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ABSTRACT It is challenging to deal with the Internet congestion problem because of several factors such as
ever-growing traffic and distributed network architecture. The congestion problem can be solved or alleviated
by various methods, including rate control, bandwidth-guarantee routing and bandwidth reservation. We use
the term broad-sensed Internet congestion control and avoidance (BICC&A) to generally denote all of the
above methods. Most BICC&A solutions depend on or benefit from the knowledge of network conditions,
including traffic status (type and volume), available bandwidth and topology. In this paper, we present a
comprehensive survey of the applications of machine learning to network condition acquirement methods
for BICC&A and specific BICC&Amethods. First, we provide an overview of the background knowledge of
BICC&A and machine learning. Then, we provide detailed reviews on the applications of machine learning
techniques to network condition acquirement methods for BICC&A and to specific BICC&A methods.
Finally, we outline important research opportunities.

INDEX TERMS Machine learning, congestion control, congestion avoidance, traffic classification, traffic
prediction, bandwidth, topology, rate control, routing.

I. INTRODUCTION
Congestion occurs on the Internet when the aggregated
demands for network resources (e.g., link bandwidth
and router buffer) exceed the available capacities of the
resources [1]. Congestion can lead to long transmission
delays, packet losses and even possible congestion collapse,
in which all communication in the entire network ceases.
Accordingly, the congestion problem has attracted much
attention for a long time. In recent years, network traffic has
increased rapidly. According to the report of the Visual Net-
working Index, network traffic is expected to grow to 396 EB
per month by 2022, up from 122 EB per month in 2017. The
ever-growing network traffic creates increasing stress on the
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Internet. Therefore, solving the congestion problem remains
critical for maintaining good performance of the Internet.

To date, there are two main approaches for solving the
Internet congestion problem, i.e., congestion control and
congestion avoidance [2]. The former is reactive because
congestion control typically comes into play after con-
gestion is detected, while the latter is proactive because
congestion avoidance comes into play before the network
becomes congested [2]. Congestion control can be divided
into rate-based congestion control and path-based congestion
control. Rate-based congestion control is the most widely
used method, and it solves congestion by reducing the
end-to-end transmission rate. Path-based congestion con-
trol dynamically adjusts the transmission path using the
available bandwidth as one of the major metrics, as shown
in [3]. Generally, congestion avoidance can be achieved
by reserving or planning bandwidth-guaranteed paths
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FIGURE 1. Scope of our survey in this paper.

(i.e., congestion-free paths) and determining the transmis-
sion rate in terms of available bandwidth. We use the
term broad-sensed Internet congestion control and avoidance
(BICC&A) to generally denote all kinds of congestion con-
trols and avoidances.

BICC&A is a challenging research domain mainly because
of resource limitations, considerable traffic requirements,
distributed network architecture, isolated or local-optimized
network protocols, and the dynamics of network traffic.
The widely-used BICC&A solutions include rate control,
congestion-avoidance routing and bandwidth reservation.
Because the knowledge of network conditions (mainly
including traffic types, traffic volume, available bandwidth
and network topology) is very helpful to well solve the
BICC&A problem, the network condition acquirement meth-
ods are also important for the BICC&A. Over the past few
decades, machine learning (ML) has been exploited to solve
the BICC&A problem from many aspects. Despite growing
interest in ML applications for the BICC&A, a comprehen-
sive survey of existing contributions is lacking. To fill the
above gap, we provide a comprehensive survey on ML tech-
niques applied to the BICC&A, as Fig. 1 describes. Addition-
ally, we also discuss future research opportunities. We hope
that our work can give readers an overall understanding of the
BICC&A and inspire more studies on this area. In wireless
networks, BICC&A has also attracted considerable attention.
The BICC&A in wireless networks is independently studied
in most cases. Therefore, it is not discussed in this paper.
The readers can refer to some excellent surveys or tutorials
(e.g., [4]) to understand howML algorithms can be employed
for solving various wireless networking problems including
the BICC&A problem.

A. COMPARISON WITH EXISTING WORK
In 2003, Ryu et al. [2] presented a survey, published in
IEEE COMST, on techniques in Internet congestion con-
trol and avoidance. Over the past nearly twenty years,

both network traffic and network structure have experienced
considerable changes, and a large number of related achieve-
ments have emerged during this period. Moreover, the sur-
vey [2] does not discussML techniques in Internet congestion
control and avoidance. In contrast, our survey focuses on the
ML applications for the BICC&A. In addition to the
above difference, the scope of this survey is wider
than [2]. The newly added topics in this survey include
congestion-avoidance routing, bandwidth reservation, avail-
able bandwidth measurement and topology discovery.

In addition to [2], several existing survey papers involve a
part of our survey scope, as Table 1 shows. Below, we further
clarify the differences in the overlapping aspects of our paper
and these papers.
Traffic classification: There have been several excellent

surveys ( [5]–[9]) on ML techniques in traffic classification.
These surveys cover most ML-based traffic classification
solutions. As a result, we do not conduct repeated investiga-
tions. For readers to conveniently understand traffic classifi-
cation, we briefly introduce existing surveys in this paper.
Traffic prediction: Mohammed et al. [10] reviewed

existing literatures related to ML-based traffic prediction.
Usama et al. [11] provided a survey highlighting recent
advancements in unsupervised machine learning (UML)
techniques in networking. However, the above two sur-
veys involve only a few related studies. In [12] (published
in 2017), Fadlullah et al. investigated the literatures on
deep learning (DL) applications for network traffic con-
trol, including traffic prediction. In recent years, especially
in 2018 and 2019,manyML-based traffic prediction solutions
have emerged. Thus, we investigate the literatures in the last
3 years to present a more comprehensive review of ML-based
traffic prediction.
Rate control: Polese et al. [13] presented a survey on the

advances in transport layer protocols, and Usama et al. [11]
provided a survey on UML-based networking. The above two
surveys involve ML-based rate control, but only a few related
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TABLE 1. A comparison of the number of investigated papers between our paper and existing survey papers.

studies are discussed. In contrast, we conduct a comprehen-
sive review of ML-based rate control.
Congestion-avoidance routing: Refs. [5], [11], [12], [14]

discussed ML techniques applied to the routing. How-
ever, these papers mentioned few studies related to
congestion-avoidance routing. Compared with these papers,
our survey presents a full review of congestion-avoidance
routing.

B. ORGANIZATION OF THE PAPER
The paper is organized as follows. First, the background
knowledge is introduced in section II. Section III reviews
how ML algorithms are applied in obtaining network con-
ditions for the BICC&A, including traffic classification,
traffic prediction, available bandwidth measurement and
topology discovery. Section IV reviews ML algorithms
in specific BICC&A solutions, including rate control,
congestion-avoidance routing and bandwidth reservation.
We discuss future research opportunities in section V, and
present conclusions in section VI. Table 2 presents the list of
abbreviations commonly used in this paper.

II. BACKGROUND KNOWLEDGE OF BICC&A AND ML
This section presents an overview of the background
knowledge, including challenges in dealing with Internet
congestion, the network condition obtainment solutions,
ML algorithms and concerns on ML Algorithms in the
BICC&A.

A. CHALLENGES IN DEALING WITH INTERNET
CONGESTION
Although there has been a large amount of research effort,
it is still challenging to deal with Internet congestion. Below,
we introduce the main obstacles and difficulties in handling
Internet congestion.

TABLE 2. List of commonly used abbreviations.

1) HUGE TRAFFIC REQUIREMENT
In recent years, Internet traffic has maintained a rapidly
increasing trend [19]. According to the Cisco Visual
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Networking Index [20], IP traffic across the backbone net-
work is expected to grow to 273 EB per month by 2022,
up from 85 EB per month in 2017. Network bandwidths
are crucial for handling network traffic. However, compared
with the growth of IP traffic, the global average broadband
speed will only double from 2017 to 2022, from 39.0 Mbps
to 75.4 Mbps. As a result, the Internet will suffer heavier
traffic stress in the near future. Moreover, the improvement
of network bandwidth will cause more use of high-bandwidth
applications, which makes the situation more serious.

2) DISTRIBUTED NETWORK ARCHITECTURE
In legacy networks, the status of global resource occupancy
is difficult to obtain, and network resources are hard to man-
age. Additionally, the controlling and forwarding functions
are implemented inside routing or switching devices, which
reduces the flexibility of planning the resource use. For the
above reasons, bandwidth resources cannot be fully used
in legacy networks. For example, Uhlig et al. [21] noted
that the maximum link utilization inside the GéANT net-
work is approximately 90 percent, but the mean link uti-
lization is only approximately 5 percent. Software-defined
networking (SDN) can overcome the shortcomings men-
tioned above [22]. However, we also should note that
software-defined WAN only accounts for a small part of all
networks because of the deployment difficulties [23].

