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ABSTRACT In the application of regression prediction through big data technology, the error between the
predicted value and the true value is often large. In order to reduce the error of data prediction, this paper
proposes an Intelligent Data Prediction (IDP) scheme for Smart Service. It uses Least Squares Support Vector
Machine (LSSVM) as the basic prediction model. Since there is no standard procedure for determining
the main parameters of LSSVM, an improved Particle Swarm Optimization (MBPSO) algorithm is used to
simultaneously optimize the parameters of LSSVM. The main disadvantage of PSO is precocity due to the
disappearance of population diversity. Based on this, Improvement strategy of MBPSO aims to continuously
generate “More” and “Better” particles. First, in order to avoid the early disappearance of particle diversity,
MBPSO re-adjusted the inertia weight and learning factor. Secondly, a renewable access strategy is proposed
to allow a part of the disappeared population to regenerate. Finally, the method of global optimal adjustment is
introduced to help particles find the optimal flight direction. In order to verify the effectiveness of MBPSO,
9 test functions are used to test the algorithm performance. The results show that MBPSO’s optimization
speed, best and mean all perform best. Taking the farmland soil heavy metal data sets of Dongxihu District
and Hannan District of Wuhan City as examples of application, the content of heavy metals Cr and Pb in
the soil was predicted. The results show that the predicted value of IDP is closer to the actual value, and
the three error index values are significantly lower than other models. Especially in the prediction of Pb
content, compared with the LSSVM model, the prediction errors of the two regions are reduced by 25.67%
and 20.70% respectively. We can conclude that the proposed IDP scheme has practical significance in data
prediction.

INDEX TERMS Big data, smart service, intelligent data prediction (IDP), improved particle swarm

optimization (MBPSO), least square support vector machine (LSSVM).

I. INTRODUCTION

In the era of big data information, the processing, analysis
and prediction of data can help us solve a lot of problems [1].
Machine learning (ML) is an indispensable method for big
data prediction. ML is mainly a computer learning a calcula-
tion method by learning rules from complex data [2]. There
are already many ML methods for data prediction. They are:
Logistic Regression [3], prototype-based objective function
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clustering method (K-Means) [4], a graphical method using
probability analysis (Decision Trees) [5], using a graphical
method of probability analysis (Random Forest) [6], Support
Vector Machine (SVM) [7] and Artificial Neural Networks
(ANN) [8] etc.

Many scholars use ML to build big data prediction models
to solve practical problems. Some applications are examples.
Based on OMI observations in previous years, the environ-
mental SO2 concentration and its exposure risk in future
years is inferred. The estimated ground-level SO2 concentra-
tions were in strong agreement with the ground observations
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(R = 0.86, root-mean-square error = 10.49 ug/m3, relative
prediction error = 19%). [9]. Coal intensity change is pre-
dicted during the process of CO2 sequestration in coal seams.
The experimental results show that the correlation coefficient
(R), Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE) values
of the training set are 0.9963, 0.6582, 0.4282, 0.1088, and the
R, RMSE, MAE, and MAPE values of the test set are 0.9956,
0.7634, 0.5229, 0.1912, respectively [10]. Soil heavy metal
concentration is predicted. After learning and training, the
prediction accuracy of 5 elements: Hg, As, Cd, Cr and Pb, are
98.52%, 98.22%, 91.86%,90.70% and 88.31%. [11]. In these
examples, how to establish a model for smart service and it
is the focus to predict the unknown variables with the same
characteristics according to known feature variables easier to
obtain.

The Swarm Intelligence (SI) mainly simulates the swarm
behavior of insects, animals, birds and fish. The application
of SI is very extensive. These are some examples. The use
of Swarm Intelligence can extend the life of wireless sensor
networks [12]. SI is applied to dynamic system identifi-
cation problems and license plate detection problems [13].
Usually, we select parameters based on prior experience or
trial and error. But this method is awkward, time-consuming
and labor-intensive, and it may not always find the ideal
parameters of the model. SI can solve this problem perfectly.
SI algorithms take the parameters needed to be optimized in
ML as the optimization target, and take the result of ML as the
fitness value of optimization. Common SI algorithms include
Ant Colony Optimization (ACO) [14], Particle Swarm Opti-
mization (PSO) [15], Gray Wolf Optimizer (GWO) [16], etc.

This paper proposes an Intelligent Data Prediction (IDP)
scheme. IDP can provide a Smart Service for predicting
the content of heavy metals in the soil. The program uses
Least Squares Support Vector Machine (LSSVM) as the basic
model, and chooses an improved Particle Swarm Optimiza-
tion (MBPSO) to help LSSVM establish the learning and
training process. MBPSO re-adjusts the inertia weight and
learning factor of PSO to make it more conducive to the
flight of particles in the optimization process. Considering
the importance of population diversity to the optimization
process, a renewable access strategy is proposed to restore
the vitality of certain particles. Introduce the global optimal
particle, redefine the particle position update formula, and
help the particle find a better optimization direction. This
prevents the disappearance of population diversity to a certain
extent. MBPSO takes the penalty factor C and the parameter
o of LSSVM as optimization targets. Through the particle
search flight process, LSSVM performs multiple data learn-
ing processes and adjusts its own parameters.

The main contributions in this paper are as follows:
1) An Intelligent Data Prediction (IDP) scheme is proposed
that combines MBPSO and Least Squares Support Vector
Machine (LSSVM); 2) Propose an improved Particle Swarm
Optimization (MBPSO); 3) Perform performance compari-
son test of MBPSO algorithm; 4) Optimal system parameters
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are obtained by PSO; 5) Some experiments were carried
out to predict the content of heavy metals in soil; 6) An
acceptable match is noticed between measured and predicted
values.

The rest of this paper is organized as follows. Section II
introduces the work related to the research of big data pre-
diction models. Section III introduces PSO and LSSVM.
Section IV proposes MBPSO and explains IDP realization
process. Section V first conducts a performance comparison
test on MBPSO, and then uses the farmland soil heavy metals
as data to conduct IDP for simulation, comparison and anal-
ysis. Section VI conducts the work content of this paper to
sum up.

