold. Finally, we utilize a three-point
moving average filter for smoothing at the reconstructed
signal.

B. ENSEMBLE-BASED PEAK-DETECTING METHOD
We apply the ensemble to five well-known peak-detecting
methods and determine the final peak point by majority vot-
ing. Figure 5 shows each process of the five peak-detecting
methods.

FIGURE 5. Procedures for five peak-detection methods. (a) LMM.
(b) BGM. (c) FDA. (d) SFA. (e) MAD.

The local maxima method (LMM) [20] extracts all local
maximumpoints from the signal. Among the extracted points,
we remove the points with a lesser value than the mean of the
entire signal amplitude.

The block generation with the mean of the signal thresh-
oldmethod (BGM) [15] generates blocks with themean value
of amplitude of the entire signal. The points that contain the
largest value in each block become the peak point.

The first derivative with an adaptive threshold method
(FDA) [17] divides the signal into every 5s and generates
blocks. All signals are differentiated, and the points with a
differential value of zero are extracted as peak candidates.
The threshold is adaptively set according to the mean of
amplitude in the 2s of the block. The peak candidates with
larger amplitudes than the threshold become the peak point.

The slope sum function with an adaptive threshold
method (SFA) [18], [19] applies the SSF, leaving only the
ascending point through the differential process and setting
the remaining points to zero. All the local maximum points
are extracted from the modified signal. The threshold is con-
stantly updated to 70% of the median value between the last
five peaks, and only the point with amplitude is larger than
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TABLE 1. Notation and description of used HRV features.

the threshold is extracted. It is re-positioned into the original
signal since the extracted peak point represents the peak point
from the modified signal.

Themoving averages with the dynamic threshold method
(MAD) [16] set signals below zero, then square all signals.
The block is generated by two moving averages. The points
with the largest amplitude value in each extracted block
ultimately become the peak point.

C. FEATURE EXTRACTION
The PPG characteristics for general stress detection are based
on heart rate variability (HRV) [21]. HRV is quantified as
the changes in the interval between successive peaks [22].
The signals must be divided into appropriate window sizes to
calculate HRV. Since at least 2 min of the window length is
required for accurate feature extraction, 2 min of the window
length and 0.25 s of the sliding window are applied for
HRV extraction. An inaccurate interval between successive
peaks exists because not all the peak points of the signal can
be perfectly extracted. Therefore, intervals of approximately
300 ms greater or lesser than the mean of the entire intervals
are eliminated, and the rest are used to extract HRV [15].

The most widely used measurements, such as HRV time
domain, frequency domain and nonlinear domain, are applied
to extract the HRV features. We employ the most commonly
used features, and these features are listed in Table 1 [21].

III. EXPERIMENTAL RESULT
A. EXPERIMENTAL SETUP
We employed wearable stress and affect detection (WESAD)
public dataset to verify the proposed method. It provided

various types of physiological signals and was labeled with
four emotional states: baseline, stress, amusement, and medi-
tation [23]. The baseline condition aimed at inducing a neutral
affective state. However, only a single PPG signal was used
in our experiments, and the sampling rate was 64 Hz.

To set up the cut-off and threshold in the noise-elimination
process of the adaptive two-step denoising method, a 0.1%
high-quality signal with high-peak-detection performance
was extracted and used as a reference signal. 952 windows
were generated through feature extraction.

Figure 6 shows the changes of the PPG signal by applying
the denoising method step-by-step: (a) the original, (b) after
the noise-filtering step, and (c) after the proposed adaptive
two-step denoising method. When the proposed denoising
method is applied, the number of generated windows was
reduced by approximately 8 % as shown in 6 (c).

To quantify the stress detection performance using
the proposed method (OMDP), we utilized seven typi-
cal learning-based classifiers [23], [24]. The area under
the receiver operating characteristic curve (AUC) [25] and
F1 score were used to measure the proposed method perfor-
mance. The accuracy was used for the performance compari-
son between the existing method and the proposed method.
In addition, Leave-One-Subject-Out cross validation was
used to verify the generalization performance [26], [27]. Our
code is available at https://github.com/seongsilheo/stress_
classification_with_PPG.

B. INTEGRATED APPROACH PERFORMANCE
We investigated the effectiveness of the proposed integrated
method (OMDP) by comparing it with the non-integrated
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FIGURE 6. Visualization of a PPG signal when applying our denoising method step-by-step.

