
Received December 21, 2020, accepted January 18, 2021, date of publication February 18, 2021, date of current version March 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057057

A Comparative Study of Four Merging Approaches
for Regional Precipitation Estimation
ZEDONG FAN1, WEIYUE LI 1,2,3, QIN JIANG4,5, WEIWEI SUN 6,7,8, JIAHONG WEN1, AND JUN GAO1
1School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
2Institute of Urban Studies, Shanghai Normal University, Shanghai 200234, China
3Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
4Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
5School of Geographic Sciences, East China Normal University, Shanghai 200241, China
6Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
7Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research at Ningbo University, Ningbo 315211,
China
8Institute of East China Sea, Ningbo University, Ningbo 315211, China

Corresponding authors: Weiyue Li (lwy326@shnu.edu.cn) and Jiahong Wen (jhwen@shnu.edu.cn)

This work was supported in part by the Natural Science Foundation of Shanghai under Grant 19ZR1437500, in part by the National
Natural Science Foundation of China under Grant 41730642, and in part by the Shanghai Gaofeng & Gaoyuan Project for University
Academic Program Development and Shanghai Sailing Program under Grant 20YF1434900.

ABSTRACT To identify suitablemergingmethods to improve regional precipitation estimates usingmultiple
sources of precipitation data, this study applied four different approaches (multiple linear regression (MLR),
feedforward neural network (FNN), random forest (RF) and long short-term memory network (LSTM)) to
merge four satellite precipitation products and one reanalysis data in the Jiangsu, Zhejiang and Shanghai
of China. The pros and cons of the merging approaches are analyzed comprehensively, using correlation
coefficient (CC), root mean square error (RMSE), relative bias (RB), probability of detection (POD), false
alarm ratio (FAR), and critical success index (CSI) as evaluation indexes. Our results show that: (1) All
merging approaches can improve the accuracy of precipitation estimations, but only RF and LSTM can
improve the daily precipitation event detection capacity. These approaches can significantly reduce errors
in moderate precipitation scenarios, but do not effectively improve accuracy in light and heavy precipitation
scenarios. (2) MLR was the least expensive computing cost method in our study and performed better than
the other three methods when gauge density was low. However, MLR had the worst daily precipitation
event detection capacity (CSI = 0.67). (3) FNN performed moderately in most experiments (CC = 0.87,
RMSE= 4.65mm/day, RB= 1.19%, POD= 0.94, FAR= 0.29, CSI= 0.70). (4) Themerged data generated
by RF was the most accurate and had the best daily precipitation event detection capacity (CC = 0.87,
RMSE = 4.61 mm/day, RB = − 0.33 %, POD = 0.97, FAR = 0.20, CSI = 0.78). RF performed best in
moderate precipitation scenarios. However, it performed worse than other methods when gauge density was
low. (5) LSTMwas the most robust methods and performed best in light precipitation scenarios. The FAR of
the LSTM-generated data was the smallest (0.15) among four fusion methods. However, LSTM had the most
expensive computing cost and the worst accuracy of the merged data (CC = 0.86, RMSE = 4.68 mm/day,
RB = − 9.36 %).

INDEX TERMS Accuracy improvement, data merging, gridded precipitation data, precipitation estimation,
robustness.

I. INTRODUCTION
Quantitative and accurate precipitation estimation is cru-
cial for water resource management, natural disaster pre-
vention, and risk management [1], [2]. However, current
mainstream gridded precipitation products (e.g., interpolated
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precipitation products, satellite precipitation products and
reanalysis datasets) have their own advantages and disad-
vantages. Generally, the quality of interpolated precipitation
products is affected by the density of rain gauges and the
consistency of the historical record periods [3], their spatial
coverage is often limited to land, and they have thus larger
errors in areas where the rain gauge networks are sparse [4].
Compared with interpolated data, satellite rainfall products
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and reanalysis datasets have the advantages of quasi global
spatial coverage. Satellite rainfall products can provide near
real-time data [5], and reanalysis datasets have a long history
of data records [6], which have been widely used in climate
change research [7]. However, some studies have noted that
there are some errors in these two types of data [8]. Vary-
ing sensor types, retrieval algorithms, and spatial sampling
frequencies, can often cause satellite precipitation products
to present regionally varying biases [9]. Furthermore, due to
the influences of the assimilation model [10] and observation
data error [8], there can be spatial differences in precipi-
tation estimation accuracy [11]. Therefore, many scholars
have attempted to obtain more accurate precipitation data
by correcting these raw precipitation products or even by
combining multiple products.