3) ISOLATED OR LOCAL-OPTIMIZED NETWORK PROTOCOLS
Most rate control protocols in legacy networks are designed
for separate sessions, which is disadvantageous for glob-
ally optimizing the performance of congestion control.
In addition, the unicast or multicast routes, corresponding to
a designated session, are usually built in isolation in legacy
networks. This may cause congestion on some links because
the network simultaneously accommodates many sessions.
Although SDN has its superiority on global traffic optimiza-
tion, it is impossible to globally arrange all the transmission
paths and rates mainly because of the scalability [24].

4) THE DYNAMICS AND DIVERSITY OF NETWORK TRAFFIC
Because of the dynamics and diversity of network traffic,
traffic monitoring or traffic prediction is a significant condi-
tion for formulating effective congestion control or avoidance
schemes. It is a simple but accurate method to monitor traffic.
However, traffic monitoring with high timeliness produces
a heavy load. An alternative method is traffic prediction.
In recent years, sharing user-generated content (e.g., Tik
Tok and Instagram) has become increasingly popular. It is
difficult to rapidly predict the popularity of user-generated
content, which complicates traffic prediction. In summary,
traffic prediction is still an open issue, although it has been
studied for a long time [25].

B. NETWORK CONDITION ACQUIREMENTS FOR BICC&A
In this section, we introduce the main network condition
acquisition methods, including traffic classification, traffic

prediction, available bandwidth measurement and network
topology discovery.

1) TRAFFIC CLASSIFICATION
The objective of traffic classification is to classify Internet
traffic into predefined categories, such as normal traffic,
abnormal traffic, and types of applications. Traffic classifi-
cation is helpful to reasonably use bandwidth resources and
to ensure QoS requirements of some relatively important
flows. In the early stage, traffic classification is implemented
based the ports because each application was identified by
its registered and known port. This approach becomes unre-
liable and inaccurate because of the new applications with
unregistered or random ports. Deep packet inspection (DPI) is
another important traffic classification solution, in which the
contents of packets are observed by referring to the character-
istic signatures of network applications in traffic. Compared
with port-based techniques, DPI-based traffic classification
tools (e.g., PACE and OpenDPI) provide accurate results.
However, DPI-based techniques also have some disadvan-
tages and weaknesses [26]. For example, they involve high
computational costs and processing loads, they cannot deal
with encrypted traffic because the contents of packets are
inspected, and they suffer from privacy policy violations.

2) TRAFFIC PREDICTION
Traffic prediction is important to network providers and man-
agers to offer better service by making appropriate decisions,
including congestion-avoidance schemes [27]. To predict
Internet traffic, historical and real-time traffic data should be
collected [28]. In [18], the authors categorized traffic predic-
tion techniques under four categories: the linear time series
model, the nonlinear time series model, the hybrid model
and the decomposed model. In network traffic prediction
techniques, several metrics are used to estimating the pre-
diction accuracy [18]. These metrics include mean absolute
error (MAE), mean square error (MSE), root mean square
error (RMSE), normalized root mean square error (NRMSE),
mean percentage error (MPE) and mean absolute percentage
error (MAPE).

3) AVAILABLE BANDWIDTH MEASUREMENT
Knowledge of the available bandwidth of a link or a path is
very helpful for controlling or avoiding network congestion.
A network administrator can simply access the information
(e.g., configuration parameters, nominal bit rate of an asso-
ciated link, average utilization, bytes or packets transmitted
over some time period) associated with the router/switch
using the SNMP network management protocol [29]. How-
ever, such access is typically available only to administrators
and not to end users [30]. In addition, the available band-
width status on a path is difficult to know based on SNMP
because a path usually passes through different management
areas. As an alternative, end users can estimate the available
bandwidth of a path based on end-to-end measurements,
without any information from routers. To date, there have
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been many various bandwidth measurement techniques for
estimating available bandwidths of end-to-end paths, includ-
ing pathload [31], pathChirp [32], etc.

4) TOPOLOGY DISCOVERY
Understanding the Internet topology and its main charac-
teristics is beneficial for alleviating the congestion problem
by fully using the network resources. Motamedi et al. [33]
presented an excellent survey of the techniques for Internet
topology discovery. In [33], Internet topology was viewed
at four different granularity or resolution levels, including
interface level, router level, point of presence (PoP) level and
autonomous system (AS) level. Note that a PoP is a concen-
tration of routers that belong to the same AS [34] and that
an interface belongs to a host or a router, and there is a one-
to-one mapping between nodes and IPs [35]. The topology
that is the most relevant to the BICC&A is interface-level
topology. The widely used interface-level topology discovery
tools include TraceRoute [37], XNET [38], etc.

C. SPECIFIC BICC&A SOLUTIONS
In terms of the strategies for solving the BICC&A prob-
lem, existing BICC&A solutions can be divided into three
categories, i.e., rate control, congestion-avoidance routing
and bandwidth reservation, as shown in Fig. 1. Specifi-
cally, rate control uses the transmission rate adjustment strat-
egy, congestion-avoidance routing employs the path planning
strategy, and bandwidth reservation adopts the resource plan-
ning strategy.

Rate control solves the congestion problem by reduc-
ing transmission rates. According to the rate control scope,
rate-based control solutions can also be divided into two
types, i.e., independent and joint rate control. Independent
rate control only adjusts the rate of a single session, while
joint rate control simultaneously adjusts rates of multiple ses-
sions. The congestion-avoidance routing is a particular form
of the QoS routing. To improve the load balance performance
and the maximum number of connections that the network
can accommodate, various resource scheduling techniques
are deployed to schedule the bandwidth reservation requests.
One of the most commonly used techniques is the resource
reservation protocol (RSVP) [39], which reserves the same
bandwidth according to the service-level agreement (SLA)
along the path calculated by the instant scheduling algorithm.

D. ML ALGORITHMS IN BICC&A
ML techniques have been widely applied to the BICC&A.
These techniques include support vector machines (SVMs)
[40], [41], Bayes’ theory, k-nearest neighbor (KNN),
the hidden Markov model (HMM), unsupervised learning
(e.g., k-means [42], [43] and fuzzy C-means [44], [45]),
semi-supervised learning, RL (e.g., Q-Learning and DRL),
DL, transfer learning and ensemble learning (e.g., AdaBoost
[46], bagging [47], and random forest [48]). Example algo-
rithms of DL include DNNs, convolutional neural network
(CNN), recurrent neural network (RNN) and deep belief

network (DBN) [49]. Long short-term memory (LSTM) [50]
is a commonly used type of RNN, and it is a popular ML
algorithm applied in the BICC&A. In this paper, we introduce
DL-based BICC&A solutions (not including DRL-based
solutions) separately. A DL algorithm can use a supervised,
unsupervised or semi-supervised learning manner. Thus,
we use supervised, unsupervised and semi-supervised non-
DL learning algorithms to denote supervised, unsupervised
and semi-supervised learning algorithms that do not use the
DL techniques.

E. CONCERNS ON ML ALGORITHMS FOR BICC&A
In this section, we introduce several key concerns when
applying ML algorithms to the BICC&A from networking
and communication perspectives.

1) THE DIFFICULTIES IN OBTAINING DATASETS
Because the Internet consists of a large number of hetero-
geneous networks that are managed by different operators,
it is difficult to obtain desired data in many cases. More-
over, when the data are allowed to capture, handling the
captured data is still challenging because the data on the
Internet are generated by heterogeneous sources and exhibit
nontrivial spatial/temporal patterns [51]. As a result, avail-
able data are a key factor of ML algorithm selection for
the BICC&A.

2) PROCESSING LOAD
The processing load denotes the computation and memory
load for training the model. In BICC&A, learning may be
performed by different types of network entities, including
user devices, routers, base stations (BS), and some special
servers such as controllers. As a result, the processing load
should be considered according to the specific application
devices.

3) THE ADAPTABILITY TO TRAFFIC DYNAMICS
The traffic prediction technique can forecast traffic dynamics
to some extent. However, the popularity of user-generated
content sharing makes long-term traffic prediction inaccurate
in some cases. In addition, disregarding the advantage of
traffic prediction, it is difficult to practically deploy it to
forecast the traffic passing through all or most network links.