TABLE 2. Performance comparison between the proposed method and existing method (Abbreviations: 9-NN = 9-nearest neighbour, LDA = Linear
discriminant analysis).

FIGURE 7. Performance results of ablation study of the proposed method.

methods: original, denoising without peak-detection, and
peak-detection without denoising. OMDP is an inte-
grated method that utilizes both two-step denoising and
ensemble-based peak-detection. We performed a binary-
classification, stress versus non-stress, and non-stress is
defined by combining the state baseline and amusement [23].
Figure 7 shows the result of the ablation study of the proposed
method by averaging all the result of the seven classifiers of
AUC and F1 score.

When the ensemble-based peak-detecting method was not
applied, the results of each proposed five peak-detection
method were averaged. The integrated OMDPmethod exhib-
ited the best performance with the result of 91.65 for AUC
and 88.38 for the F1 score. The result indicated a performance
improvement with 4.43% for AUC and 5.01% for the F1 score
compared with the second best option that used only the
adaptive two-step denoisingmethod. Thus, we confirmed that
the integrated method achieved better performance than any
of the other methods. The peak detection without denois-
ing showed the lowest performance because we applied the

peak-detection method to low-quality signals that contained
a lot of noise.

Table 2 presents the performance comparison between the
existing method proposed by Schmidt, Philip, et al under the
same conditions [23] and our OMDP method. We measured
the accuracy and F1 score using the same approach adopted
in the previous method. The five classifiers demonstrated that
the proposed OMDP outperforms the previous method by
achieving a performance improvement at an average accuracy
of 7.62% and F1 score of 7.04%.

The first table in Table 3 presents the results of each
classifiers when the proposed OMDP method was applied.
This table lists the AUC and F1 scores of each of the seven
classifiers. The Linear discriminant analysis (LDA) classifier
achieved the best result with 95.07 for AUC and 93.36 for
the F1 score. The second table in Table 3 shows the overall
performance results of the seven classifiers by applying the
proposed method step-by-step. The bold marks represent
the performance of the proposed OMDP method, and the
gray marks represent the best results of each classifiers.
The proposed OMDP method achieved the best results in
all classifiers except the decision tree classifier. This result
confirms the generalization performance that the proposed
OMDP method performs well for any classifiers.

C. ADAPTIVE TWO-STEP DENOISING PERFORMANCE
To investigate the effect of the adaptive two-step denois-
ing method, we measured the performance by apply-
ing our denoising method step-by-step: original, one-step
noise filtering method, and two-step denoising method. The
ensemble-based peak-detecting method was applied in every
comparison. Figure 8 shows the adaptive two-step denoising
method performance result by averaging all the result of the
seven classifiers of AUC and F1 score.

We confirmed that the two-step denoisingmethod achieved
the best result with 91.65 for AUC and 88.38 for the F1 score.
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TABLE 3. Summary of the performance of our OMDP method with seven classifiers, and the overall performance results with seven classifiers by
applying our method step-by-step on the binary classification task. ‘‘Ens.’’ on peak-detecting method section applied ensemble-based peak-detecting
method. Bold marks represent the performance of our OMDP method, and the gray marks represent the best results for each classifiers. (Abbreviations:
9-NN = 9-nearest neighbour, LDA = Linear discriminant analysis, NF = Noise filtering, NE = Noise elimination).

FIGURE 8. Performance of an adaptive two-step denoising method
(NF: noise filtering, NE: noise elimination).

This result indicated an increase in the performance by 2.09%
for AUC and 2.60% for the F1 score compared with the sec-
ond best option that used only the one-step noise filtering
method. An increase in performance of 6.44% for AUC and
10.61% for the F1 score compared with the worst option that
did not use any of the denoising methods was also achieved.

D. ENSEMBLE-BASED PEAK-DETECTING PERFORMANCE
We set variable N to determine at least how many
peak points should be matched for selection as the new

FIGURE 9. Performance of an ensemble-base peak-detecting method
according to N (N represents he number of at least how many peak
points matched for the new peak point selection).

peak point. We measured the performance of the ensemble-
based peak-detecting method according to each N in the
seven classifiers. The adaptive two-step denoising method
was applied to every method. Figure 9 shows the result of
the average of AUC and F1 scores with seven classifiers.
We achieved the best result when N = 3, i.e., 91.65 for AUC
and 88.38 for the F1 score.

When N = 4, the performance was comparable to that
when N = 3. However, the number of extracted peaks was
too small to extract features in somewindows. Thus, we elim-
inated these windows, and the number of windows decreased
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TABLE 4. Tri-classification task performance comparison between previous and our method.