Il. RELATED WORK

Big data forecasting technology provides a powerful way
for data forecasting. In recent years, many scholars have
proposed Neural Networks (NNs) to solve the problem of big
data prediction. NNs usually have good mapping capabilities.
During data training, they can train well, learn and adjust
themselves. Some examples are shown as follows. In 2019,
B. Wang, W. Kong, H. Guan and N. N. Xiong proposed
a Long Short Term Memory Neural Network (LSTM) to
predict the PM2.5 value [17]. In 2020, C. Chen, N. N. Xiong,
X. Guo and J. Ren used RBF-NN to predict the number
of wars and the transformation of the historical stage [18].
In 2020, Z. Wang, J. Huang, N. N. Xiong, X. Zhou, X. Lin and
T. L. Ward proposed SqueezeNet to accurately identify vehi-
cle category [19].

The biggest shortcoming of NNss is its own inexplicability.
They have no ability to explain their own reasoning pro-
cess and reasoning basis. When the data is not sufficient,
NNs work poorly. When the data is sufficient, overfitting is
prone to occur. They are not enough that the generalization
performance of the model generated by training. If the gen-
eralization performance of the model is not good enough,
the prediction bias of unknown variables will be larger.

In addition to NNs, there are many other methods used
in the study of the data prediction. Some examples are
shown. In 2012, Kita E, Harada M and Mizuno T pro-
posed Bayesian for stock prediction [20]. In 2016, Varez,
Siwabessy, Tran applied Random Forest to predict sponge
species richness [21]. In 2020, Z. Sai, C. Lu, S. Jiang, L. Shan,
C. James and N. N. Xiong applied Support Vector Machine
to Energy Management Optimization of Open-Pit Mine Solar
Photothermal-Photoelectric Membrane Distillation [22].

The Bayesian algorithm does not have a high demand for
data prediction and can predict quickly. The disadvantage of
Random Forest s that it is easy to fall into overfitting. Support
Vector Machine (SVM) has a better effect on non-linear
sample training, but the generalization performance of SVM
has certain limitations in data prediction. To solve these
problems, this paper proposes to use Least Squares Support
Vector Machine (LSSVM) as the basic model. This method
replaces inequality constraints with equality constraints on
the basis of SVM. It can well solve the problem of data
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prediction since LSSVM maps low-latitude data to the high
latitude space. They are some example. In 2016, Xiang Song,
Xu Li, Weicheng Tang applied LSSVM decision model to
calculating model probabilities according to the operating
state of the vehicle [23]. In 2018, Xu Li, Chen Wei and Chan
Chingyao applied LSSVM to predict and compensate for the
INS position errors [24]. In 2020, Chengbing Yu, Ziwei Xi
and Yilin Lu applied LSSVM to color prediction for cotton
fabrics [25].

In the data prediction application of LSSVM, its general-
ization performance is affected by the penalty factor C and
nuclear parameter o. Therefore, for data prediction results of
LSSVM, itis very important to choose parameters. Normally,
these two parameters need to be manually set by experience.
This leads to insufficient calculation accuracy of the model,
or the need to adjust the model multiple times to seek higher
accuracy. If C or o is too large or small, it will easily lead
to changes in the predicted result. At present, some ways are
used to optimize parameters of LSSVM, such as ACO [26],
GWO [27], PSO [28], [29] and other algorithms.

Based on the complexity of the calculation of the kernel
function of LSSVM, in order to speed up the learning speed
of the model training process, PSO is chosen to optimize the
parameters of LSSVM in this paper. The advantage of PSO
is simple operation and easy implementation. The basic idea
of PSO is: the potential solution of each optimization prob-
lem is a particle in the search space, and the characteristics
of each particle can be represented by speed, position, and
fitness value. PSO also has certain limitations. For exam-
ple, during the optimization process, the particles fall into
the local optimal position, and as the number of iterations
increases, the diversity of the particles decreases. Locally
optimal, there are often the disadvantages of slow conver-
gence speed and low convergence accuracy in the later stages
of evolution [30], [31]. Therefore, many scholars have made
a lot of method improvements to the algorithm change strat-
egy. Some examples are as follows: MPSO is an algorithm
improved the inertial weight and speed update [32]; IPSO1 is
an algorithm improved the speed update [33]; IPSO2 is an
algorithm improved the inertia weight and adaptive learn-
ing factor [34]; R-dPSO is an algorithm the random-driven
global Particle Swarm Optimization [35]. Based on the above
research, A new improved PSO (MBPSO) is proposed in this
paper.

The previous research results show that the basic principle
of improved PSO is to generate more different populations,
or to fly to the better position. Based on the two ideas of more
populations and better position, MBPSO is proposed. It is
improved as follows. A new formula is designed to randomly
generate inertial weights. The learning factor is adaptive
collaborative adjustment with it within a certain range. Out-
of-bounds particles are re-generated randomly within the
space. particles tend to fly to the better position. Various
improvements have enabled the particles update process to
generate more optimizable populations, and all particles fly
to better positions.
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An Intelligent Data Prediction (IDP) scheme is proposed in
this paper. IDP combines LSSVM and MBPSO to collaborate
for smart service, so that it can perform high-dimensional
spatial mapping of data, and can be generalized well. Within a
certain range, IDP can accurately predict unknown variables
with the same data characteristics.

Ill. SYSTEM MODEL AND DEFINITION

A. PATICLE SWARM OPTIMIZATION (PSO)

PSO was first proposed by Eberhart and Kennedy in the mid-
1990s. It is an advanced Intelligent Swarm algorithm [36].
Each particle of PSO, such as X; = {x;1,x;2, -, Xi 4, has
a memory, which can track the particle in the last iteration.
The best position pb; and the global best position gb are
track through last generation to update yourself by flying
speed V; = {vi 1, vi2, -, viq. The formula for updating the
velocity and position of the particle is as follows.

k+1 _ k k k
Vid = Viagtcir (pbi,d _xi,d>

+ear (gbk - xffd) ; (1

Xyt =g i @

where m is the population size and i = 1,2, --- , m; D is the
particle dimension and d = 1,2, --- , D; K is the maximum

evolutionary algebra and ¥ = 1,2,---K;r; and rp are
random variables that obey uniform distribution U (0, 1); ¢
and c; are learning factors.