4) CONSIDERATION OF DATA TRANSMISSION FEATURES
Today, there are a considerable variety of applications on the
Internet, and ML algorithm selection should fully consider
the data transmission features of associated applications.
Some applications (e.g., file sharing) transfer data based
on TCP or other protocols that can arbitrarily adjust the
transmission rate according to network conditions. In other
words, the traffic generated by these applications can avoid
congestion when it occurs. For controlling the above traffic,
the ML algorithms, with acceptable accuracy but low cost,
may be a good choice.
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III. ML IN CONDITION ACQUIREMENT FOR BICC&A
As mentioned previously, the BICC&A depends on or bene-
fits from the network condition acquisition, including traffic
classification, traffic prediction, available bandwidth mea-
surement and network topology discovery. In this section,
we review existing ML applications to these network con-
dition acquirement methods. We summarize how ML tech-
niques are applied in each field.

A. ML IN TRAFFIC CLASSIFICATION
1) ML-BASED TRAFFIC CLASSIFICATION SOLUTIONS
To date, there have been several excellent surveys on ML
solutions applied to traffic classification. In 2008, Nguyen
and Armitage [52] surveyed works in the field of ML-based
traffic classification. In 2015, Namdev et al. [53] presented a
review of the studies that consider encrypted traffic. In 2019,
Pacheco et al. [54] presented a survey on ML in traf-
fic classification. This survey attempted to gather different
approaches, strategies and procedures regarding how and
when to use ML techniques for traffic classification. The
above surveys cover most ML solutions applied to traffic
classification from 2004 to 2019. Accordingly, we do not
conduct repeated investigations. In the following, we present
a discussion on traffic classification.

2) DISCUSSION ON ML IN TRAFFIC CLASSIFICATION
So far a variety of ML techniques have been applied to traffic
classification. These ML techniques include decision tree,
SVM, k-means, Bayesian network, random forest, AdaBoost,
LSTM, CNN, expectation-maximization [55], multilayer per-
ceptrons [56] and genetic algorithm [57]. Namdev et al. [53]
noted that k-means does not work well with clusters of dif-
ferent sizes and different densities. According to reports in
the literatures, manyML-based traffic classification solutions
can achieve a very high classification accuracy (≥ 90%).
The ML techniques for timely and continuous classification
usually use a sliding window over which features are calcu-
lated [52]. The classification accuracy might be improved by
increasing the length of this window. However, the increase-
ment on the window length may decrease the timeliness of
classification decisions and increase the required memory
size. For the above reason, the real-time traffic classification
is still an open problem.

B. ML IN TRAFFIC PREDICTION
Mohammed et al. [10] reviewed existing literatures related
to ML-based traffic prediction. Usama et al. [11] provided
a survey highlighting recent advancements in unsupervised
machine learning (UML) techniques in networking. How-
ever, the above two surveys involve only a few related studies.
In [12] (published in 2017), Fadlullah et al. investigated
the literatures on DL applications for network traffic con-
trol including traffic prediction. In recent years, especially
in 2018 and 2019,manyML-based traffic prediction solutions
have emerged. For the above reasons, we investigate the

literatures in the past 3 years to present a more comprehensive
review of ML-based traffic prediction solutions, as Table 3
summarizes. Below, we introduce them according to the types
of the used ML techniques.

1) DL-BASED TRAFFIC PREDICTION SOLUTIONS
In the past 3 years, different types of DL techniques have been
applied to traffic prediction. In the following, we introduce
these techniques in detail.

a: LSTM-BASED SOLUTIONS
In [71], Trinh et al. studied an LSTM-based architecture for
BS traffic prediction inmobile networks, as depicted in Fig. 2.
In the architecture, a stacked LSTM network consists of
multiple layers of basic LSTM units, each of which extracts a
fixed number of features. More layers of the LSTM network
can better improve the prediction accuracy. In one step of the
prediction, the mobile traffic is observed for a fixed number
of timeslots until T and then attempts to predict the traffic in
the next time slot T + 1. The output of the LSTM network
is passed to a fully connected neural network, which will
finish the traffic prediction. Feng et al. [70] also introduced
an LSTM-based model, namely, the deep traffic predictor
(DeepTP), which forecasts BS traffic demands. In compari-
son to the solution proposed in [71], DeepTP adopts a features
extractor module that employs the embedding and attention
mechanism. The features extractor module is used to han-
dle the complicated influential factors and comprehensive
spatial-temporal correlations of the mobile traffic.

FIGURE 2. The architecture, proposed in [63], for mobile traffic
prediction.

In addition to the LSTM-based traffic prediction solutions
for mobile networks, there have been several studies that use
the LSTM to predict the traffic of wired networks. In [66],
the authors evaluated the performance of LSTM architectures
for traffic matrix prediction. Note that a traffic matrix reflects
the volume of traffic flows between all possible pairs of
original and destination nodes. Lazaris and Prasanna [58]
also presented an LSTM framework to effectively model the
traffic of the backbone network. In comparison to [58], [66]
employs several LSTM variations, including vanilla LSTM,
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TABLE 3. Summary of recent ML-based traffic predication solutions. R-squared (R2) represents the proportion of the variance in the dependent variable
that is predictable from the independent variable(s).

delta-based LSTM (i.e. the model that predicts the consecu-
tive flow-size deltas), and cluster-based LSTM.

b: GATED RECURRENT UNIT (GRU)-BASED SOLUTIONS
GRU [83] can enable each recurrent unit in RNN to adap-
tively capture dependencies on different time scales. In [69],
the authors implemented a GRU RNN on real-world data
from the Abilene1 network.1 The authors proposed an evalua-
tion automatic module, which automates the learning process
and generalizes the prediction model. Guo et al. [59] pro-
posed a GRU-based short-term traffic prediction framework
for network slicing. In [62], Andreoletti et al. employed the
GRU to forecast traffic load on the links of a real backbone
network. Unlike [69] and [59], [62] uses a diffusion convo-
lutional gated recurrent unit to capture important topology
information of the network instead of directly predicting the

1http://sndlib.zib.de/home.action

traffic. Both [69] and [59] directly make use of the common
GRU model. The main difference between [69] and [59] is
that they focus on different scenarios.

c: DBN-BASED SOLUTIONS
In [76], Nie et al. proposed a traffic matrix prediction and
estimation solution based on DBN, designed for large-scale
IP backbone networks. This method first trains the DBN
from the achieved traffic matrix. Then, a predictor of net-
work traffic is obtained via the trained DBN. Nie et al. took
advantage of the contrastive divergence algorithm proposed
by Hinton et al. [84] to approximately estimate the gra-
dient instead of directly computing it. Nie et al. assessed
the effectiveness of the proposed prediction and estimation
methods by real network traffic datasets from the Abilene
and Géant networks. The results show that the solution can
more accurately deal with traffic matrix prediction and esti-
mation problems than the PCA method proposed in [85].
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Nie et al. also considered DBN-based traffic predictions
in data center networks (DCNs) and wireless network
environments [72], [77].

d: STACKED AUTOENCODER (SAE)-BASED SOLUTION
In [63], Wang et al. proposed a DL-based traffic prediction
method named SDAPM. SDAPM uses a stacked denoising
autoencoder (SDA) model to learn generic traffic features,
and it was trained in a layerwise greedy fashion. In the
SDAPM model, the first layer is an input layer, the last layer
is an output layer to output predicted data, and other layers
called hidden layers are SDAs, which are used for feature
expression. The hidden layer of SDA is usually a logistic
regression model. However, in SDAPM, the traffic prediction
problem is actually a nonlinear regression problem.

e: LSTM AND CNN COMBINED SOLUTIONS
In [60], Zhang et al. proposed a cellular traffic predic-
tion solution based on a combination of LSTM and CNN.
This solution employs three kinds of cross-domain datasets,
i.e., BS information, POI distribution and social activity
level. The above dataset can fully characterize various fac-
tors that affect traffic generation. Based on these datasets,
a DNN architecture, STCNet, was proposed to forecast cel-
lular traffic. By combining CNN with LSTM, a two-layer
ConvLSTM network is designed to simultaneously model the
spatial-temporal dependencies and the sequence information.