One of the most common examples of a combined
approach is the multiple linear regression (MLR) algorithm.
It has long been used in precipitation data fusion because it
can quickly fit the weight of data for fusion and generate a
relatively objective fusion scheme [12]. Moreover, ordinary
kriging has also been applied to precipitation data fusion
because it can improve the fused data’s ability to capture
extreme precipitation [13]. Machine learning algorithms have
also been widely used in remote sensing data fusion because
of their ability to solve nonlinear problems [14], [15]. For
example, the merged result that was created utilizing artificial
neural networks is far superior to all of the individual precipi-
tation datasets used as inputs [16]. Baez-Villanueva et al. [17]
used random forest (RF) to merge multi-source precipitation
data, significantly improving the accuracy of themerged data.

With the improvement of computer hardware and the
increase in the amount and availability of data, deep learn-
ing has become widely used in many fields [18], [15].
Deep learning can also be used to fuse precipitation data.
Wu et al. [19] proposed a model to merge multi-source pre-
cipitation data that combined a convolutional neural network
(CNN) and a long short-term memory network (LSTM). The
model improved the accuracy of satellite data and was more
accurate than multi-layer perception.

Although these approaches usually improve the general
accuracy of precipitation estimation, there are still prob-
lems that can arise with their merged data. For example,
the accuracy of the merged data can have obvious spatial
differences in regional precipitation estimations, owing to
influences from sources such as data error or parameter set-
ting [17], [19]. Moreover, the robustness of some merged
methods is low [20]. Although some researchers have eval-
uated the performance of precipitation products in various
scenarios [21]–[23], there are few studies that have focused
on the applicability of merging approaches. Therefore, this
study attempts to identify the strengths and weaknesses of
data fusion in improving the quality of precipitation data.
To this end, we comprehensively compare the pros and cons
of different merging approaches that are used to fuse the same
data, instead of only comparing the total accuracy of different
merged data.

FIGURE 1. Study area and the distribution of rain gauges.

In this study, MLR, feedforward neural networks (FNN),
RF, and LSTM are selected to merge five mainstream
gridded precipitation products and subsequently generate
merged data. MLR and FNN are selected for study because
they have been used in the generation of two main-
stream precipitation datasets to date: the CPC Merged
Analysis of Precipitation (CMAP) and the Precipitation
Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks-Climate Data Record (PERSIANN-
CDR) [12], [24]. RF and LSTM are chosen as they have
become increasingly popular in recent years. In 2020, they
were used to fuse precipitation datasets, creating merged
results that were better than other mainstream precipitation
datasets in some regions [17], [19].

In order to holistically evaluate these methods, this paper
first outlines the study area and the datasets used in our
study, including rain gauge observations, satellite precipita-
tion products and a reanalysis dataset. Then, the merging
approaches and accuracy verification methods are introduced
in the METHODS section. The analysis of error and the daily
precipitation event detection capacity for the four methods
are presented in the RESULTS section, before being further
analyzed in the following DISCUSSION. Finally, the study
and its major results are summarized in the CONCLUSION.

II. STUDY AREA AND DATA
A. STUDY AREA
This study focused on the Jiangsu, Zhejiang and Shanghai,
regions that cover an area of about 219000 km2 and have
dense rain gauge networks. This area has a subtropical mon-
soon climate. The terrain is high in the south and low in
the north, with the altitude of most areas less than 1000 m,
as shown in Fig. 1.

B. DATA
1) RAIN GAUGE DATA
The rain gauge data are from the daily dataset of surface cli-
mate data of China, which can be downloaded from the China
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Meteorological Data Service Centre (http://data.cma.cn/).
After quality control, 49 available rain gauges were selected
and distributed in Jiangsu, Zhejiang, Shanghai, and their
surrounding areas. In this study, the inverse distance weight
interpolation method was used to interpolate the rain gauge
data into gauge-based interpolated data (GID) with a spatial
resolution of 0.25◦×0.25◦, which was then used as the ‘truth
value’ in the data fusion and accuracy tests.

TABLE 1. Details of the five gridded precipitation products.

