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ABSTRACT The modeling of traffic dynamics under intelligent transportation system (for short, ITS) is
an important and interesting topic in traffic flow theory. In this paper, a novel lattice hydrodynamic model
is presented to describe dynamic features of traffic flow with consideration of multi-anticipative average
flux effect under ITS environment. The corresponding stability condition is obtained by using the linear
stability analysis theory. The analytical results show that the stable region can be significantly widened on
the phase diagram when the multi-anticipative average flux effect is considered, and the anticipating average
flux information of more sites ahead can further lead to the stability of traffic flow. The mKdV equation near
the critical point during the nonlinear analysis is derived to describe the evolution properties of traffic density
waves by applying the reductive perturbation method. Numerical simulation results are consistent with the
theoretical results, which further confirm that the traffic jam can be effectively alleviated by taking into
account multi-anticipative average flux effect in the traffic system.

INDEX TERMS Traffic flow, lattice hydrodynamic model, multi-anticipative average flux.

I. INTRODUCTION
Over the past few decades, more and more automobiles on
roads make traffic jams become one of the most serious prob-
lems, which have aroused wide concern from many scientists
and scholars due to its complex mechanism [1]. A consider-
able variety of traffic flow models have been constructed and
developed in order to reveal the properties of traffic jams.
Generally, these models can be categorized into the micro-
scopic models (e.g., cellular automaton models [2]–[4] and
car-following models [5]–[14]) and the macroscopic models
(e.g., hydrodynamic models [15]–[18], lattice hydrodynamic
models [19]–[29]). The macroscopic models describe traffic
flow similar to the motion of liquid or gas, while the micro-
scopic models represent individual vehicle’s movement.

As the simple form of hydrodynamicmodels, lattice hydro-
dynamic models have been widely applied to describe the
dynamical phase transitions and the stability of traffic flow
due to the convenience of calculation and analysis. In 1998,
Nagatani [20] firstly presented a simple lattice hydrodynamic
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model of one-lane freeway, which is very favorable to reflect
traffic jamming transition and dynamical evolution of traf-
fic jams by analyzing the mKdV equation. Subsequently,
a lot of extended lattice models considering various kinds
of traffic factors such as backward-looking or forward-
looking effects [21]–[23], and the density or flux difference
effects [24]–[26], were presented.Moreover, the optimal con-
trol method is introduced to analyze various traffic phenom-
ena [27]–[29], and lane changing is considered to develop the
two-lane lattice hydrodynamic models [30]–[33].

With the rapid development of information and communi-
cation technologies, the real-time traffic information service
system is gradually becoming widely available. In order to
improve the transportation efficiency and decrease traffic
jams evidently, traffic control system has been applied as
an important part of ITS. Drivers can easily acquire more
and accurate traffic information about other vehicles in their
surrounding and the current road condition, such as the aver-
age velocity (or headway) of preceding vehicle group and
the average flux of road ahead on a segment. Based on that
information, drivers can predict the future state of traffic flow
ahead and adjust their driving behavior promptly so as to
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avoid the appearance of a traffic jam. Several lattice traffic
models have been established to explore traffic dynamical
characteristics in ITS environment. Ge et al. [34] proposed
a cooperative driving lattice model with consideration of an
arbitrary number of front lattice sites. Wang et al. [35] con-
structed a novel lattice model by taking the multiple density
difference effect. Redhu and Gupta [36] presented a multi-
phase lattice model by accounting for the effect of multi-
forward looking sites on highway. Li et al. [37] developed an
improved lattice model by considering the multiple optimal
current differences’ anticipation effect. The above results
show that the stability of traffic flow can be enhanced greatly
by incorporating the traffic information of more front lattice
sites.

Recently, the related works of traffic flow stability and
dynamics have been further investigated. Song and Zhu [12]
analyzed the stability of the classical car-following system by
applying the state feedback control strategy. Klawtanong and
Limkumnerd [13] studied the dynamics properties of traffic
flow by using the stochastic car-following model with modi-
fied optimal velocity on circular road. Based on optimal con-
trol theory, Zhao et al. [27] proposed a novel two-dimensional
vehicular movement model to simulate the characteristics
of traffic flow at intersections. Cheng and Wang [28] put
forward an extended lattice hydrodynamic model to study
the effect of delayed feedback control on a curved road.
Qin et al. [29] proposed a new feedback control model to
consider the memory effect of flux difference.