Shi [37] introduced a linearly decreasing strategy of inertia
weight based on PSO, which is called the basic PSO, and the
strategy formula is as follows.

Wmax — Wmin <k

z 3)

where w is the inertia weight, w4, and wy,;;, are the maximum
and minimum values of the inertia weight; the speed update
formula is as follows.

= kg ey (phlg = 3fy) + eara (806 = by ). (@)

where k and K are the current number of evolutionary itera-
tions and the maximum number of iterations.

W = Wmnax —

B. LEAST SQUARE SUPPORT VECTOR MACHINE (LSSVM)
SVM regression technology is essentially an intelligent learn-
ing algorithm that receives input values or input vectors
through a learning model. It uses a Machine Learning method
similar to Neural Networks. It is also an intelligent learn-
ing algorithm that obtains output values through regression
functions. The main application schematic diagram is shown
in Figure 1.

LSSVM replaces inequality constraints with equality con-
straints on the basis of SVM, avoiding the problem of
quadratic regression, and has higher calculation accuracy and
efficiency [38]. Suppose the training data is {x;, y;},i =

1,2,...,nand x; € R" is the n-dimensional input vector, and
yi € R is the output vector. Set a non-linear function ¢(-), let:
V@)= (@), o0, -, ¢()). Q)
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FIGURE 1. Support vector machine model.

Through this function, the training data is mapped to the
high-dimensional feature space. Then, perform non-linear
regression estimation on the processed sample data.

The objective function of LSSVM can be expressed as
follows.

f=4q" ¢ +b. (©6)

where ¢ (x) is a non-linear function, ¢’ is a weight vector; b is
a paranoid vector. Then, use the structural risk minimization
principle to determine the parameters g and b of the objective
function. The structural risk expression adopted is as follows.

1 1 2
RZEC'Remp+§||CI”- @)

where C is the penalty factor and R is a loss function.
LSSVM usually uses a quadratic loss function, and its
expression is as follows.

n
2
Remp = Zi:l %_,' . (8)
where &; is the error generated after predicted data of SVM.
Add constraints as follows.
Vi—q o) =b+&. ©)

Lagrange solution equation of the minimization function is as
follows.

1 -
Lgb &0 =51qIP+5C) &
i=1

~Yufde +b+a-v]. a0
i=1

where A;(i = 1,2,...,n) is Lagrange multiplier. Then,
the partial derivatives of €, b, ¢, and A in Lagrangian function
are respectively obtained, and each partial derivative is equal
to 0 as follows.

E=0—=rn=Ct&
F=0= 0 %=0
G =0=q=3" o)

E=0=q"px)+b+&—yi=0

Y
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Eliminate weight coefficient ¢ and the error variable &; in
equation (11), and convert to solve equation as follows.

A |

where: I is the unit matrix of order /; Q = [1,1,---, I]T;
A=1[r1 A2, Al Y = [y, 2, - - - yall . K is the kernel
function matrix, whose elements K;; = ¢ (x,-)T¢(xj); i,j =
1,2, -, n;its regression function is as follows.

l
vi= . hK@ x)+b. (13)

Gaussian Radial Basis Function (RBF) has good local
feature extraction capabilities and smoothing characteristics.
Due to the characteristics of non-linear data, RBF is used in
LSSVM in this paper, and the kernel function is as follows.

Il xi —x 112
K (xi, xj) = exp (_—12021 . (14)

where o is nuclear parameter.
LSSVM regression function is as follows.

! | x; —x; 1|
yx) = Z[ZI Aj€xp (—#) +b. (15)

LSSVM training and generalization ability is directly
affected by the penalty coefficient C and the kernel parameter
o. Therefore, it is extremely important to adjust the values
of these two parameters when applying LSSVM. However,
in actual problems, these two parameters are not necessarily
related. In the past, empirical estimation methods or trial and
error methods are usually used for parameter selection. Both
methods are very time-consuming and laborious, and may
cause large deviations.

IV. OUR PROPOSED SCHEME OF IDP

An improved PSO (MBPSO) is proposed in this paper, aiming
to find “More”” and “Better”’ particles. MBPSO is combined
with LSSVM for smart service to form an Intelligent Data
Prediction (IDP) scheme. The scenario application of IDP
is shown as Figure 2. In datasetl, LSSVM performs model
training on known input and output variables, and adjusts
its fitness value in conjunction with MBPSO. After repeated
training, save the trained model as IDP. The known input vari-
ables in dataset? are easier to obtain in practical applications,
and the output variables are often difficult to obtain. Some
variables difficult to obtain in actual sampling can be more
accurately predicted by IDP.

A. IMPROVED PSO (MBPSO)

PSO is an evolutionary calculation method based on the
intelligent collective behavior of certain animals. It is easy
to implement, and few parameters need to be adjusted. In the
basic PSO optimization process, it is prone to stagnation. The
reason for the continuous reduction of the particle popula-
tion is: some particles fly outside the feasible region; some
particles track the previous generation of particles during the
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datasetl

FIGURE 2. Scene application diagram of IDP.

update process, and disappear in the process of replacement
of better particles. Therefore, in the particle update process,
it is very important to improve the basic PSO by gener-
ating more different particle populations. The performance
of PSO largely depends on the parameter selection strategy.
Therefore, the cooperation between parameters determines
whether it can promote particle optimization. The parameter
generation strategy and value range setting are one of the
keys to improve PSO. To generate more populations and fly
to a better position as the idea, an improved Particle Swarm
Optimization (MBPSO) is proposed.

1) RANDOM INERTIA WEIGHT

The flying speed of the particles is to the search step length of
the particles in space, which is related to the convergence of
the algorithm. The larger the value of w, the larger the particle
flight search range, which can jump out of the local optimum;
the smaller the value of w, the smaller the particle flight
search range, which has a stronger local search capability and
can speed up convergence [39].