2) GRIDDED PRECIPITATION PRODUCTS
In total, five mainstream gridded precipitation products (four
satellite gridded precipitation products and one reanaly-
sis product) were selected for the merging test, includ-
ing Tropical Rainfall Measuring Mission 3B42 version
7 (3B42V7) [25], Climate Prediction Center Morphing
technique satellite-gauge blended product (CMORPH-
BLD) [26], PERSIANN-CDR [24], Climate Hazards
Group InfraRed Precipitation with Station data version
2.0 (CHIRPS) [27] and European Centre for Medium-
range Weather Forecasts Reanalysis 5 (ERA5) [28]. Pre-
vious studies have shown that these products are able to
reflect spatial distributions and temporal changes of pre-
cipitation [23], [29], [30]. A summary of these products is
presented in Table 1.

a: 3B42V7
Tropical Rainfall Measuring Mission (TRMM) data is pro-
duced using the TRMM multi-satellite precipitation analy-
sis (TMPA) method, which first combines microwave and
infrared data to estimate precipitation, and then corrects these
estimates using rain gauge data [25]. TMPA provides two
kinds of standard precipitation products: near-real-time data
3B42RT and non-real-time analysis data 3B42. Version 7 of
3B42, provided by National Aeronautics and Space Admin-
istration (NASA) and Japan Aerospace Exploration Agency
(JAEA), can be downloaded from https://pmm.nasa.gov/data-
access/downloads/trmm, was used in this study.

b: CMORPH-BLD
Climate Prediction Center Morphing (CMORPH) data uses
motion vectors derived from half-hourly infrared imagery
to propagate precipitation estimates derived from pas-
sive microwave data [26]. CMORPH-BLD is a product
that blends raw CMORPH data with rain gauge data.

It is provided by the National Centers for Environmen-
tal Prediction (NCEP), and can be downloaded from
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/.

c: PERSIANN-CDR
PERSIANN-CDR is generated from infrared data using arti-
ficial neural networks, and is adjusted using the Global
Precipitation Climatology Project (GPCP) monthly prod-
uct [24]. PERSIANN-CDR is developed by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the
University of California, Irvine (UCI), and can be down-
loaded from https://www.ncei.noaa.gov/data/precipitation-
persiann/access/.

d: CHIRPS
CHIRPS blends satellite information, cold cloud dura-
tion (CCD) observations and rain station data to generate
precipitation estimates [27]. CHIRPS is provided by the Cli-
mate Hazards Group (CHG) at the University of Califor-
nia, Santa Barbara (UCSB) and can be downloaded from
http://chg.geog.ucsb.edu/data/chirps/.

e: ERA5
ERA5 is the latest reanalysis product of the European Cen-
tre for Medium-Range Weather Forecast (ECMWF), and
is produced using the Integrated Forecast System (IFS)
cycle 41r2 with four-dimensional variational analysis [28].
ERA5 is provided by ECMWF, and can be downloaded from
https://cds.climate.copernicus.eu/cdsapp#!/home.

III. METHODS
A. DATA PREPROCESS
First, the rain gauge data were interpolated into gridded data.
Then, the time benchmarks (UTC) of satellite precipitation
and reanalysis products were matched to the observation time
(GMT + 8) of the rain gauges. All data were accumulated
on a daily scale for normalization. In this study, data from
2003 to 2013 (4018 samples) were selected as the training
set, data from 2014 (365 samples) were selected for parameter
validation, and data from 2015 (365 samples) were selected
as the test set. The simulations were executed on a computer
runningWindows 10, with an Intel i7-67000 (3.40 GHz) CPU
and 20GB of RAM. The code was programmed in Python 3.6.

B. MERGING APPROACHES
The precipitation data were fused, pixel by pixel, using four
different methods. The fusion approaches used in this study
include: MLR, FNN, RF, and LSTM.

1) MULTIVARIATE LINEAR REGRESSION
Linear algorithms have been applied in many precipitation
data fusion studies [4], [31]. The linear algorithm used in this
study is as follows:

PMLR = α0 · P0 + . . .+ α4 · P4 + β (1)
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where P0. . .P4 are the precipitation values of CMORPH-
BLD, 3B42V7, PERSIANN-CDR, CHIRPS and ERA5,
respectively; α0. . .α4 are the corresponding regression coeffi-
cients ofP0. . .P4, andβ is the intercept. All values are defined
by the least squares method. PMLR is the merged result based
on MLR.

2) FEEDFORWARD NEURAL NETWORK
FNN is a popular neural network. The information in FNN
only travels forward and the connections between the nodes
do not form cycles [32]. FNN has good self-learning and
self-organizing ability and can simulate complex nonlinear
mapping [33], [34]. The FNN model used in this study con-
sists of three layers: an input layer, a hidden layer, and an
output layer. The input variables are the precipitation values
of CMORPH-BLD, 3B42V7, PERSIANN-CDR, CHIRPS
and ERA5. The output is the merged result based on the FNN.