However, the combined effect of the average flux differ-
ence and the mean expected flux field (i.e., multi-anticipative
average flux effect) on the formation mechanism of traffic
density wave has not been explored in the lattice hydro-
dynamic models up to now. In fact, these two effects can
better reflect the road traffic situation ahead and the driver’s
expected driving behavior. For instance, if the average flux
of road ahead is less than the current flux at the same time,
which means that the congested flow may occur on road
ahead, the drivers will probably determine the deceleration
due to the decrease of the expected average flux; on the
contrary, the occurrence of free flow can tell the drivers to
accelerate considering the increase of the expected average
flux. How do these two coupling factors affect the traffic
flow stability? Which one is more important in enhancing the
stability of traffic flow and alleviating traffic jam? This is an
interesting but still open problem.

Therefore, based on above analysis, different from the pre-
vious studies, we explore the combined effect of the average
flux difference and the mean expected flux field (i.e., multi-
anticipative average flux effect) on the stability of traffic
flow and the evolution of traffic jams from a new research
perspective. In the following section, a novel mean expected
optimal flux field including weighted factor is introduced in
the new lattice hydrodynamic model. The linear and non-
linear stability analyses are conducted in Section III and
Section IV, respectively. In Section V, numerical simulations
are performed to confirm the theoretical analysis results, and

the intrinsic mechanism of the corresponding phase transition
is discussed in detail. Finally, some conclusions are drawn.

II. MODEL
Firstly, Nagatani [20] in 1998 developed a simple lattice
hydrodynamic model describing the complex mechanism of
traffic flow on highway. The model consists of a continuity
equation and flow equation as follows:

∂tρ + ρ0∂x (ρv) = 0 (1)

∂tρv = aρ0V (ρ (x + δ))− aρv (2)

where ρ0 is the average density; a is the sensitivity of drivers;
V (•) refers to the optimal velocity function which is based on
the density; δ represents the average headway and δ = 1

/
ρ0;

the local density is expressed as ρ(x+ δ) = 1
/
h (x, t), where

h (x, h) is the headway. The means that the variation of traffic
flux ρv at position x is determined by the difference between
the optimal flow ρ0V (ρ (x + δ)) at position x + δ and the
actual flow ρv at position x.

Eq. (1) and Eq. (2) can be further written with dimension-
less space x (let x∗ = x

/
δ, x∗ is indicated as x hereafter) and

its lattice version as

∂tρj + ρ0
(
ρjvj − ρj−1vj−1

)
= 0 (3)

∂t
(
ρjvj

)
= aρ0V

(
ρj+1 (t)

)
− aρjvj (4)

where j indicates the j-th site on a one-dimensional lattice;
ρj(t) and vj(t) denotes the local density and velocity on site j
at time t , respectively.

Based on Nagatani’s model, Tian et al. [25] improved a
lattice model by considering the flux difference effect. The
model is given as follows:

∂tρj + ρ0
(
ρjvj − ρj−1vj−1

)
= 0 (5)

∂t
(
ρjvj

)
= aρ0V

(
ρj+1 (t)

)
− aρjvj + λ

(
Qj+1 − Qj

)
(6)

whereQj = ρjvj andQj+1 = ρj+1vj+1 is the flux on site j and
site j + 1, respectively; 1Qj = Qj+1 − Qj denotes the flux
difference between the site j and site j + 1; λ is the reaction
coefficient of the flux difference.

After that, some extended lattice models [29], [38], [39]
were established by considering the anticipation optimal flux
difference and the memory effect of flux difference. Recently,
Jiang et al. [40] proposed an improved lattice model to study
on-ramp and off-ramp by introducing the effect of mean-field
flow difference. However, these studies have not considered
the combined effect of the average flux difference and the
mean expected flux field on real traffic situation. These two
factors may influence on traffic flow obviously.

In this paper, we construct a new lattice hydrodynamic
traffic flow by taking into account multi-anticipative average
flux effect. The corresponding differential equations of the
model are as follows:

∂tρj + ρ0
(
ρjvj − ρj−1vj−1

)
= 0 (7)

∂t
(
ρjvj

)
= a (1− p) ρ0V

(
ρj+1 (t)

)
+ apQmf

− aρjvj + λ
(
Qj − Qj

)
(8)
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where Qmf =
ρ0
n

∑n
l=1 V

(
ρj+1+l (t)

)
is called as the mean

expected flux field which reflects the mean expected optimal
flux from the front lattice sites of site j + 1. n denotes
the total number of front lattice sites of site j + 1. Qj =
1
n

∑n
l=1 ρj+lvj+l and1Q̄j = Q̄j−Qj are the average flux and

the average flux difference of front lattices of site j, respec-
tively. The parameter p is the weight of the current optimal
flux and the mean expected flux field. Here, p should be less
than 0.5, because the influence of the current optimal flux
ρ0V

(
ρj+1 (t)

)
is greater than the mean expected flux field

Vmf due to the greater effect of nearest-neighbor interaction.
The larger p is, the more prominent of the mean expected
flux field effect is. When p = 0 and λ = 0, the new model
becomes Nagatani’s model [20]; When p = 0, λ 6= 0 and
n = 1, the new model is simplified to Tian’s model [25].