f: GRU AND CNN COMBINED SOLUTIONS
In [74], Cao et al. constructed a GRU and CNN combined
solution called the interactive temporal recurrent convolution
network (ITRCN). ITRCN was designed for single-service
traffic prediction and interactive network traffic prediction.
In ITRCN model, the CNN is used to learn network traffic to
capture the correlations between network-wide services, and
the GRU learns the temporal features that can improve the
interactive network traffic prediction. The interactive traffic
matrices can be converted into one-channel images. To imple-
ment traffic-image conversion, the raw network traffic is
transformed into interactive traffic matrices, each of whose
elements represents the traffic value exchanged between cer-
tain services. Note that images are generated in terms of the
matrices.

g: CASE STUDIES
In [61], the authors presented a solution for forecasting traffic
in intra-DCN scenarios using nonlinear autoregressive (NAR)
neural networks. Huang et al. [75] investigated mobile
Internet traffic prediction based on different deep learning
solutions, including RNN, three-dimensional CNN, and a
combination of CNN and RNN. In [68], the authors inves-
tigated traffic prediction in telecom systems using DL. [67]
focused on applying DL techniques for traffic prediction in
elastic optical networks. In [65], Ramakrishnan and Soni
employed several RNN architectures (the standard RNN,
LSTM networks, and GRU) to solve the traffic prediction

problem. Other similar case studies that investigate the appli-
cation of existing solutions include [64], [73].

h: ANALYSIS
DL-based
traffic prediction solutions have the following advantages.
First, they can handle high-dimensional traffic dataset. Sec-
ond, they usually can obtain high accuracy for the long-term
prediction. Third, the traffic prediction can be quickly exe-
cuted once the prediction model is trained by these solu-
tions. The main disadvantages of DL-based traffic prediction
solutions include the high computation load and complex
parameter configuration. For the short-term prediction, RNN
(e.g., LSTM and GRU) work well because they can well
capture the features on different time scales.

2) SUPERVISED NON-DL LEARNING BASED PREDICTION
SOLUTIONS
In [78], Xu et al. proposed a C-RAN traffic predic-
tion architecture, as shown in Fig. 3. The architecture
inherits the two-layer structure, i.e., the remote radio
heads (RRHs) deployed at remote sites, and the building base-
band unit (BBUs) clustered centrally as the BBU pool. The
RRHs monitor local traffic data and deliver them to the BBU
pool that predicts traffic. To support large-scale and real-time
executions, each BBU performs the traffic prediction model.
Based on the above architecture, the authors proposed a
scalable framework based on the distributedGaussian process
with significant innovations in both the training phase and
the prediction phase. Xu et al. [81] proposed a prediction
model over real 4G traffic data. In [81], a structured Gaussian
processmodel was proposed to leverage the Toeplitz structure
of covariance functions to significantly reduce the complexity
of both hyperparameter learning and inference.

FIGURE 3. An architecture for wireless traffic prediction based
on C-RANs [78].

Choudhury et al. [79] described two Gaussian process
based applications for managing IP and optical networks.
The first application allows significant cost saving based on
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the combination between long-term traffic prediction and
global optimization of IP/optical layers. The second applica-
tion enables the selection of improved reconfigurable optical
add-drop multiplexers (ROADMs) [86] paths based on the
latest optical performance data. Unlike [78] and [79], [81]
uses the common Gaussian process model.

In [80], the authors introduced a comprehensive archi-
tecture for collecting and analyzing massive network data.
This architecture uses the Bayesian network to study the
relationship between the PKI (key performance indicators)
and the traffic patterns. Based on this relationship, traf-
fic can be forecasted by time series traffic forecasting or
ML algorithms such as autoregressive and Gaussian pro-
cesses. In [80], an application was proposed to avoid traffic
congestion based on traffic forecasting.

a: ANALYSIS
The supervised non-DL learning based prediction solutions
mentioned above have the following advantages. On one
hand, they can be implemented easily because the Gaus-
sian process and Bayesian network models are relatively
simple to understand and produce relatively low compu-
tation load. On the other hand, they can work based on
a small dataset. Despite the above advantages, these solu-
tions cannot effectively handle high-dimensional dataset, and
are hard to obtain high accuracy under the complex traffic
environment.

3) ENSEMBLE LEARNING BASED PREDICTION
In [82], Xia et al. proposed a mobile network traffic predic-
tion solution that uses random forest to filter redundant fea-
tures and uses LightGBM [87] to train the prediction model.
LightGBM is an implementation of the gradient boosting
decision tree (GBDT) [88] with gradient-based one-side sam-
pling (GOSS) and exclusive feature bundling. The frame-
work proposed in [82] uses multiple LightGBM models as
the base-learners, which are further integrated by bagging.
Xia et al. evaluated the proposed solution with a real-life traf-
fic dataset. The experimental results showed that the proposed
model can effectively improve the prediction performance
compared to single LightGBM given the same number of
decision trees and some other popular algorithms, including
multilayer perceptron (MLP) and linear regression.

a: ANALYSIS
The most important advantage of ensemble learning based
prediction is that it can offer a prediction model for an
objective environment without enough data generated in this
environment. However, it is difficult to ensure the prediction
accuracy of the ensemble learning based prediction solutions
because of the lack of the training data generated in the
objective environment.

4) DISCUSSION ON ML IN TRAFFIC PREDICTION
This section reviews ML applications for traffic prediction in
the last 3 years. From our survey, we observe that DL-based

prediction is the most popular solution. Other ML techniques
applied to traffic prediction include supervised learning and
ensemble learning. Several RNN techniques (e.g., LSTM and
RNN) have a good capability of predicting short-term traffic,
which is important for the current Internet because of the
rapidly changing traffic pattern caused by the popularity of
user-generated content sharing. RL can also adapt well to
the network environment. However, to our surprise, we have
not found RL-based traffic prediction solutions. One possible
reason is that it is difficult for the reward function used in
RL to provide an effective evaluation of the current state
according to the realistic network.

Almost all the existing studies have shown that ML tech-
niques are capable of improving traffic prediction accu-
racy. For example, in [58], the authors showed that their
LSTM-based solution can achieve an average MAPE less
than 30% even in the worst situation. Oliveira et al. [89]
showed that MLP and RNN are better than SAE for traf-
fic prediction; Nikravesh et al. [90] showed that SVM
outperforms MLP and multilayer perceptron with weight
delay (MLPWD) in predicting the multidimensionality of
real-life network traffic data, while MLPWD has better accu-
racy in predicting unidimensional data. Although ML has
successfully made some achievements in traffic prediction,
the accuracy still needs to be further improved. To do this,
more realistic traffic data for training are needed. In addition,
RL, with the assistance of some carefully deployed devices
that make feedback on real-time traffic static, is also worthy
of consideration because of its adaptability.

C. ML IN AVAILABLE BANDWIDTH MEASUREMENT
End-to-end available bandwidth is important in many appli-
cation domains, including congestion control [91]. Below,
we introduce the studies on available bandwidth estimation
using ML techniques.

1) SVM-BASED SOLUTIONS
In [92], Chen et al. proposed an SVM-based approach for
estimating the available bandwidth of a path. This solution
uses two probing models, i.e., the packet train model and the
pathChirp-like model. In the packet train model, the sender
sends 11 packets in one burst in each round, whereas in the
pathChirp-like model, the sender sends a chirp of 15 packets
such that the lowest sending rate is 5% of the bottleneck
capacity. Chen et al. show that their solution obtains more
accurate results than two widely used tools, pathChirp and
Spruce. The solution proposed in [92] can work well on both
linearly and non-linearly dataset. However, it sometimes fail
to obtain high accuracy because SVMcannot handle the noisy
dataset well due to overfitting problems [5].

2) RL-BASED SOLUTIONS
In [93], Khangura and Akın proposed a method to apply
RL to available bandwidth estimation. This method defines
a reward metric as a function of input and output rates,
which reaches the maximum in the case where the input
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rate is equal to the available bandwidth. It runs the ε-greedy
algorithm to find the available bandwidth by maximizing
the designated reward function without a training phase.
Khangura and Akın claimed that even though the additional
links affect the convergence speed, the RL-based method
results in accurate available bandwidth estimations with low
variability. Malboubi et al. [94] studied a RL-based band-
width measurement framework for SDNs. Unlike [93], [94]
aims at inferring the traffic matrix. Note that the available
bandwidth can be deduced according to the traffic matrix
if the capacity of a link or path is known. [94] introduces
an efficient algorithm to adaptively track and measure the
most rewarding flows while achieving logarithmic regret over
time, which is different from the work [93]. The RL-based
available bandwidth measurement solutions can well adapt
to the network dynamics and need no dataset prepared in
advance. However, they usually spend some time to train a
steady model.