According to the tutorial of scikit-learning [35], the limited
memory BFGS (L-BFGS) method can converge faster and
perform better than other methods for small datasets (detail
about L-BFGS can be found in [36]). Therefore, L-BFGSwas
selected as the optimizer of the FNN model in this study. The
number of neurons in the hidden layer, nFNN , was determined
from the candidate set {6, 7, 8, 9, 10, 11, 12}. For this study,
nFNN was set to 11, as this number allowed the FNNmodel to
perform best for the validation dataset. Similarly, the learning
rate and the number of iterations of the FNN were set as 0.05
and 2000, respectively.

3) RANDOM FOREST
RF is a type of algorithm proposed by [37], which per-
forms well when facing classification and regression prob-
lems [38]–[40]. RF has been used in precipitation data
fusion [17] and precipitation downscaling [41]. The RF
model used in this study is as follows:

PRF =
1
γ
·

∑γ

e=1
t∗e (X ) (2)

where e represents the individual bootstrap sample, X repre-
sents the input vector for the test, t∗e represents the individual
decision tree, γ is the number of trees, and PRF is the merged
result based on RF.

In this study, we constructed regression trees based on the
classification and regression tree algorithm, using the mean
square error as the basis of node splitting. γ was determined
from {25, 50, 100, 200}. The RF model generally performed
better as the number of trees increased. However, when
γ = 200, it took more time to train the model, and the RMSE
of the merged result did not decrease. Therefore, the number
of regression trees was set to 100. The minimum number
of samples required for a leaf node, nmin, was determined
from {1, 2, 3, 4, 5, 6, 7, 8, 9}. The RF model performed
best when nmin = 6. Therefore, any split point in this study
left at least 6 training samples in each of the left and right
branches. Additionally, the number of features to consider
when searching for the optimal split, nfeatures, was set as 3,

since the RF model performed better with this number than
when nfeatures = 1, 2, 4 or 5.

4) LONG SHORT-TERM MEMORY NETWORK
LSTM is an improved version of a recurrent neural net-
work, which is typically used to process sequential data [19].
A basic LSTMmodule usually consists of a memory cell and
3 gates (input, forget and output gates) [42]. The gates are
used to determine the amount of information that should be
remembered and the cell is used to store the information [43].
The related formulations are as follows:

It = σ (WISt + UIHt−1 + δI ) (3)

Ft = σ (WFSt + UFHt−1 + δF ) (4)

Ot = σ (WOSt + UOHt−1 + δO) (5)

C̃t = tanh(WCSt + UCHt−1 + δC ) (6)

Ct = Ft ⊗ Ct−1 + It ⊗ C̃t (7)

Ht = Ot ⊗ tanh(Ct ) (8)

where the variables I , F , O, and C represent the input gate,
forget gate, output gate, and memory cell, respectively. S and
H are the input vector and the hidden vector, respectively.
Subscript t denotes that a given variable refers to time, t .
Similarly, t − 1 refers to the previous time step. W is the
weight from each gate or memory cell to the input and
U represents the weight from each gate or memory cell
to the hidden state. δ represents the bias of each gate or
memory cell.

The subscripts I , F , O, and C indicate given variables
corresponding to the input gate, forget gate, output gate,
or memory cell, respectively. σ represents the activation func-
tion (sigmoid).

In this study, a dense (fully connected) layer is added after
the LSTM layer to generate the value of the merged result
using Ht . The Adam method was chosen as the optimized
for this model [44], as it performed better than both the
RMSprop and SGD methods. We use early stopping in our
study, meaning that the training of the model was ended when
the loss stopped decreasing (the models of all pixels stopped
within 1000 epochs). The number of neurons in the hidden
layer, nhidden, was selected from {3, 4, 5, 6, 7, 8, 9, 10, 50,
100}. nhidden was set to 4, as the LSTMmodel performed best
with this number. Similarly, the learning rate and batch size
were set to 0.001 and 30, respectively.

C. ACCURACY VERIFICATION METHODS
The fusion results were evaluated from two aspects: error
statistics and detection capability analysis. Error statistics
reflect the error between merged results and interpolated
data and include the correlation coefficient (CC), root mean
square error (RMSE), and relative bias (RB). CC reflects
the synchronicity of precipitation variation between the eval-
uated data and gauge data; RMSE indicates the averaged
error magnitude of the evaluated data and gauge data, and
RB reflects the probability of overestimation (RB < 0) or
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FIGURE 2. The spatial distribution of five precipitation products and four merged data and GID at a
yearly scale.