By eliminating velocity v in Eqs. (7) and (8), we can obtain
the following density equation

∂2t ρj + aρ
2
0 (1− p)

(
V
(
ρj+1

)
− V

(
ρj
))

+ aρ20
p
n

(
V
(
ρj+n+1

)
− V

(
ρj+1

))
+ a∂tρj − λ

(
1
n

∑n

l=1
∂tρj+l − ∂tρj

)
= 0 (9)

Here, we use the optimal velocity function in Ref. [41] as
follows:

V
(
ρj
)
=
vmax

2

[
tanh

(
2
ρ0
−
ρj

ρ20

−
1
ρc

)
+ tanh

(
1
ρc

)]
(10)

where vmax and ρc denote the maximum velocity and the
safety critical density, respectively. Note that Eq. (10) is a
monotonically decreasing function, and it has a turning point
and an upper bound at ρj = ρc when ρ0 = ρc.

III. LINEAR STABILITY ANALYSIS
In this section, the stability of the new model is derived
by adopting linear stability analysis method to study the
influence of multi-anticipative average flux effect on jam-
ming transition of traffic flow. Supposed the steady state is
a uniform traffic flow with the constant density ρ0, and then
the optimal velocity is V (ρ0). Thus, the steady-state solution
of the homogeneous traffic flow can be given as

ρj (t) = ρ0, vj (t) = V (ρ0) (11)

Assume yj(t) is a small deviation from the steady state
density ρj(t), then the perturbed solution is

ρj(t) = ρ0 + yj(t) (12)

Substituting Eqs. (11) and (12) into Eq. (9), we get the
linearized equation as

∂2t yj + aρ
2
0V
′ (1− p)

(
yj+1 − yj

)
+ aρ20

p
n

(
yj+n+1 − yj+1

)
+ a∂tyj − λ

(
1
n

∑n

l=1
∂tyj+l − ∂tyj

)
= 0 (13)

where V ′ = dV (ρj)
dρj

∣∣∣
ρj=ρ0

.

FIGURE 1. Phase diagram in the density-sensitivity space for different
models.

By further expanding yj (t) = exp (ikj+ zt), we can get
equation as follows:

z2 + z (a+ λ)+ aρ20V
′ (1− p)

(
eik − 1

)
+ aρ20V

′
p
n

(
eik(n+1) − eik

)
−
λz
n

n∑
l=1

eikl = 0 (14)

Inserting z = ikz1 + (ik)2 z2 + · · · into Eq. (14), the first-
order and second-order terms of ik can be derived as:

z1 = −ρ20V
′ (15)

z2 = −
1
2
(1+ p+ pn) ρ20V

′

+
1
2a

[
(1+ n) λz1 − 2z21

]
(16)

The uniform steady-state flow is unstable if z2 < 0, while
the uniform traffic flow will become stable when z2 > 0.
Consequently, the neutral stable criteria for this steady state
can be given

a =
−2ρ20V

′
− λ (1+ n)

1+ p+ np
(17)

And then, the homogeneous traffic flow will be stable
under the following condition:

a >
−2ρ20V

′
− λ (1+ n)

1+ p+ np
(18)

As p = 0, λ = 0, the stable condition is consistent with
that of Nagatani’s model [20]. As p = 0, λ 6= 0 and n = 1,
the stable condition is the same that of Tian’s model [25].