3) DL-BASED SOLUTIONS
In [95], Maier et al. investigated two different approaches
to reduce the consumed data volume in tests that deter-
mine the available download and upload data rate of an
Internet connection. The first approach is simply a gen-
eral shortening of the test duration. The second approach
is a test with a dynamic test duration determined through
a trained artificial neural network. In [96], the authors pro-
posed a channel estimation approach, called ChanEstNet,
to solve the problem that the downlink channel estimation
performance is limited due to the fast time-varying and
nonstationary characteristics in the high-speed mobile sce-
narios. ChanEstNet uses CNN to extract channel response
feature vectors and RNN for channel estimation. We can note
that the works [95] and [96] aim at solving the different
problems. The DL-based available bandwidth measurement
solutions can obtain high measurement accuracy. However,
the computation load is a major concern because the avail-
able bandwidth measurement is usually performed by end
hosts.

4) CASE STUDIES
In [97], Yin and Kaur designed a learning framework for
available bandwidth measurement, in which the sender-
and receiver-side interpacket gaps are used as input
features, and an available bandwidth estimate is the out-
put. The authors considered ElasticNet [98], RandomFor-
est [99], AdaBoost [100], GradientBoost [101], and SVM.
The authors applied ML techniques to estimate bandwidth in
ultra-high-speed networks and evaluated our approach in a
10 Gbps testbed. The results showed that supervised learning
helps to improve estimation accuracy for both single-rate
and multirate probing frameworks. Sato et al. [102] pro-
posed PathML, an ML-based available bandwidth estimation
method. PathML considers using existing ML algorithms
instead of proposing new algorithm.

5) DISCUSSION ON ML IN AVAILABLE BANDWIDTH
MEASUREMENT
This section reviews ML applications for the available band-
width measurement. We observe that ML-based available
bandwidth measurements have not been widely studied com-
pared to ML-based traffic classification and prediction. In the
available bandwidth measurement, the measurement accu-
racy can be observed according to the packet arrival fea-
ture. As a result, RL is a feasible approach for measuring
the available bandwidth. Supervised learning and DL-based
solutions are also feasible because the training data can be
easily obtained. A good available bandwidth measurement
should obtain accurate results with a low test load. The above
requirement should be fully considered in the ML applica-
tions for available bandwidth measurements. In the solutions
proposed in [92] and [95], only a small number of probing
packets are used to obtain acceptable accuracy; therefore,
they are the desired approach. The further research direction
in ML-based available bandwidth measurement is to obtain a
better tradeoff between accuracy and load.

D. TOPOLOGY DISCOVERY
1) ML-BASED TOPOLOGY DISCOVERY SOLUTIONS
In [62], Andreoletti et al. employed the DCRNN to forecast
traffic load on the links of a real backbone network. In con-
trast to legacy ML approaches, to the best of our knowledge,
this is the first time that anML algorithm is applied to capture
the topological relations of the links of telecom networks.
In the solution proposed in [62], the network traffic is rep-
resented as a directed graph G that can be described by the
matrix X (t) ∈ RMX1

≥0 (which encodes the attributes of the M
nodes, i.e., the load for each link of the telecommunication
network) and by its adjacency matrix W , where wij = 1
iff li and lj are connected, and 0 otherwise, which encodes
the relation between the nodes. The forecasting problem is
formulated as follows:

X (t+1)
= F(W ,X (t−T ), . . . ,X (t)), (1)

where F is the estimator learning-based DCGRU. The topol-
ogy discovery solution proposed in [62] can work well in the
case where the network nodes are known. However, the net-
work node information is difficult to obtain in some cases.

In [103], the authors introduce a data-driven DL frame-
work, Gumbel Graph Network (GGN), to accomplish the
reconstruction of both network connections and the dynamics
on it. The model consists of two jointly trained parts: a Graph
Neural Network (GNN) based network generator that gener-
ates a discrete network with the Gumbel Softmax technique;
a dynamics learner that utilizes the generated network and
one-step trajectory value to predict the states in future steps.
The solution proposed in [103] is designed to reconstruct the
topology of a general network model in terms of the time
series data of node states. Because it is difficult to observe
node states of Internet, the solution proposed in [103] is not
applicable to the network topology discovery considered in
this paper.
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In [104], the authors proposed a network model based
on GNN. The proposed model can understand the com-
plex relationship among network topology, routing and input
traffic, thereby producing accurate estimates of the per-
source/destination per-packet delay distribution and loss. The
main objective of the work [104] is to reveal the relationship
among network topology, routing and input traffic, which is
different from the topology discovery concerned in this paper.
There exist some literatures that model the dynamic network
topology using dynamic graph neural networks [105]. How-
ever, these literatures focus on the dynamic features of a
network such as social network, which is also different from
the topology discovery concerned in this paper.

2) DISCUSSION ON ML IN TOPOLOGY DISCOVERY
This section reviews ML applications for network topology
discovery. As introduced in section II-B, topology discov-
ery is very important for the optimized utilization of net-
work resources and has been widely studied for a long time.
However, we have only found few studies that considered
ML techniques in discovering topological relations. Since
topology discovery is still an open issue, we believe that
ML techniques can bring new power to discover topological
features. To explore the relations between the test flow behav-
iors and underlying topology, some labeling data will be very
useful. The labeling data of the topology can be obtained
based on techniques such as TraceRoute, which can explicitly
discover a part of the network topology. With labeled data,
supervised learning or supervised DL is a desirable approach
for ML-based topology discovery. Because an operation of
topology discovery usually lasts for a short time, RL is not a
good choice.

IV. ML IN SPECIFIC BICC&A SOLUTIONS
In this section, we summarize howML techniques are applied
in specific BICC&A solutions.

A. ML IN RATE CONTROL
In the field of rate control, ML has been applied in TCP and
its variants, MPTCP and some other scenarios, as Table 4
shows. We introduce the above applications in this section.
In addition, we introduce ML-based congestion detection
solutions, which can be used for rate control.

1) ML IN TCP AND ITS VARIANTS
ML techniques have been widely applied to TCP and its
variants. Below, we introduce the applications in detail.

a: UNSUPERVISED NON-DL LEARNING BASED SOLUTIONS
TCP Remy [116] is an ML-based congestion control
approach. The objective of TCP Remy is to achieve high
throughput and low queuing delay. The objective function
with a parameter α can be used to set the aggressiveness of the
protocol. For example, this parameter is set to 0 if the fairness
on shared links is not considered and is set to∞ if the fairness
is maximized. TCP Remy uses state-to-action mapping to

define the behavior of the congestion control mechanism.
A more advanced version of Remy called a tractable attempt
at optimal (TAO) [129], solves the problem of TCP awareness
and performs well with heterogeneous competing flows but
still requires extensive prior knowledge about the network to
function [13].

b: RL-BASED SOLUTIONS
In [113], Li et al. proposed a Q-learning framework to
improve TCP called QTCP. QTCP can automatically identify
the optimal cwnd varying strategy, given the observation
of the surrounding networking environment online. QTCP
continuously updates the values of possible state-action pairs,
and uses the Q-learning algorithm to search for the best action
that adjust the cwnd in designated states so that the long-term
reward of the sender is maximized. Note that the parame-
ter cwnd denotes the size of the congestion window, which
can adjust the rate. QTCP uses a function approximation,
based on Kanerva coding [130] to solve the challenge of
training the higher performance policy given the extremely
large state space. QTCP elaborates on the effectiveness of
a learning-based approach for TCP, but it is inaccurate for
representing the network by a finite number of states and will
cause performance degradation [120].