TABLE 2. Specifications of the four merging methods.

underestimation (RB> 0) from the evaluated data. Detection
capability analysis, which is used to evaluate the monitoring
capability of merged results for precipitation events, includes
the probability of detection (POD), false alarm ratio (FAR),
and critical success index (CSI). POD describes the proba-
bility that precipitation events are detected correctly by the
evaluated data. FAR describes the probability that the pre-
cipitation events are detected by the evaluated data but not
detected by gauge data. CSI describes the total capability of
the evaluated data relative to gauge data [45]. The equations
for these indicators are described in Table 3.

In Table 3, n indicates the number of samples and Gi
indicates the values of GID, Si indicates the values of the
evaluated data; Ḡ and S̄ indicate the average values of GID
and the evaluated data, respectively. H indicates the number
of rainfall events detected both by gauges and the evaluated
data, with M indicating the number just detected by gauges,
and F indicating the number detected by the evaluated data.

IV. RESULTS
A. SPATIAL DISTRIBUTION OF ANNUAL PRECIPITATION
The four sets of merged data generated in this study are based
on MLR (M-MLR), FNN (M-FNN), RF (M-RF), and LSTM

TABLE 3. Accuracy verification formulas.

(M-LSTM), respectively. The spatial distribution of annual
precipitation from GID, the precipitation products, and the
merged data are shown in Fig. 2. The annual precipitation
of GID in the southwest was the highest. In general, annual
precipitation increased gradually from north to south. The
spatial distribution characteristics generated from the pre-
cipitation products and merged data are all similar to those
from the GID. However, all five precipitation products clearly
overestimated the precipitation in the southern regions of
the study area. M-LSTM underestimated precipitation in the
north, east, southeast and southwest regions of the study area.
GID showed only 5 pixels where annual precipitation was
less than 800 mm/year, where there were 57 pixels placed
in this category by M-LSTM. According to GID, there were
46 pixels that exhibited annual precipitations greater than
2000 mm/year, whereas M-LSTM showed only 26 pixels.

B. ERROR ANALYSIS OF DAILY PRECIPITATION
Fig. 3 illustrates the relationships between the GID and the
studied precipitation products and merged datasets. In gen-
eral, among all gridded precipitation products before fusion,
CMORPH-BLDhas the highest accuracy, followed by ERA5.
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FIGURE 3. The scatter plots of five precipitation products and four merged data.

However, each of the merged datasets was more accu-
rate than any of the gridded precipitation products. The
merged datasets all had greater CCs and smaller RMSEs
than the five precipitation products, showing that these
merging approaches can reduce errors between precipita-
tion estimations and GID. Among the four merged datasets,
M-RF performed best (CC = 0.87, RMSE = 4.61 mm/day,
RB = − 0.33%), with a CC 11% higher than the best grid-
ded precipitation product (CMORPH-BLD) and an RMSE
24% lower. The other merged datasets had similar CCs
and RMSEs. However, M-LSTM not only performed worse
in terms of RB when compared to other merged datasets,
but also compared to the CHIRPS and ERA5 products.
It is worth mentioning that the gridded precipitation prod-
ucts before fusion all overestimated the actual precipita-
tion, whereas M-RF and M-LSTM underestimated the actual
precipitation.

According to [46], the rainy season over this study area
is from March to September, while the dry seasons are from
January to February and October to December. The average
rainfall in the rainy season (5.85 mm/day) is higher than in
the dry season (2.88 mm/day). Fig. 4 shows the accuracy of
the five precipitation products and four merged datasets at
different time periods. Regardless of the period, the CCs and
RMSEs of the merged data were always better than those of
the precipitation products. The first quartiles, median values,
and third quartiles of merged data’s CCs were all larger,
whereas the first quartiles, median values, and third quartiles
of the merged data’s RMSEs were smaller. The CCs of the
four merged datasets were better in the dry season. During
this time, their median values (0.89, 0.89, 0.90, 0.90) were
higher and their ranges (0.36, 0.37, 0.34, 0.40) were smaller
than those in the rainy season. The RMSEs of the four merged
datasets were also better in the dry season, withmedian values
(2.72 mm/day, 2.73 mm/day, 2.65 mm/day, 2.76 mm/day)
and ranges (6.42 mm/day, 6.26 mm/day, 7.63 mm/day, 6.44
mm/day) that were smaller than those in the rainy season.