Figure 1 gives that the neutral stability curves and the
coexisting curves in the density-sensitivity space for different
models under different n as λ = 0.2 and p = 0.1. The red,
blue and black solid (dotted) lines indicate the neutral sta-
bility (the coexisting) curves of the Nagatani’s model, Tian’s
model and newmodel, respectively. And the asterisks (see the
apex of each curve) denote the critical point (ρc, ac). In Fig. 1,
we can see clearly that the phase diagram can be divided into
three regions: stable, metastable and unstable regions. In the
stable region (i.e., the region above the coexistence curve),

VOLUME 9, 2021 35281



H. Kuang et al.: Multi-Anticipative Average Flux Effect in the Lattice Hydrodynamic Model

FIGURE 2. The comparison of phase diagram in the density-sensitivity
space between the mean expected flux field effect (i.e., p 6= 0, λ = 0) and
the average flux difference effect (i.e., p = 0, λ 6= 0).

traffic jams will not occur. However, in the metastable region
(i.e., the region between the neutral stability and the coex-
isting curves) and unstable region (i.e., the region below the
neutral stability curve), a small disturbance in this unstable
traffic flow can lead to the emergence of traffic density waves
eventually. Through comparing with Nagatani’s model (i.e.,
p = 0, λ = 0) and Tian’s model (i.e., p = 0, λ 6= 0 and
n = 1), we can observe that the stable region is the largest in
the new model (i.e., n = 1, 2, 3), which means that the new
model is more effective to suppress traffic jams. Furthermore,
it can be found that with the increase of the value of n, the apex
of these curves (ρc, ac) and the neutral stability curves decline
gradually, which indicates that the traffic flow will become
more stable, and traffic jamwill be effectively alleviated if the
average flux information of more sites ahead is considered by
driver under ITS environment.

In order to compare the contribution of these two effects
on the stability of traffic flow, Fig. 2 shows the comparison
of phase diagram in the density-sensitivity space between
the mean expected flux field effect (i.e., p 6= 0, λ = 0)
and the average flux difference effect (i.e., p = 0, λ 6=
0). From Fig.2, we can obviously see that under the same
parameter n, the neutral and coexisting curves of the aver-
age flux difference effect are lower than those of the mean
expected flux field effect, which indicates the average flux
difference effect plays a more important role than the mean
expected flux field effect in enhancing the stability of traffic
flow.

IV. NONLINEAR ANALYSIS
To further investigate the influence of multi-anticipative aver-
age flux on the evolution properties of traffic jam, a nonlinear
analysis of the new model is further conducted by using the
reductive perturbation method for Eq. (9) to explore the sys-
tem behavior around the critical point (ρc, ac). We define the
slow variables X and T for a small positive scaling parameter
ε(0 < ε ≤ 1) are defined as follows [20]:

X = ε (j+ bt) , T = ε3t (19)

where b is a constant to be determined. Let the density ρj
satisfy the following condition:

ρj = ρc + εR (X ,T ) (20)

By expanding each term in Eq. (9) to the fifth order of ε
using of Eqs. (19) and (20), we can obtain

∂tρj = ε
2b∂XR+ ε4∂TR (21)

∂tρj+l = ε
2b∂XR+ ε3bl∂2XR

+ ε4
(
1
2
bl2∂3XR+ ∂TR

)
+ ε5

(
1
6
bl3∂4XR+ l∂X∂TR

)
(22)

∂2t ρj = ε
3b2∂2XR+ ε

52b∂X∂TR (23)

ρj+1 = ρc + εR+ ε2∂XR+
1
2
ε3∂2XR

+
1
6
ε4∂3XR+

1
24
ε5∂4XR (24)

ρj+n+1 = ρc + εR+ ε2 (1+ n) ∂XR

+
1
2
(1+ n)2 ε3∂2XR

+
1
6
(1+ n)3 ε4∂3XR+

1
24
(1+ n)4 ε5∂4XR (25)

V
(
ρj
)
= V + εV ′R+

1
6
ε3V ′′′R3 (26)

V
(
ρj+1

)
= V + εRV ′ + ε2V ′∂XR

+ ε3
(
1
6
R3V ′′′ +

1
2
V ′∂2XR

)
+ ε4

(
1
2
R2V ′′′∂XR+

1
6
V ′∂3XR

)

+ ε5


1
2
RV ′′′ (∂XR)2

+
1
4
R2V ′′′∂2XR+

1
24
V ′∂4XR

 (27)

V
(
ρj+n+1

)
= V + εRV ′ + (1+ n) ε2V ′∂XR

+ ε3
[
1
6
R3V ′′′ +

1
2
(1+ n)2 V ′∂2XR

]
+ ε4

[
1
2
(1+n)R2V ′′′∂XR+

1
6
(1+n)3 V ′∂3XR

]

+ ε5


1
2
(1+ n)2 RV ′′′ (∂XR)2

+
1
4
(1+n)2R2V ′′′∂2XR+

1
24
(1+n)4V ′∂4XR


(28)

where V ′ = dV (ρj)
dρj

∣∣∣
ρj=ρc

,V ′′′ = d3V(ρj)
d3ρj

∣∣∣∣
ρj=ρc

.