If the particles reach a better position after updating less
frequently, and the value of the inertia weight is too large,
it is not conducive to local search. If the particles have not
reached a better position after more updates, and the value of
the inertia weight is too small, it is not conducive for them
to fly to a better position. Both of these situations will reduce
the diversity of the particles and tend to converge prematurely.
The paper [40] pointed out: in the early stage, random inertia
weights can prevent particles from converging prematurely
due to excessive inertia weights; in the later stage, it can
reduce the possibility that the inertia weight is too small to
cause the optimization process to stagnate and fall into the
local optimum. The paper [35] shows that the random inertia
weight falling between [—1, 1] can balance local and global
search capabilities of algorithm. According to the analysis of
inertia weight and the optimization process of PSO, a random
inertia weight strategy is proposed in this paper as follows.

W = Wpin+0 X Wpax — Wiin) (16)

where wy,in = —1, Wwpar = 1, w € (—1, 1), 6 is a random
number uniformly between [0,1].
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FIGURE 3. The value of the random inertia weight for 200 iterations.

Figure 3 shows the value of the inertia weight is randomly
selected between [—1, 1] during 200 iterations. The random
value of the inertia weight helps to generate more new popu-
lations during the particle update process.

2) ADAPTIVE LEARNING FACTOR

The learning factor c¢; represents the ability of particles to
approach the individual’s best position pb, giving the par-
ticles the ability to self-summarize. The learning factor c¢;
represents the ability of particles to approach the global
best position gb, giving particles the ability to learn to the
global optimal particle. Through adjustment, the magnitude
relationship between the learning factor c¢; and ¢, can bal-
ance the ability of global search in the early stage and local
convergence in the later stage [41].

During the particles update process, the learning factor
c1 decreases and ¢; increases to help the particles fly to a
better position. The paper [35] shows that when w is ran-
domly selected on [—1, 1], the learning facto is adjusted
adaptively on [0.25,1], which can better perform optimiza-
tion search. A non-linear adjustment strategy is proposed.
With the update of the particle swarm, the learning factor c
decreases from 1 to 0.25, and ¢, increases from 0.25 to 1.
In the early stage of particles flight search, the larger ¢ and
the smallerc; make the particles fly to the global optimal
solution better; in the later stage of particles flight search,
the smaller c; and the larger ¢y can make the particles fly in
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FIGURE 4. The value of the random inertia weight for 200 iterations.

the local optimal direction, which is beneficial to accelerate
the convergence of the particles. The learning factor adjust-
ment strategy is as follows.

k
c; = 0.75 x cos (O.S X 7T X E) +0.25, (17)

k
c» = —0.75 x cos (0.5 X T X E) + 1. (18)
Figure 4 shows the values of c1, c; during 200 iterations.

3) A RENEWABLE ACCESS STRATEGY

In the process of particle flight optimization, it is inevitable
that some out-of-boundary particles will be generated. These
particles are beyond the monitoring area. There are usually
three treatment methods: the first is to replace the out-of-
boundary particles with boundary particles for adjustment,
that is, ““absorption boundary”’; the speed of the particles in
this dimension is unchanged, and the direction is reversed,
that is, the ““reflection boundary’’; the third is to eliminate the
particles and neither participate in the fitness value calcula-
tion nor update, that is, the “invisible boundary” . Paper [42]
indicated that the process of particle renewal will occur the
disappearance of population diversity.

In this paper, a renewable access strategy is used to adjust
the out-of-boundary particles, so that the out-of-boundary
particles are randomly generated within flight range, and the
more population is generated, making it more universal and
diverse. The formula is as follows.

lefd = Xmin + " X Xmax — Xmin)- (19)

where h is a uniform random number between (0,1), X0 a
and x,,;, are the maximum and minimum ranges of particles
that can fly. According to this update formula, the regenerated
particles will be located in the optimized space, and the
probability of each space position is equal.

4) PARTICLE POSITION UPDATE ADJUSTMENT FORMULA
The velocity update formula is as follows.

vﬁ}rl = wvﬁd +cin (pbifd — xffd) + o (gbk —x{fd)
(20
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Algorithm 1 Framework of MBPS

1: Initialize all individuals’ positions within the search
space;

2: for each individual do

3: Calculate fitness value;

4: Update parameters according to formula (16), (17)
and (18;

5: Update the position of the out-of-bounds particle in
search space according to the formula (19;

6: Update the speed and position of particles according
to the formula (20) and (21;

7 if fitness > e the

8: if num < maxgen the

9: Repeat the above process;

10: else

11: End;

12: end if

13: end fo

From the particle position update formula (2), it can be
seen that in the basic PSO, the particle position update is
only related to the current position and flight speed. When the
particle is in a poor position and the flight speed is not ideal,
the updated particle have poor fitness, so that the convergence
of the group is not ideal. Based on this, introducing the global
optimum into the position update formula can randomly
guide particles to fly to the global optimal position, increasing
the possibility of particles flying to a better position. The new
position update strategy is as follows.

W = o g )+ (=0 x sk k).
@

where t = 0.5, o is a uniform random number between
(0,1). Set the value of t to 0.5 to balance the influence of the
current position and the best position on the updated particle
position, thereby achieving a better balance between global
optimization and local optimization.

B. IDP REALIZATION PROCESS

Framework of MBPSO is described as Algorithm 1:
Algorithm calculation error e is the smallest error the algo-
rithm wants to achieve; The current iteration number is num;
The maximum number of iterations is maxgen.

It is the flowchart of IDP as Figure 5. The steps to use this
model to predict unknown data are as follows

1) Collect raw data, normalize the data, and divide the
data into training set and test set. The training set is used for
learning and the test set is used for prediction;

2) The penalty factor C and the kernel parameter o of the
LSSVM model are taken as the positions of the individuals in
the MBPSO population. Initialize the population. Individuals
in the population correspond to a set of two-dimensional
coordinates C and o;

3) Set the initial parameters of MBPSO;
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FIGURE 5. The flowchart of IDP.

4) Calculate the predicted value and compare it with the
real value.

5) Calculate the fitness value of MBPSO corresponding to
the penalty factor C and the kernel parameter o;

6) Update the parameters of MBPSO.

7) Update the random position of the out-of-bounds parti-
cle optimization range.

8) Update particle velocity and position.

9) Seek the optimal position of the updated population, and
apply the parameters corresponding to the optimal position to
the prediction calculation of LSSVM.

10) Update the fitness values of all individuals in the
population.

11) Compare the fitness value of the current population
with the previous one, and perform individual better process-
ing. That is, only update individuals with better fitness.