TABLE 5. Overall performance results of the seven classifiers by applying our proposed method (OMDP) step-by-step on the multi-classification task
(tri-class and quad-class). ‘‘Ens.’’ on the peak-detecting method section when the ensemble with five peak-detection method is applied. The bold marks
represent our OMDP method result, and the gray marks represent the best result for each classifiers. (Abbreviations: 9-NN = 9-nearest neighbour,
LDA = Linear discriminant analysis, NF = Noise filtering, NE = Noise elimination).

by approximately 2%. When N = 5, most of the windows
could not extract the features; thus, we were unable to mea-
sure the performance. When N = 1, we achieved the worst
result because majority voting was not performed, and many
inaccurate peak points were reflected.

Figure 10 shows the performance comparison between the
single-based and ensemble-based peak-detecting methods.
We measured the performance using the seven classifiers
and averaged all the results of each classifiers. We obtained
that the ensemble-based peak-detecting method achieved the
best result of 91.8 for AUC, and 88.6 for the F1 score
compared with the single-based peak-detecting method.
The ensemble-based peak-detecting method demonstrated an
improved performance of 1.2% for AUC and 2.4% for the

F1 score compared with the second best option that applied
the MAD peak detection method.

E. MULTI-CLASSIFICATION PERFORMANCE
Many studies have focused on the binary classification
of stress detection [8], [28]–[30]. However, we need to
develop a system to detect the stress levels above certain
limit since stress is harmless at a certain level [31]. Thus,
we extend our experiment to evaluate the performance using
multi-classification.

Table 4 lists the performance comparison between the
state-of-the-art method by Schmidt, et al [23], and the pro-
posed OMDP method in the multi-classification task for
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FIGURE 10. Performance comparison between single-based and
ensemble-based peak-detecting methods.

tri-class: baseline, stress, and amusement. We verify that the
proposed OMDP method demonstrates higher performance
than the existing method. On average, the proposed method
achieves a higher performance of about 9.05% for AUC, and
8.90% for the F1 score than the existing method.

FIGURE 11. Performance of tri-classification and quad-classification
tasks.

To precisely verify the generalized performance of
the proposed OMDP method, we also performed the
multi-classification task for quad-class similar to the tri-class.
We used data that are labeled as stress, baseline, amuse-
ment, and meditation in the multi-classification. Figure 11
shows the result of the multi-classification task by apply-
ing our suggested method step-by-step: original, denoising
without peak-detection, and the proposed OMDP method.
We obtained the average result of the seven classifiers
and showed the average result of each of the five pro-
posed peak-detection methods when the ensemble-based
peak-detecting method is not applied. When the proposed
OMDP method is applied, the multi-classification task for
tri-class achieves the best performance with 74.2 for AUC
and 61.7 for the F1 score. The multi-classification task for
quad-class also achieved the best performance with 71.7 for
AUC and 53.8 for the F1 score.

Table 5 presents the result of the AUC and F1 score when
the multi-classification task for tri-class and quad-class are
performed using the proposed method step-by-step in the
seven classifiers. The bold marks indicate the performance of
the proposed OMDPmethod, and the gray marks indicate the
best results of each classifier. The proposed OMDP method
achieves the best results in four out of the seven classifiers
in tri-class and quad-class. On average, we obtained that
the proposed OMDP method achieves the best result in the
multi-classification task as well as in the binary classification
task.

IV. CONCLUSION
In this paper, we proposed an orchestrating multiple denois-
ing and peak-detecting (OMDP) method by integrating var-
ious well-known lightweight denoising and peak-detecting
methods. we utilized the advantages of the PPG signal, which
is non-invasive, and can be widely used in wearable devices.
We solved an inaccurate feature extraction problem due to
low-quality signals with many noises by applying OMDP
method. The noise was filtered and efficiently eliminated by
analyzing the original PPG signals using a two-step process
in terms of frequency and time. In addition, we applied
the ensemble method when peaks were detected to deter-
mine the accurate peak point and extract the accurate fea-
tures. The proposed OMDP method demonstrated superior
stress-detection performance over the existing methods with
multiple classifiers. This result opens up the possibility to
monitor our health in real-time using only a single PPG
signal only. The proposed OMDP method also provides the
possibility of detecting elaborate stress levels by measuring
the stress-detection performance at up to four levels as well
as binary levels.
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