However, the RBs were actually better in the rainy season,
exhibitingmedian values (2.82%, 2.71%,− 0.30%,− 4.56%)

FIGURE 4. Box charts of three error statistical indexes of the precipitation
products and merged data (Circles represent outliers and the length of
each boxes represents the interquartile range).

that were closer to 0% and ranges (63.78%, 61.61%, 52.85%,
52.91%) that were smaller than those in the dry season.

The spatial distribution of errors for the studied approaches
(Fig. 5, Fig. 6 and Fig. 7) showed that, in general, M-RF
performed best. Additionally, the merged datasets clearly per-
formed better than the precipitation products in terms of CC
and RMSE. CMORPH-BLD, 3B42V7, and ERA5 only had
193, 21, and 197 pixels with CC larger than 0.80, respectively.
PERSIANN-CDR and CHIRPS did not have any. Conversely,
90% of the pixels in the four merged datasets had a CC larger
than 0.80. In terms of RMSE, CMORPH-BLD, PERSIANN-
CDR, CHIRPS, and ERA5 only had 101, 16, 1, and 69 pixels
smaller than 5.00 mm/day, respectively. 3B42V7 did not have
any. The merged datasets, however, had more than 75% of
pixels with an RMSE smaller than 5.00 mm/day. There were
no obvious trends in the spatial distribution of CCs or RMSEs
in any of the testedmethods. The results regarding the relative
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FIGURE 5. Spatial distribution of CCs for the five precipitation products and four merged data
at a daily scale.

FIGURE 6. Spatial distribution of RMSEs for the five precipitation products and four merged
data at a daily scale.

FIGURE 7. Spatial distribution of RBs for the five precipitation products and four merged data
at a daily scale.

bias of the estimations, however, were more varied. Values
for CHIRPS, ERA5, and the four merged datasets in the

south were generally larger than those in the north. M-MLR,
M-FNN and M-RF all performed significantly better than the
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FIGURE 8. The box chart of the daily precipitation event detection
capacity of the precipitation products and the merged data.

precipitation products, with more than 85% of pixels having
RBs between − 10% and 10%. Only 66% of pixels from the
five precipitation products fell into this range and only 56.1%
from M-LSTM.

C. ANALYSIS OF DAILY PRECIPITATION EVENT
DETECTION CAPACITY
Compared with the five gridded precipitation products,
M-RF and M-LSTM had much greater daily precipitation
event detection capacity. However, the CSIs of M-MLR and
M-FNNwere lower than those of CMORPH-BLD and ERA5.
Furthermore, the FARs of the four merged datasets were all
greater than 3B42V7 and ERA5, signifying that there was
a greater probability that the merged data would misjudge
precipitation events. Even the smallest FAR (0.15) among
the merged data was 0.08 greater than the FAR of 3B42V7.
However, each of themerged data’s PODwas greater than any
of the precipitation products, signaling that merged datasets
could correctly detect more daily precipitation events. Even
the smallest total POD (0.90) among the four merged datasets
was 0.12 greater than that of CMORPH-BLD, which had the
largest POD among the precipitation products.

As shown in Fig. 8, the daily precipitation event detection
capacity of each pixel was analyzed across different time
periods. In general, M-RF performed best, too. In the rainy
season, the total daily precipitation event detection capacity
of the merged data was better than that of the precipitation
products. However, ERA5 performed better than the merged
data in the dry season. The PODs of the four merged datasets
were better in the dry season, with median values (0.99, 0.98,
0.98, 0.94) that were greater than those in the rainy season.
However, the POD ranges (0.40, 0.40, 0.30, 0.48) in dry
season were larger than those in the rainy season. Conversely,
the FARs of the merged datasets were better in the rainy
season, where they had median values (0.15, 0.15, 0.12, 0.08)
and ranges (0.40, 0.50, 0.31, 0.35) that were smaller than

those in dry season. The CSIs were also better in the rainy
season. The median CSI values (0.81, 0.81, 0.84, 0.83) in
the rainy season were greater than those in the dry season,
whereas the ranges (0.35, 0.49, 0.31, 0.33) were all smaller.