12) Repeat steps 6-11.

13) If the desired error value is reached, or the maximum
number of iterations is reached, the update is stopped.

14) Save the last trained model as an IDP for prediction of
unknown data.

Intelligent Data Prediction (IDP) uses MBPSO to opti-
mize the parameters of LSSVM as the learning process.
The two parameters to be optimized by LSSVM are the
optimization goals of MBPSO. Each time MBPSO performs
an optimization process, LSSVM will learn from the known
data and calculate a prediction. The error MSE between the
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End

Algorithm 2 Framework of ID
1: The penalty factor C and the nuclear parameter o are
regarded as individuals in the MBPSO population,
which are the optimization goals of MBPSO;

for each individual do

Perform an LSSVM calculation,;

Calculate fitness value;

Better particle replacement treatment;

if meet the optimization conditions then

End;

else

Repeat steps 2-5;
end if

S0 DIN RN

0:

predicted value and the true value is the optimization target of
MBPSO. After many trainings, the model can get the desired
parameters. Save the trained LSSVM model named IDP. IDP
can be used to predict unknown data. MBPSO and LSSVM
collaborate for smart service.

Framework of IDP is described as Algorithm 2.

V. PERFORMANCE ANALYSIS

A. VERIFICATION OF THE PROPOSED ALGORITHM

In order to verify the superiority of the optimization perfor-
mance of MBPSO, a variety of PSO are selected for compar-
ison. They are: the basic PSO, the algorithm for improving
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TABLE 1. Parameter setting of six algorithms.

Algorithms w c1 c2 m D K
basic PSO 0.9~0.4 2 2 50 30 100
MPSO 1~0 - - 50 30 100
IPSO1 - 2.5 2.5 50 30 100
IPSO2 0.9~0.4 2.5~0.5 0.5~2.5 50 30 100
R-dPSO [0,1] 1~0.25 0.25~1 50 30 100
MBPSO [-1,1] 1~0.25 0.25~1 50 30 100
TABLE 2. Formulas of 9 functions.
function formula domain D
1 n
Ackley f1(0) = —20exp| —0.2 (EZ cosZTrxi) +20+e 23) [-32,32] 30
i=1
n-1
Rosenbrock £ = ) [100kis, = x2)? + (= 177] 24) [30,30] 30
i=1
n
Sum of Different Power f:(x) = Z [ | D (25) [-1,1] 30
i=1
n
Axis parallel Hyperelliposid falx) = Z ix? (26) [-5.12,5.12] 30
i=1
n
Sphere £o(0) = Z x? @7 [-100,100] 30
i=1
n
Step f(0) = Z(|xi +0.5))2 (28) [-100,100] 30
i=1
1 < - X
Griewank £(0) = —Z e 1_[ cos (—1) +1 (29) [-600,600] 30
4000 £, o i
i= i=
n n
Schwefel’s 2.22 fol) = Z|xi| + 1_[|xi| (30) [-10,10] 30
i=1 i=1
n
Rastrigin £o(x) = Z[xf — 10 cos(2mx;) + 10] 31 [-5.12,5.12] 30

i=1

the inertia weight and the speed update method named as
MPSO [32], the algorithm for improving the speed update
method named as IPSO1 [33], improved inertial weight and
adaptive learning factor algorithm named as IPSO2 [34] and
random-driven global PSO named as R-dPSO [35]. Use nine
test functions to test the performance of these six algorithms.
The parameter settings of the six algorithms are shown
in Table 1. These nine functions are as Table 2.

In this paper, fitness is Mean Square Error (MSE) between
the true value and the predicted value, and the calculation
formula is as follows.

1 ’ 2
fitness = MSE = = 3" (i — i) . (22)

n i=1
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Where y; is the true value, and y; is the predicted
value.

The optimization results of the nine functions for the
best fitness are shown in Figure 6, Figure 7, and Figure 8,
respectively. The advantages and disadvantages of the six
algorithms are ranked according to the best fitness. If the
best fitness is the same, the average fitness is compared for
ranking. The smaller the fitness value, the better performance
in optimization and the higher the ranking. The best fitness,
average fitness and ranking of nine functions are shown
in Table 3, Table 4, and Table 5 for six algorithms.

These nine functions can test the optimization ability and
speed of the algorithm. According to the above three opti-
mization result figures and three optimization result tables,
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TABLE 3. Result comparison on f;, f, and f;.
Algorithm Best Mean Rank Algorithm Best Mean Rank
basic PSO 1.98E+01 1.99E+01 4 1PSO2 1.18E+01 1.28E+01 3
fi MPSO 2.00E+01 2.00E+01 5 R-dPSO 4.44E-16 1.15E+00 2
IPSO1 2.00E+01 2.00E+01 5 MBPSO 4.44E-16 7.20E-01 1
basic PSO 8.96E+08 1.04E+09 4 IPSO2 3.71E+08 5.52E+08 3
f2 MPSO 1.71E+09 1.75E+09 6 R-dPSO 2.87E+01 6.41E+01 2
IPSO1 1.34E+09 1.43E+09 5 MBPSO 2.87E+01 5.62E+07 1
basic PSO 1.10E+01 1.80E+04 4 IPSO2 4.51E+00 1.80E+04 3
f MPSO 2.05E+01 1.80E+04 6 R-dPSO 7.30E-20 1.80E+04 2
IPSO1 1.52E+01 1.80E+04 5 MBPSO 1.06E-34 1.80E+04 1

it can be seen that the performance of MBPSO is far
better than the basic PSO, MPSO, IPSO1, IPSO2. The
four algorithms of basic PSO, MPSO, IPSO1, IPSO2 are
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easy to fall into the local optimal value, and the popula-
tion diversity decreases with the increase of the number of
iterations. Therefore, the iteration process stagnates and the
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TABLE 4. Result comparison on fy, f5 and fg.