In [106], Nie et al. proposed a system called TCP-RL to
dynamically configure a suitable initial window for short
flows through group-based RL and to dynamically con-
figure a suitable congestion control scheme for each long
flow through DRL. TCP-RL is incrementally deployable
at the server side without any client or router support,
as shown in Fig. 4. The RL method used in TCP-RL
is the discounted UCB algorithm [131], which was pro-
posed to solve the nonstationary bandit problem. In [115],
Kong et al. introduced two learning-based TCP congestion
control schemes for wired networks with under-buffered bot-
tleneck links, a loss predictor (LP)-based TCP CC (LP-TCP),
and an RL-based TCP CC (RL-TCP). The experimental
results in [115] show that LP-TCP and RL-TCP both achieve
a better tradeoff between throughput and delay under various
simulated network scenarios than the existing NewReno and
Q-learning-based TCP [132]. Note that Q-learning-based
TCP in [132] is designed for the IoT environment, and we
do not discuss it.

c: DL-BASED SOLUTIONS
In [112], Kawakami et al. proposed an LSTM-based TCP
throughput prediction method, TRUST, for mobile networks.
TRUST has two stages: user movement pattern identification
and throughput prediction. In the prediction stage, the LSTM
model is employed for TCP throughput prediction. TRUST
takes all the communication quality factors, sensor data and
scenario information into consideration. Specially, it collects
the throughput, received signal strength indicator (RSSI),
cell ID, time, location, and other sensor data. In addition
to [107], [112] presents a TCP for transmitting high-quality
videos at low latency in disaster 5G mmWave networks.
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TABLE 4. Summary of ML-based rate control solutions. In this table, extra assistance means that the rate control needs extra device support. Note that
the differentiation between server and controller is that the former only provide some information but the latter can directly intervene the data transfer.

FIGURE 4. The framework of TCP-RL [106].

The proposed solution uses a learner engine for learning,
a predictor, a mobility manager for managing velocity and
location information, and a TCP agent for determining TCP
behavior. [107] presents a multiclass deep-neural-network
architecture, using the Xavier initializer [108], to predict the
TCP throughput.

d: DL AND RL COMBINED SOLUTIONS
There are several studies on TCP congestion control solu-
tions based on the combination of LSTM and RL. In [111],
the authors presented a congestion control solution, namely,
TCP-Drinc. TCP-Drinc uses a DRL-based agent that is exe-
cuted at the sender side. The agent stores historical data in an
experience buffer, and estimates features such as congestion
window difference, RTT, and the interarrival time of ACKs.
Then, it uses a deep CNN (DCNN) concatenated with an
LSTM network to learn from historical data and select the
next action to adjust the size of congestion window. In [109],
Gomez et al. proposed exploiting explicit congestion notifi-
cation (ECN) information to improve active queue manage-
ment algorithms by applying LSTM to predict congestion and
setting the AQM parameter on Q-learning. Note that AQM
is a paradigm that aims to mitigate the congestion on the
network layer through active buffer control to avoid overflow.
Afonin et al. [110] studied the development of an adaptive
TCP algorithm by integrating ML techniques such as RL,
Q-learning and LSTM.
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e: ENSEMBLE LEARNING BASED SOLUTION
In [114], Hagos et al. introduced how an intermediate node
(e.g., a network operator) can identify the transmission state
of the TCP client, which is associated with a TCP flow by
passively monitoring the TCP traffic. The authors created
an ensemble machine learning prediction model based on
a random forest regressor algorithm to estimate the cwnd
parameter. The experimental results indicate the effectiveness
of the prediction model in [114].

f: ANALYSIS
We observe that the DL and RL are two widely-used learn-
ing methods for TCP and its variants. DL is mainly used
to detect the congestion, while RL is mainly used to offer
intelligent congestion control. The congestion control can be
implemented based on the assistance of some extra entities,
as Table 4 summarizes. Overall, the performance of the con-
gestion detection and control can be obviously improved by
the assistance of extra entities.

2) ML IN MPTCP
ML techniques have been applied to MPTCP. These
ML techniques mainly include RL and LSTM.

In [117], Xu et al. introduced a DRL-based control frame-
work, DRL-CC, for MPTCP congestion control. DRL-CC
utilizes a single agent to dynamically and jointly perform
congestion control for all active MPTCP flows on an end
host, aiming at maximizing the overall utility. It utilizes
LSTM to learn a representation for all active flows and deal
with their dynamics.Moreover, DRL-CC integrates the above
LSTM-based representation network into an actor-critic
framework for congestion control, which leverages the deter-
ministic policy gradient to train critic, actor, and LSTM net-
works in an end-to-end manner.

In [118], Li et al. proposed a learning-based multipath
congestion control approach, namely SmartCC, to address
the diversities of multiple communication paths in heteroge-
neous wireless networks. SmartCC adopts an asynchronous
RL framework to learn congestion control rules, by which
the sender observes the environment and takes actions to
adjust the subflows’ congestion windows. SmartCC uses a
function estimation approach for Q-learning, which addresses
the problem of infinite states in high-dimensional space.

In [119], the authors proposed a data scheduling algorithm
based on the deep Q-network (DQN) framework to enhance
the MPTCP data scheduling performance in the asymmetric
path. The algorithm obtains the information of every path
and adaptively chooses the most suitable path by artificial
intelligence. Compared with common Q-learning, DQN can
obtain better performance.

a: ANALYSIS
Compared with TCP, MPTCP is more complicated because
it schedules the data transmission over multiple paths. For
the above reason, the intelligent rate arrangement is more

important in MPTCP. Unfortunately, there have been few
studies on the ML-based MPTCP.

3) ML IN OTHER RATE CONTROL SCENARIOS
In addition to the rate control scenarios mentioned above,
ML techniques have also been applied to other rate control
scenarios. Below, we introduce them in detail.

a: RL-BASED SOLUTIONS
In [125], Aloizio presented a Q-learning-based congestion
control framework, called Smart-DTN-CC, for delay and
disruption tolerant networks (DTNs). Smart-DTN-CC nodes
obtain input from the environment (e.g., its buffer occupancy
and set of neighbors), and then choose an action to take
from a set of possible actions. In, Smart-DTN-CC, a reward
is given a reward in terms of an action’s effectiveness in
controlling congestion. The goal of Smart-DTN-CC is to
maximize the overall reward, which translates to minimizing
congestion. [127] is an early study that employed an RL
scheme on congestion control in ATM networks. The scheme
consisted of two subsystems: an expectation-return predictor,
which is a long-term policy evaluator, and a short-term rate
selector, which is composed of an action-value evaluator
and stochastic action selector elements. Unlike [125], [127]
controls source flow in consideration of high throughput and
low cell loss rate.

In addition to the above RL-based solutions, there
have been some DRL-based rate control solutions.
Lan et al. [120] studied a DRL-based congestion control,
named DRL-CCP, for named data networking (NDN) [133].
In DRL-CCP, the training of neural networks is separated
from real-time data transmission. Theworkflow ofDRL-CCP
can be described as follows: designing the integrated con-
gestion control objective of the consumer in terms of user
requirements; determining the specific DRL training model,
variables and parameters; and pretraining the neural network
of theDRLmodel. In [121], Jay et al. formulated a framework
for DRL-based congestion control protocol design, which
extends the performance-oriented congestion control (PCC)
approach [134]. In [122], Bachl et al. proposed reactive adap-
tive eXperience-based congestion control (Rax), a method
of congestion control that uses online RL to maintain an
optimum congestion window with respect to a given reward
function and is based on current network conditions. The
above DRL-based solutions aim at implementing different
optimization objectives in terms of the specific requirements.
[120] and [121] employ the general DRL model; however,
[122] uses a new variant of DRL called partial action learning
(PAL). An obvious advantage of PAL is that it supports
delayed and partial rewards.

b: DL-BASED SOLUTIONS
In [124], Liu et al. proposed an adaptive congestion control
protocol (ACCP) for NDN. ACCP is divided into two phases
to control network congestion before affecting network per-
formance. The objective of the first phase is to use the time
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series prediction model based on DBN to forecast the source
of congestion for each node. In the second phase, the level of
network congestion is estimated by the average queue length
in terms of the outcomes of the first phase. The second phase
returns the congestion level back to the receiver, and then the
receiver adjusts the sending rate of interest packets to realize
congestion control. Lan et al. noted that it is unrealistic for
each router to use DL because of cost and computational
capabilities [120].

c: DL AND RL COMBINED SOLUTIONS
In [126], Mao et al. proposed a system (namely Pensieve)
that generates adaptive bitrate (ABR) algorithms using RL
and DL. Pensieve trains a neural network model to deter-
mine bitrates for future video chunks based on observa-
tions (including the client playback buffer occupancy, several
raw network signals and past bitrate decisions) collected by
clients. Pensieve does not rely on preprogrammed models or
assumptions about the environment. Instead, it learns to make
ABR decisions solely according to the observations of the
resulting performance of past decisions.

d: OTHER SOLUTIONS
In [123], Dong et al. proposed a congestion control archi-
tecture named Vivace. This solution adopts the high-level
architecture of PCC, including a utility function framework
and a learning rate control algorithm. However, it realizes
both components differently. First, Vivace relies on a new,
learning-theory informed framework for utility derivation
that incorporates crucial considerations such as latency min-
imization and TCP friendliness. Second, Vivace employs
provably (asymptotically) optimal online optimization based
on gradient ascent to achieve high utilization of network
capacity, swift reaction to changes, and fast and stable con-
vergence.