Fig. 9, Fig. 10 and Fig. 11 showed the spatial differ-
ences of the daily precipitation event detection capacity of
the merged data. Using these metrics, M-RF again showed
the best performance of all tested approaches. M-RF and
M-LSTM clearly had improved CSI values compared to the
precipitation products. CMORPH-BLD, PERSIANN-CDR,
and ERA5 only had 71.00%, 19.24% and 69.65% pixels with
CSIs greater than 0.80. 3B42V7 and CHIRPS did not have a
single pixel with a CSI over 0.80. However, more than 80%
of pixels from M-RF and M-LSTM had a CSI greater than
0.70. CSI values from CMORPH-BLD, 3B42V7, CHIRPS,
ERA5, and the four merged datasets all increased from north
to south, signifying that the pixels in the south had better daily
precipitation event detection capacity than those in the north.

The four merged datasets also had significantly bet-
ter PODs than the precipitation products. CMORPH-BLD,
PERSIANN-CDR and ERA5 only had 31.98%, 32.79% and
21.41% pixels, respectively, that had a POD greater than 0.90.
3B42V7 and CHIRPS had none. The four merged datasets,
however, had more than 57% of pixels with a POD greater
than 0.90. The values of CMORPH-BLD, PERSIANN-CDR,
ERA5 M-MLR, M-FNN and M-LSTM all increased from
north to south. M-RF had the smallest spatial difference of
PODs, with range of just 0.18. FAR values of CMORPH-
BLD, PERSIANN-CDR, CHIRPS, and the four merged data
all decreased from north to south. Additionally, the FAR of
the four merged datasets was clearly worse than 3B42V7
and ERA5.

D. ACCURACY EVALUATION IN DIFFERENT SCENARIOS
According to [23], daily precipitation events can be divided
into 3 categories according to precipitation intensities:
light precipitation (0.1–1 mm/day), moderate precipitation
(1–50 mm/day) and heavy precipitation (≥ 50 mm/day).
We classified our data according to these categories and reval-
uated the accuracy of each approach. The error statistics are
shown in Table 4. In the light precipitation scenario, the CCs
of the five precipitation products and four merged datasets
were all small. Among the five precipitation products, the
accuracy of ERA5 (CC = 0.15, RMSE = 1.74 mm/day,
RB = 56.58%) was the best. However, the CCs of the four
merged datasets were all better than any of the non-fused
products, but they overestimated the amount of precipitation
more seriously than ERA5. M-RF and M-LSTM were the
only two approaches that exhibited smaller RMSEs than
ERA5. In the moderate precipitation scenario, the accuracy
of CMORPH-BLD (CC = 0.66, RMSE = 7.76 mm/day,
RB = 0.93%) was the best among the five precipitation
products. The accuracy of M-RF (CC = 0.79, RMSE =
5.80 mm/day, RB = − 1.60%) was the best among the
four merged datasets, with a CC that increased by 19.70%
and an RMSE that decreased by 25.26% compared with
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FIGURE 9. Spatial distribution of PODs for the five precipitation products and four merged
data.

FIGURE 10. Spatial distribution of FARs for the five precipitation products and four merged
data.

FIGURE 11. Spatial distribution of CSIs for the five precipitation products and four merged
data.

CMORPH-BLD. All nine types of precipitation data stud-
ied slightly overestimated the actual precipitation. In the

heavy precipitation scenario, CMORPH-BLD (CC = 0.48,
RMSE = 33.92 mm/day, RB = 56.58%) was again the most
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TABLE 4. Error statistics of the five gridded precipitation products and four merged data in different scenarios.

TABLE 5. Error statistics and daily precipitation event detection capacity
of merged data.

accurate of the five precipitation products. Of the merged
datasets, M-MLR (CC = 0.60, RMSE = 27.48 mm/day,
RB = − 23.95%) was the most accurate, with a CC that
increased by 20.83% compared to CMORPH-BLD.However,
all of the nine studied types of precipitation data underesti-
mated the actual amount of precipitation.

V. DISCUSSION
A. ROBUSTNESS TEST
We conducted a robustness check to evaluate the fourmerging
methods used. Goodfellow et al. [47] applied some pertur-
bations to inputs of neural networks and successfully made
neural networks output incorrect answers. Therefore, for each
grid point, we applied perturbations to the validation data
of one randomly selected day in 2015. The perturbations
induced errors in one of the gridded precipitation products
randomly (the error follows the standard normal distribution).
Then, we used MLR, FNN, RF and LSTM to merge the data
in case of error and generate four datasets: error data based
on MLR (E-MLR), FNN (E-FNN), RF (E-RF) and LSTM
(E-LSTM). The test was repeated ten times. The RMSEs
between these data and the GIDwere calculated (see Fig. 12).
In the robustness test, the mean value of the RMSEs of
E-LSTM (8.71 mm/day) was the smallest, followed by that
of E-RF (9.00 mm/day) and E-MLR (9.09 mm/day). The
RMSE of the merged data generated by the error data based
on the FNN (9.34 mm/day) was the greatest. Compared with
M-MLR, M-FNN, M-RF and M-LSTM, the RMSEs of the
corresponding data in the robustness test all became larger.
Moreover, the RMSE of E-LSTM only increased 86.11%,
which was smaller than that of E-MLR (97.18%), E-FNN
(100.86%) and E-RF (95.23%). This result illustrates that the