Algorithm Best Mean Rank Algorithm Best Mean Rank

basic PSO 1.86E+03 2.75E+03 3 TPSO2 2.86E+03 3.12E+03 4

fa MPSO 8.21E+03 8.24E+03 6 R-dPSO 4.41E-27 1.70E+02 2

IPSO1 5.18E+03 5.56E+03 5 MBPSO 1.42E-56 1.28E+02 1

basic PSO 4.22E+02 1.31E+04 5 IPSO2 1.41E-11 3.40E+03 3

fs MPSO 1.74E+05 1.74E+05 6 R-dPSO 5.68E-28 4.66E+03 2

IPSO1 3.46E+02 1.36E+04 4 MBPSO 1.38E-54 3.59E+03 1

basic PSO 1.30E+05 1.45E+05 4 IPSO2 6.91E+04 8.64E+04 3

fe MPSO 2.29E+05 2.29E+05 6 R-dPSO 6.61E-25 5.14E+03 2

IPSO1 1.49E+05 1.81E+05 5 MBPSO 8.49E-56 3.77E+03 1

TABLE 5. Result comparison on fy, fg and fo.

Algorithm Best Mean Rank Algorithm Best Mean Rank

basic PSO 1.17E+03 1.31E+03 4 PSO2 6.23E+02 7.79E+02 3

f7 MPSO 2.06E+03 2.07E+03 6 R-dPSO 0.00E+00 4.64E+01 2

IPSO1 1.35E+03 1.63E+03 5 MBPSO 0.00E+00 3.40E+01 1

basic PSO 1.50E+02 1.67E+20 4 IPSO2 1.50E+02 8.84E+19 3

fs MPSO 2.76E+02 1.77E+20 6 R-dPSO 1.00E-15 8.84E+19 2

IPSO1 1.82E+02 9.20E+19 5 MBPSO 8.70E-29 8.84E+19 1

basic PSO 2.37E+02 2.61E+02 5 IPSO2 2.90E+01 4.24E+01 3

fo MPSO 6.60E+02 6.65E+02 6 R-dPSO 0.00E+00 3.50E+01 2

IPSO1 2.10E+02 2.44E+02 4 MBPSO 0.00E+00 2.24E+02 1

TABLE 6. Average optimal value sort.
z basic PSO MPSO IPSO1 IPSO2 R-dPSO MBPSO
Sum of rank 37 53 43 17 18 9
Final rank 4 6 3 2 1

optimization performance is poor. R-dPSO and MBPSO
increase the abundance of the population as much as possible,
and expand the optimization space of the particles to a certain
extent. In addition to superior optimization potential, MBPSO
is slightly better than R-dPSO in convergence speed and
convergence accuracy.

Table 6 calculates the sum of rank and final rank about
the performance of six PSO algorithms in nine test function
results. The optimal value ranking is an important evaluation
index for algorithm optimization performance. MBPSO ranks
first under the test of each function, and has the best global
search performance for nine functions.

B. EXAMPLE OF IDP PREDICTION MODEL

In China, rice and vegetables are the two very important
agricultural products. Soil plays a central role in food safety
by supplying possible components at the root of the food
chain [43]. More than 60% of China’s population eat rice, and
rice safety is the top priority of food security. If you eat rice
and vegetables contaminated with metal Cr, it will increase
the incidence of cancer [44]. In 2014, Norton et al. reported
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that white rice from China showed significantly higher Pb
concentrations (0.064Mgg_1, n = 88) than that from other
countries (0.004 — O.O33/ng’1 ,n = 572) [45]. In summary,
the prediction of the content of heavy metals Cr and Pb in
soil is of great significance to the research on the safety of
agricultural products of rice and vegetables.

In order to verify the feasibility and superiority of IDP,
two datasets are selected for experiments. The first dataset
comes from the farmland soil heavy metal dataset of Dongx-
ihu District, Wuhan City, which is datasetl, and the second
dataset comes from the farmland soil heavy metal dataset
of Hannan District, Wuhan City, which is dataset2. Cr and
Pb in the two datasets are used as prediction objects. The
longitude, latitude, sampling depth, and crop type codes of
the sample are used as the input variables of the model, and
the heavy metal content is used as the output variable of the
model. The first group has 82 sets of data, of which 62 groups
are used as training data, and 20 are used as testing data.
The second group has 53 sets of data, of which 40 groups are
used as training data and 13 are used as testing data. Among
them, according to the different types of crops, the testing
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FIGURE 9. Metal Cr prediction results of BPNN, SVM, LSSVM, PSO-LSSVM and IDP in training data of dataset 1.
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FIGURE 10. Metal Cr prediction results of BPNN, SVM, LSSVM, PSO-LSSVM and IDP in testing data of dataset 1.

TABLE 7. Parameter settings.

Model Parameter
BPNN learning rate=0.01, iteration=50
SVM C=25,0=10
LSSVM C=25,0=10
PSO-LSSVM M=30, D=2, iteration=50, C € (0,50),0 € (0,20)
IDP M=30, D=2, iteration=50,C € (0,50),0 € (0,20)

data is selected uniformly from the dataset from low to high
heavy metal content, and the unselected data is used as the
training data. Under the two datasets, first train the model
by training data, and then use the trained model as IDP to
predict the heavy metal content of the testing data. Before
the experiment, the experimental data should be normalized
first, and the maximum and minimum values are selected as
the normalization method.

At present, common and proven predictive models for
predicting the content of heavy metals in soil are BPNN [46]
and SVM [47]. Choose these two models and LSSVM,
PSO-LSSVM as the comparative experimental model of IDP.
To ensure the fairness of the experiment, all experiments are
carried out in the same environment. The SVM core function
is the RBF function. Except for SVM and LSSVM, others
the number of iterations of the model is 50. The iterative
process is the learning and training of the model. The number
of Neural Network nodes in the input layer, hidden layer, and
output layer of BPNN are 4, 8, 1, and the learning rate of
Network is 0.01. SVM and LSSVM use the same parameter.
PSO-LSSVM and IDP use the same initial population to
optimize model parameters. The parameter settings of the five
models are shown in Table 7.

The relevant experimental results of the five models for the
heavy metals Cr and Pb in datal are given. The simulation
fitting results of the training data are shown in Figure 9 and
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Figure 11 respectively. The simulation prediction results of
the testing data are shown in Figure 10 and Figure 12 respec-
tively. The error of the related experimental results is shown
in Figure 13. The error is the absolute value of the difference
between the real value and the predicted value.