In [128], Jayaraj et al. proposed an ML-based loss clas-
sification technique for optical burst switching networks.
This technique differentiates between congestion and con-
tention losses, which is derived from the observed losses.
It uses both HMM and an unsupervised learning technique
expectation-maximization clustering on the observed losses
and classifies them into a set of states. Jayaraj et al. mod-
ified the congestion control mechanism of TCP suitably to
arrive at two variants of TCP, HMM-TCP and EM-TCP.
Simulation results demonstrated the effectiveness and accu-
racy of the loss classification technique in different network
scenarios.

e: ANALYSIS
We can observe that many proposals have been pro-
posed to control the transmission rates in terms of specific
requirements. Because the dynamics of network conditions,
the selection of ML algorithms should fully consider the
dynamics adaptability. As a result, RL and RNN are desirable
learning methods to control the rates.

4) DISCUSSION ON ML IN RATE CONTROL
This section reviewsML applications for rate control.Most of
the existing ML-based rate control solutions were proposed
in the last 3 years. We observe that the two most commonly
used ML techniques in existing studies are DL (especially
LSTM) and RL (especially DRL and Q-learning). The above
situation occursmainly because LSTMandRL can adapt well
to the dynamics of network conditions. Supervised learning
and semi-supervised learning have not been applied to rate
control, which is easy to understand because data labeling
makes less sense in rate control. We can notice that several
existing solutions control the rate with the assistance of extra
devices. This can improve the rate control performance to
some extent, but it needs to further consider the deployment
problem.

Although there have been many research efforts on
ML-based rate control, ML techniques have not been well
applied to two important fields in rate control, i.e., video
streaming rate control and multicast rate control. As men-
tioned previously, video streaming traffic accounts for
approximately 75 percent of total Internet traffic [20]. Mul-
ticasting is one of the basic communication methods and
has wide applications, such as video on demand and video
conferences. Compared with unicast, multicast is more com-
plicated because it delivers data to many receivers simulta-
neously, which indicates that intelligence may play a more
important role. For the above reasons, ML-based rate controls
for video streaming and multicasting are noteworthy research
directions.

B. ML IN CONGESTION-AVOIDANCE ROUTING
In this section, we introduce the ML techniques applied to
congestion-avoidance routing. Table 5 presents a summary
of ML-based congestion-avoidance routing solutions. Below,
we introduce them in terms of the communication types (i.e.,
unicast and multicast).

1) UNICAST ROUTING
In the following, we introduce ML-based congestion-
avoidance unicast routing solutions.

a: RL-BASED SOLUTIONS
In [137], Lin et al. proposed a QoS-aware adaptive rout-
ing (QAR) solution for SDNs. This solution assumes that
the distributed hierarchical control plane architecture is
employed in SDNs. The QAR algorithm is based on RL. The
agent finds the routing path with the maximum QoS-aware
reward. The QoS-aware reward function considers the avail-
able bandwidth in the next node. As a result, it can help build a
congestion-avoidance path. In [143], Marbach et al. proposed
RL-based call admission control and routing in integrated
service networks. This solution calls admission control and
routing on a list of paths (with limited bandwidth) fixed
offline to optimize revenue.

In [144], Choi et al. proposed a congestion-avoidance
routing protocol PQ-R. PQ-R retains the best Q-values and
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reuses them by predicting the traffic trend. In PQ-R, routes
should not be selected for packet transfer for a period of
time to enable them to recover from congestion when they
are considered congested. These routes are called regulated
routes. To check regulated route conditions and refresh delay
estimate values, PQ-R probes them at a given frequency
(i.e., regulated routes are occasionally selected for packet
transmission).

In addition to PQ-R, there are several congestion-avoidance
unicast routing solutions based on Q-learning. In [136],
Al-Jawad et al. proposed an intelligent QoS management
framework for multimedia-based SDNs, LearnQoS. Learn-
QoS employs policy-based network management (PBNM)
to ensure the compliance of QoS requirements and opti-
mizes the operation of PBNM through Q-learning. In [135],
Murudkar et al. presented a user-centric approach to find
the shortest path with optimal capacity for a given source
and destination. The Q-learning algorithm proposed in [135]
determines the shortest path, avoiding congested network
nodes to achieve the required throughput and/or bit rate.
In [140], the authors introduced a Q-learning-based unicast
routing protocol, RLDRS, for optical networks. RLDRS
attempts to avoid congestion paths. However, different from
the above solutions, it makes decisions based on the switch
buffer.

b: RANDOM RACE BASED SOLUTIONS
The solutions in [141] and [142] are based on a practical
model named random race [139]. Random race was inspired
by the theory of learning automata, in which a learning
machine (automaton) is offered a set of actions. The automa-
ton chooses only one of the offered actions at a time. The
action it chooses is based on the action probability vector.
The environment, which knows the ‘‘best action’’, either
rewards the automaton or penalizes it with a certain penalty
probability.

In [141], Oommen et al. proposed an adaptive online traffic
engineering algorithm, namely RRATE, based on the random
race model. RRATE generates superior solutions for the com-
putation of the congestion-avoidance paths in MPLS-based
networks. Oommen et al. further improved RRATE in [142].
The modified RRATE is run on a network having a certain
number of nodes and links connecting certain pairs of nodes.
A set of incoming bandwidth routing requests are run through
the network. Then, it attempts to efficiently route the requests
based on the random race model.

c: ANALYSIS
We can observe that RL, especially Q-learning, is the most
commonly used technique in congestion-avoidance unicast
routing. The main reason is that it can well avoid the con-
gestion in terms of the dynamic traffic environment.

2) MULTICAST ROUTING
In the following, we introduce ML techniques applied to
congestion-avoidance multicast routing.

In [146], the authors proposed a multicast routing protocol,
Q-LMRWA, for optical networks with blocked light path
optimization. Connections between sources and destinations
use light paths allocated to them to send their data packets.
Whenever some connections share the same optical link, they
cannot simultaneously use the same wavelength. As a result,
a connection is blocked if there are no available wavelengths.
One performance metric of interest in WDM networks is
‘‘blocking probability’’, which is defined as the number of
blocked connections divided by the total number of active
connections. Q-LMRWA uses RL to find a multicast route
that optimizes the number of required wavelengths while
minimizing blocking probability.

In [145], Chao et al. proposed a self-learning multicast
routing algorithm for a multirate WiFi mesh network to
achieve higher time slot efficiency and guarantee the QoS.
Fig. 5 shows the framework of the self-learning solution.
To meet the QoS requirements, a self-predicted routing infor-
mation mechanism is used. This mechanism calculates the
delay and bandwidth of the multicast routing tree. A real-
time automatic monitor was introduced to monitor the per-
formance of the multicast routing tree, and the monitor can
trigger the routing reconfigure ahead of schedule.

FIGURE 5. Relationships of routing components in [145].

3) DISCUSSION ON ML IN CONGESTION-AVOIDANCE
ROUTING
This section reviews ML applications for congestion-
avoidance routing. From Table 5, we observe that existing
solutions usually adopt RL techniques, especially Q-learning,
because RL techniques have high environment adaptability
and relatively low computation load. In addition, we also
observe that congestion-avoidance routing, especially mul-
ticast routing, has not been widely studied. To adapt to
the dynamics of the network traffic, congestion-avoidance
routing needs to frequently compute the routes according
to current network conditions, which create a heavy load
on routers or controllers. Arranging routes based on traffic
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TABLE 5. Summary of congestion-avoidance routing solutions.

prediction is a feasible approach for solving the above prob-
lem. However, it has not been studied according to our survey.
As a result, ML-based congestion-avoidance routing, based
on traffic prediction, is a future research direction.

C. BANDWIDTH RESERVATION
1) ML-BASED BANDWIDTH RESERVATION SOLUTIONS
To date, there have been almost no studies that dis-
cuss learning-based bandwidth reservation. [147] is the
unique related literature that we have found. In [147],
Panayiotou et al. studied the problem of bandwidth allocation
(i.e., bandwidth reservation) on flexible optical networks in
the case where traffic demand is uncertain. They assume that
the daily traffic demand is given in the form of distributions
that describe the traffic demand fluctuations within given
time intervals. The objective of the work [147] is to find a
predictive BA model that infers from these distributions the
bandwidth that best fits the future traffic demand fluctua-
tions. The problem is formulated as a partially observable
Markov decision process and is solved based on dynamic
programming.