FIGURE 12. RMSEs of the data fused by error data and GID.

robustness of LSTM is better than that of MLR, FNN and RF
when merging multiple precipitation data.

B. MERGING EXPERIMENT WITH SPARSE GAUGES
The accuracy of gridded precipitation data is affected by the
density of the rain gauges [48], [49]. However, in some areas,
the distribution of gauges is sparse, and thus the accuracy
of the interpolated data in these areas is relatively low. To test
the fusion effect of the four fusion methods used in this
study in areas with sparse gauges, an experiment was run
using only twelve international exchange stations for inter-
polation. New interpolated data with a spatial resolution of
0.25◦ × 0.25◦ was generated, based on the inverse distance
weight interpolation method. These new interpolated data
were first compared with GID data. The CC between them
was 0.47, while the RMSE and RB were 7.79 mm/day and
− 2.69%, respectively. Then, the new interpolated data were
used as the output vectors of the training set to conduct a new
merging experiment, and new merged data were generated.
The new merged datasets were based on MLR (N-MLR),
FNN (N-FNN), RF (N-RF), and LSTM (N-LSTM).

Thesemerged datawere also comparedwithGID (Table 5).
Among these new merged datasets (N-MLR, N-FNN, N-RF
and N-LSTM), N-MLR performs the best, containing the
smallest RMSE and largest CC. Compared with the previ-
ous merged data (M-MLR, M-FNN, M-RF and M-LSTM),
the CCs of the new merged data were all smaller and the
RMSEs were all greater. Moreover, the previous merged
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data performed better in RB. In terms of CC and RMSE,
the differences between the previous data and new data
based on MLR were the smallest. Compared with M-MLR,
N-MLR’s CC was only reduced by 0.07. Compared with the
RMSE of M-MLR, the RMSE of N-MLR only increased by
2.14 mm/day. For RB, the difference between the previous
data and new data based on RF was smallest among the four
merging methods.

VI. CONCLUSION
Based on four main data fusion approaches, fusion exper-
iments of four satellite precipitation products (CMORPH-
BLD, 3B42V7, PERSIANN-CDR, and CHIRPS) and one
reanalysis (ERA5) were performed. Subsequently, the quality
of the different merged results was evaluated from multiple
perspectives. The conclusions are as follows:

(1) All merging approaches can improve the accuracy
of precipitation data, but only RF and LSTM can improve
the daily precipitation event detection capacity. These
approaches primarily reduced errors in scenarios with moder-
ate precipitation, but did not effectively improve the accuracy
when there was light or heavy precipitation.

(2) MLR had the cheapest computing cost in our study.
Moreover, the accuracy of themerged data generated byMLR
was even better than that generated by FNN and LSTM.
Additionally, MLR performed better in situations with low
gauge density than the other approaches. However, the daily
precipitation event detection capacity of data generated by
MLR was the worst of the four merged datasets.

(3) FNN performed moderately throughout the
experiments.

(4) The merged data generated by RF had the best accu-
racy and daily precipitation event detection capacity. RF per-
formed best in the moderate precipitation scenario. However,
of the merging methods, RF had the worst performances in
situations with low gauge density.

(5) LSTM performed best in the light precipitation sce-
nario. The FAR of the data generated by LSTM was the
smallest among the four merged datasets. In addition, LSTM
was the most robust method in our study. However, compared
to the other merging methods, LSTM also had the highest
computing cost, and lowest accuracy of the merged data.

(6) In this study, FNN and LSTM often performed
worse than MLR. However, one study [50] showed that
RF performed better than geographically weighted regres-
sion (GWR) with more than 30,000 samples, but performed
worse when sample size was only a few thousand or less.
Therefore, we infer that the data size in our study might have
been too small since the performance of the approaches of
machine learning and deep learning can be affected by data
size [51].
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