Observing Figure 9, for the fitting of the heavy metal Cr
training data, we can see that the fitting result of SVM and
IDP is better than the other three models, and the overall
fitting effect of SVM is better than that of IDP. It can be
seen in combination with Figure10 that the prediction result
of IDP on the testing set is significantly better than SVM.
Although SVM has a good fitting result on the training data,
the generalization ability of the trained model is poorer than
IDP, so the prediction error of the testing data is significantly
higher than IDP. LSSVM and PSO-LSSVM have similarity
to the experimental results of training data and testing data,
indicating optimized parameters of PSO-LSSVM are similar
to the initial parameters of LSSVM, or have similar effects
on the data prediction.

Observing Figure 11 and Figure 12, we can see that IDP fit-
ting and prediction results are excellent. Although the fitting
result of SVM training data is relatively good, its prediction
result on the testing set is not ideal, indicating that the gen-
eralization performance of SVM is not ideal. In comparison,
LSSVM has more stable prediction performance on the train-
ing data and testing data. BPNN is due to its own limitations,
and the simulation results of the training data and testing data
are not ideal.

Observing the error of the two heavy metal training data
and testing data of datasetl in Figure 13, we can see that,
overall, IDP has the highest prediction accuracy.

The relevant experimental results of the five models on the
heavy metals Cr and Pb in dataset2 is given. The fitting results
of the training data are shown in Figure 14 and Figure 16,
respectively. The prediction results of the testing data are
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FIGURE 14. Metal Cr prediction results of BPNN, SVM, LSSVM, PSO-LSSVM and IDP in training data of dataset 2.

shown in Figure 15 and Figure 17. The error of the related
experimental results is shown in Figure 18.

Observing Figure 14 and Figure 15, we can see that in
addition to IDP, the other four models are not satisfactory
in fitting and predicting the content of Cr in data2. The
reason for BPNN may be the insufficient performance of the
model itself. SVM, LSSVM and PSO-LSSVM are affected
by model parameters. The fitting trend of each spot of the
three models is similar, and the error of each spot is similar.
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The performance of parameters after learning and training
of PSO-LSSVM is similar to that of the initial parameters
artificially set by LSSVM. The results prove that PSO is not
ideal about parameter optimization of LSSVM, and it is easy
to fall into local optimal values due to itself limitation. The
fitting and prediction results of IDP are relatively ideal, which
proves that IDP not only has excellent parameter optimization
performance, but also has strong generalization ability and
good prediction effect.
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FIGURE 17. Metal Pb prediction results of BPNN, SVM, LSSVM, PSO-LSSVM and IDP in testing data of dataset 2.

Observing Figure 16 and Figure 17, we can see that the
training fitting results of SVM and IDP are relatively ideal,
but the predicted value of SVM on the testing data is quite
different from the true value. This is the reason for the
unstable generalization of SVM. The fitting and prediction
results of LSSVM and PSO-LSSVM are relatively stable. The
generalization performance of the model mainly depends on
the quality of the trained model. The error of BPNN predic-
tion is large, and the prediction performance of the model
is average. Observing the error of the simulation results of
the two heavy metal training data and testing data of data2,
Figure 18 shows that, overall, the IDP model has the highest
prediction accuracy.

Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and Mean Absolute Percentage Error (MAPE)
are three groups of error values as the evaluation index of
the data prediction performance. The smaller the evaluation
index value is, the higher the corresponding model have data
prediction accuracy. The three sets of error formulas are as
follows.

1 n
RMSE = \/ =D O, (33)
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(34)

ok = (5, ).

1 _—
mape = L3 Dzl oo,

. (35)
n~—i=l vy

Whery; is the true value of the metal content at each spot, and

¥} is the predicted value of the metal at each spot.

Table 8 and Table 9 are the three sets of error values for
fitting and prediction of dataset]l and dataset2 about the heavy
metal Cr and Pb. The smaller the error value, the better the
prediction performance of the model. The prediction errors
of the two models of LSSVM and PSO-LSSVM are relatively
close, indicating that the model parameters of PSO-LSSVM
and LSSVM have similar effects on the prediction perfor-
mance. The fitting and prediction performance of BPNN is
average. In the simulation experiment of datasetl, the fitting
error of SVM to training set is smaller than IDP, but the
prediction error of the testing set is larger than IDP, indicating
that the generalization performance of SVM is not ideal.
From the overall analysis of the data in the table, it can be
seen that IDP has the best fitting effect on the training data,
and its generalization ability is very stable, and the prediction
error on the testing set is the smallest. On the whole, IDP has
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TABLE 8. The calculated value of error indicators in dataset 1.
Dataset1 Training data (ﬁll\g/l/ig) (nl\l/[g?lfg ) M(:;)I))E Testing data (lr{nl\g/l/ig) (ri/lgl?kl?g) M(I;)I))E
BPNN 15.14 12.15 19.76 BPNN 20.84 16.29 29.42
SVM 7.99 6.90 10.89 SVM 21.62 15.67 28.12
Cr LSSVM 15.85 13.70 22.00 LSSVM 17.01 14.39 24.06
PSO-LSSVM 17.81 14.03 22.72 PSO-LSSVM 16.08 15.08 26.16
IDP 10.55 7.56 12.17 IDP 4.71 3.86 6.46
BPNN 4.60 3.63 20.73 BPNN 5.84 437 28.31
SVM 2.09 1.89 9.77 SVM 5.80 4.59 26.40
Pb LSSVM 4.78 3.97 22.83 LSSVM 5.39 4.56 26.70
PSO-LSSVM 4.87 4.11 24.09 PSO-LSSVM 5.56 4.79 27.95
IDP 1.07 0.45 2.49 IDP 0.08 0.21 1.03
TABLE 9. The calculated value of error indicators in dataset 2.
Dataset2 Training data (I:nl\gll/ig) (rl:l/[g?lfg ) M({;)};E Testing data (l;]\g/[/i}gs) (nh:[gl?kEg) M({,Z};E
BPNN 24.93 17.88 23.47 BPNN 30.82 24.70 35.59
SVM 28.80 22.81 27.82 SVM 32.02 23.84 31.43
Cr LSSVM 27.31 21.67 28.09 LSSVM 23.71 19.37 25.81
PSO-LSSVM 27.76 22.29 28.71 PSO-LSSVM 25.29 20.89 30.01
IDP 2.94 2.51 3.39 IDP 10.43 7.97 8.27
BPNN 4.93 4.05 22.43 BPNN 6.41 4.76 29.37
SVM 1.70 1.63 8.52 SVM 5.11 3.91 24.08
Pb LSSVM 5.44 4.53 24.67 LSSVM 5.10 4.48 24.94
PSO-LSSVM 5.51 4.61 25.04 PSO-LSSVM 5.22 4.45 25.46
IDP 1.39 1.17 6.22 IDP 1.15 0.76 4.24

the best performance in predicting soil heavy metal content
for smart service.