2) DISCUSSION ON ML IN BANDWIDTH RESERVATION
This section reviews ML applications for bandwidth reserva-
tion. The main reason for the lack of ML-based bandwidth
reservation solutions is that the bandwidth reservation mech-
anism has not been widely applied on the Internet. In recent
years, we have witnessed the rapid development of SDN.
By limiting the sending rate of ports, the SDN can support
the bandwidth reservation, which can effectively improve
the aforementioned application problem of the bandwidth
reservation. Intelligence in a simple bandwidth reservation
solution is unnecessary. However, to better utilize network
resources, it is necessary to make an intelligent bandwidth
reservation decision according to the features of network
traffic. In the above scenario, ML techniques can play a
significant role.

V. FUTURE RESEARCH OPPORTUNITIES
Different approaches reviewed in this survey show that ML
have achieved many interesting results in the BICC&A.
However, ML applications for the BICC&A should be fur-
ther studied in several important network environments.
In the following parts, we will introduce these research
opportunities.

A. ML FOR CENTRALIZED BICC&A IN SDN
As mentioned previously, legacy networks adopt distributed
architecture, in which nodes act based on very limited knowl-
edge of the whole network. Learning from nodes that can
only view and act over a small portion of the system is very
complex, particularly if the end goal is to exercise control
beyond the local domain [148]. In recent years, we have
witnessed the rapid development of SDN. Compared with
legacy networks, SDNs have a better capability for solving
the learning problem mentioned above mainly for the follow-
ing reasons. First, the controller in SDN has a global view
of the network topology and resources. Second, it is easier
to monitor the dynamic use situation of network resources
by inquiring statistical data on packets, ports and flows.
Third, the controller can manage network resources in a
centralized manner and conveniently install new routes on
demand.

Because of the above advantages, ML-based SDN tech-
niques have attracted wide attention in recent years. However,
ML techniques for the BICC&A is only in its infancy stage,
and there has been much intelligence to develop to opti-
mize BICC&A from a global perspective. The fields where
intelligence can be developed include path planning, rate
orchestration and bandwidth reservation orchestration. For
static path planning and bandwidth reservation orchestration,
DL-based solutions are promising because the controller can
collect and save mass data. For dynamic path planning and
rate control, RL and RNN are desirable choices because of
their high adaptability of dynamic network conditions.

In addition to specific BICC&A solutions, the ML-based
traffic prediction in the SDN can be further improved by
combining the convenient traffic monitoring capability of
the SDN. Note that real-time traffic monitoring creates a
heavy load on the controller. Existing ML-based prediction
models for network traffic have only been developed for large
aggregation time windows (> 15 minutes in most cases)
due to the very volatile nature of network traffic on smaller
time scales [58]. The traffic prediction results can be used to
determine a low-loaded sampling of traffic monitoring. Thus,
the advantages of traffic prediction and monitoring can be
fully used. In addition, the ML-based traffic prediction can
benefit from traffic monitoring results because of more useful
information.
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B. ML FOR BICC&A IN OVERLAY NETWORKS
With the development of Internet applications, legacy net-
works have exposed an increasing number of problems. Net-
work overlays operate on top of the legacy network, which
means that it accomplishes new functions without modifica-
tion of the legacy network. Because of the above flexibil-
ity, network overlays have been widely studied for a long
time [149]–[151]. As noted in [151], overlay networks have
been proposed to actively optimize traffic over alternative
paths to avoid congested links. Because it requires a long
time to finish the evolution from a legacy network to a new
network, it is valued to study the BICC&A over network
overlays based on ML techniques. The ML applications for
the BICC&A over network overlays include topology dis-
covery, available end-to-end bandwidth measurement, and
bandwidth-guaranteed overlay routing.

To alleviate the performance decline, the BICC&A over
network overlays should consider the underlying topology to
fully use network resources. Unfortunately, it is difficult to
accomplish this because the underlying topology is invisible.
To date, there have been a large number of research efforts on
topology discovery. However, almost no literature introduces
ML-based intelligence to topology discovery. Because the
GNN can model a network topology [105], it is a promising
model to deduce the underlying network topology. According
to the introduction in section III-C, we observe that only a
very small amount of research work considersML techniques
in the available bandwidth measurement procedure. As men-
tioned previously, RL is a feasible approach to help measure
available end-to-end bandwidth measurements because the
states can be perceived after an action is applied. Supervised
learning and DL-based solutions are also feasible because the
training data can be easily obtained in the available end-to-
end bandwidth measurement. Note that the overlay routing
can adopt the ML techniques, especially RL, used in the
common routing protocols.

C. ML FOR COLLABORATIVE BICC&A IN DISTRIBUTED
NETWORKS
Most existing ML-based BICC&A solutions, designed for
distributed networks, control or avoid network congestion in
terms of a single communication session. This may cause
two problems. On the one hand, separate congestion control
and avoidance cannot fully utilize network resources, thereby
limiting its capability. On the other hand, the bandwidth use
fairness and utility (depending on the flow types) of the flows
sharing the same congestion links are difficult to balance.
To obtain an effective tradeoff between fairness and utility,
it is necessary to implement collaborative BICC&A. Col-
laborative BICC&A can be well implemented in centralized
network architectures such as SDN. However, the majority
of the current Internet still consists of distributed networks.
As a result, collaborative BICC&A in a distributed manner is
a practical research topic for the current Internet.

To implement a collaborative BICC&A in a distributed net-
work, the sender of each flow needs to perceive the features

of other flows and make decisions based on the perceived
results. For the above process, ML techniques, especially
classifiers, can play an important role. The collaborative
BICC&A requires the mutual cooperation of the entities
(e.g., hosts and servers) in the distributed networks. For
the distributed networks, the distributed learning techniques
have their inherent advantages. The federated learning is a
promising distributed learning technique proposed in [153],
and have attracted some interesting works (e.g., [154]). The
distributed learning techniques, including federated learning,
can play an important role for the collaborative BICC&A.

D. ML FOR CROSS-LAYER BICC&A
The end-to-end connection in TCP/IP networks involve all
layers, including application layer, transport layer, network
layer, data link layer, and physical layer. The exchange of data
and service calling takes place only between two adjacent
layers and forms a significant black box feature of the TCP/IP
model [155], [156]. As a result, the information in a layer
is hidden for another layer. The strict boundary between dif-
ferent layers brings some advantages, such as the convenient
deployment and the simplicity of development. However,
the encapsulation of the layers prevents some necessary infor-
mation sharing between layers [155]. Therefore, to mitigate
the side effect of the encapsulation between the abstract layers
in the TCP/IP model, a number of cross-layer designs have
been proposed [155]. Because BICC&A can be performed
at different layers, it is feasible to control or avoid network
congestion by the collaboration of different layers. However,
to the best of our knowledge, there are no ML-based cross-
layer BICC&A solutions. As a result, ML for cross-layer
BICC&A should be considered in the future. One typical
field on ML for cross-layer BICC&A is the collaboration of
congestion-avoidance overlay routing and rate control. The
specific ML techniques applied to the cross-Layer BICC&A
depend on the concerned optimization objectives. In general,
the optimization objective with a dynamics adaptability can
apply the RL techniques, while the optimization objective
without considering the dynamics can use other ML tech-
niques such as DL.

VI. CONCLUSION
This paper presented a comprehensive survey of the ML
applications for the BICC&A. First, we presented an
overview of the background knowledge of BICC&A, includ-
ing challenges of dealing with Internet congestion, network
condition acquirements for BICC&A, specific BICC&A
methods, and various ML techniques and several concerns
on ML algorithms for BICC&A. The network condition
acquirements include traffic classification, traffic predic-
tion, available bandwidth measurement and topology dis-
covery; the specific BICC&A methods include rate control,
congestion-avoidance routing and bandwidth reservation.
Then, we provided detailed reviews on BICC&A-oriented
network condition acquirement and specific BICC&A solu-
tions based onML algorithms. Finally, we outlined important
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research opportunities. In summary, research on applying
ML algorithms in the BICC&A is quite broad, and many
challenges still lay ahead. This paper attempts to explore how
ML algorithms improve the performance of the BICC&A
and which fields of BICC&A the network community should
focus on.We hope that our exploration open a new avenue for
the development of more intelligence in the BICC&A.
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