In addition to the above comparison, Table 10 also provides
the training time required for each group of experiments.
It can be seen from the data in the table that the training time
of SVM and BPNN is similar, but SVM only performs one
non-linear calculation, while BPNN has 50 parameter opti-
mization processes. It can be seen that the non-linear calcula-
tion of SVM is better than that of BPNN. It may be because
the calculation process of SVM is more complicated. The run-
ning time of LSSVM is much longer than that of BPNN and

32364

SVM. The reason is that there are complex kernel calculations
inside LSSVM. The running time of POS-LSSVM and IDP
is much longer than the previous models, and the training
time required for the two models is similar. Both models are
optimized by the process of parameter optimization, and each
optimization requires complex kernel calculations, so the
required running time is longer. Combining the analysis of
Table 8 and Table 9, it can be seen that the optimization pro-
cess of IDP is more effective, the final fitting and prediction
result of model training has smaller errors, and the model
performs stronger generalization performance when tested.
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TABLE 10. The runtime of five models for training.

Data Cr Runtime(s) Pb Runtime(s) Data Cr Runtime(s) Pb Runtime(s)
BPNN 0.11 BPNN 0.09 BPNN 0.02 BPNN 0.04
SVM 0.17 SVM 0.18 SVM 0.13 SVM 0.17
datal LSSVM 0.49 LSSVM 0.39 data2 LSSVM 0.19 LSSVM 0.20
PSO-LSSVM 150.83 PSO-LSSVM 117.59 PSO-LSSVM 48.35 PSO-LSSVM 62.05
IDP 106.23 IDP 110.72 IDP 47.93 IDP 53.26
TABLE 11. Model final parameters of LSSVM, PSO-LSSVM, IDP.
Data Cr c o num Pb Cc o num
LSSVM 25.00 10.00 - LSSVM 25.00 10.00 -
datasetl PSO-LSSVM 27.44 14.30 1 PSO-LSSVM 27.44 14.30 1
IDP 16.51 1.29 50 IDP 30.02 0.35 47
LSSVM 25.00 10.00 - LSSVM 25.00 10.00 -
dataset2 PSO-LSSVM 27.44 14.30 1 PSO-LSSVM 27.44 14.30 1
IDP 17.36 0.50 50 IDP 29.32 1.26 46

In Table 11, ¢, o are the final fitting model parame-
ters of LSSVM, PSO, and IDP, and num is the number of
times required to find the best parameter. The parameters of
LSSVM are obtained based on experience and there is no
optimization process. The num of PSO-LSSVM are all 1,
which means that the iteration process has stagnated after
the model obtains parameters from 10 initial populations for
the first time. The model has the same initial populations,
so PSO-LSSVM optimized the same parameters for the four
groups of experiments. IDP better avoids the shortcomings of
PSO-LSSVM easy to fall into the local optimum. According
to the different optimization processes of each group of exper-
iments, the parameters of each model are finally different, and
the generalization performance of IDP after being trained is
better.

VI. CONCLUSION AND FUTURE WORK

In this paper, big data prediction methods are used as research
objects to predict the content of metal in soil. IDP is proposed
to fit and predict data through the collaboration of MBPSO
and LSSVM for smart service. In order to verify the feasi-
bility and superiority of IDP, this paper uses two datasets of
farmland soil heavy metal as experimental objects. Through
the prediction of the heavy metal content, the errors are
compared to judge the performance of model learning, gen-
eralization and prediction. The experimental results of IDP
comparing BP, SVM, LSSVM and PSO-LSSVM show: In
datasetl1, the prediction accuracy of Cr is increased by 22.9%,
21.66%, 17.60%, 19.70%, and the prediction accuracy of Pb
is increased by 27.28%,25.37%, 25.67%, 26.92%, respec-
tively; In dataset2, the prediction accuracy of Cr increased by
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27.32%, 23.16%, 17.54%, 21.74%, and the prediction accu-
racy of Pb increased by 25.13%, 19.84%, 20.70%, 21.22 %,
respectively.

Experimental results show that under the intelligent ser-
vice model combining MBPSO and LSSVM, IDP learns the
known data repeatedly through the optimization process of
MBPSO. The training results can provide good parameters
for the model. IDP accurately predicts data through complex
core calculations in the model. The model saved by training
has excellent prediction results for new knowledge.

Although IDP has high prediction accuracy in this study,
there is still some supplementary work to be improved. In the
later stage of optimization, although the results of the local
search are still changing, it has a small impact on the IDP
prediction accuracy. Whether it is necessary to optimize the
later stage requires further discussion.

IDP has complex core calculations, so when the amount
of data is very large, the requirements for corresponding
computing equipment will be very high. The LSSVM inside
IDP is sensitive to outliers. Even if there are a few outliers in
the data used for experiments, the experimental error will be
large.

In future work, for the model proposed in this article,
we can consider continuing to improve the PSO to improve
the optimization speed and accuracy of the model. For exam-
ple, other intelligent algorithms can be combined to improve
PSO. Or, by optimizing the structure of the IDP, the predic-
tion time is reduced and the prediction error is reduced. For
example, intelligently monitoring the number of iterations
can not only ensure the optimization of the required param-
eters, but also avoid unnecessary optimization time. You can
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also consider combining other swarm intelligence algorithms
and machine learning algorithms to build models. You can
also consider trying other data sets to expand the scope of
model applications. In short, improving the generalization
performance and prediction accuracy of prediction models is
the focus of future work.
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