By substituting Eqs. (21)-(28) into Eq. (9) and making
the Taylor series expansion to the fifth-order of ε,
we obtain the following nonlinear partial differential
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equation:

ε2
(
b+ ρ2cV

′

)
∂XR

+ ε3
{
b (2b− nλ− λ)

2a
+
(np+ p+ 1) ρ2cV

′

2

}
∂2XR

+ ε4


∂TR+

ρ2cV
′′′

6
∂XR3 −

bλ
(
2n2 + 3n+ 1

)
12a

∂3XR

+

(
n2p+ 3np+ 2p+ 1

)
ρ2cV

′

6
∂3XR



+ ε5



4b− λ (n+ 1)
2a

∂X∂TR−
bnλ (n+ 1)2

24a
∂4XR

+

(
n3p+ 4n2p+ 6np+ 3p+ 1

)
ρ2cV

′

24
∂4XR

+
(np+ p+ 1) ρ2cV

′′′

12
∂2XR

3


= 0

(29)

Near the critical point (ρc, ac), let ac = a
(
1+ ε2

)
.

By taking b = −ρ2cV
′ and eliminating the second-order and

third-order terms of ε in Eq. (29), one can get the following
simplified equation:

ε4
(
∂TR− g1∂3XR+ g2∂XR

3
)

+ ε5
(
g3∂2XR+ g4∂

4
XR+ g5∂

2
XR

3
)
= 0 (30)

where

g1 = −
1
6
ρ2cV

′
−
p (n+ 1) (n+ p)

6
ρ2cV

′

−
λ
(
2n2 + 3n+ 1

)
12ac

ρ2cV
′ (31)

g2 =
1
6
ρ2cV

′′′ (32)

g3 = −
1
2
(np+ p+ 1) ρ2cV

′ (33)

g4 =
[1+ p (n+ 1) (n+ 2)] ρ4cV

′2

3ac

+
λ
(
2n2 + 3n+ 1

)
ρ4cV

′2

6a2c

+
λ2 (1+ n)2 (1+ 2n) ρ2cV

′

24a2c

+
λ (n+ 1)

[
n2 (2p+ 1)+ n (6p+ 1)+4p+2

]
ρ2cV

′

24ac

+

[
1+ p

(
n3 + 4n2 + 6n+ 3

)]
ρ2cV

′

24
(34)

g5 =
ac (np+ p+ 1)+ λ (n+ 1)+ 4ρ2cV

′

12ac
ρ2cV

′′′ (35)

To get the regularized mKdV equation from Eq. (30), we
perform the following transformations:

T ′ = g1T ,R =
√
g1
g2
R′ (36)

Then, Eq. (30) can be transformed to the standard mKdV
equation with correction term O(ε) as follows:

∂T ′R
′
− ∂3XR

′
+ ∂XR′3 + εM

[
R′
]
= 0 (37)

where M
[
R′
]
=

1
g1

[
g3∂2XR

′
+ g4∂4XR

′
+

g1g5
g2
∂2XR
′3
]

After ignoring theO(ε) terms in Eq. (37), the kink-antikink
solution of the mKdV equation can be derived as follows:

R′0
(
X ,T ′

)
=
√
c tanh[

√
c
2

(
X − cT ′

)
] (38)

where c is the propagation velocity of the kink-antikink
solution and its value is decided by solving the following
solvability condition [6]:(

R′0,M
[
R′0
])
≡

∫
+∞

−∞

dX ′R′0M
[
R′0
]
= 0 (39)

where M
[
R′0
]
= M [R0].

Thus, we can obtain the following general solution of c:

c =
5g2g3

2g2g4 − 3g1g5
(40)

Then, we can derive the solution of mKdV equation as

1ρj (t) = ρc +
√
g1c
g2

(ac
a
− 1

)
tanh

√
c
2

(ac
a
− 1

)
×

[
j+ (1− cg1

(ac
a
− 1

)
t)
]

(41)

And the amplitude A of the kink-antikink solution is
obtained by

A =
√
g1c
g2

(ac
a
− 1

)
(42)

The kink-antikink solution represents the coexisting phase
of the low-density freely moving phase and the high-density
congested phase. They can be expressed by ρj = ρc − A
and ρj = ρc + A (see the coexisting curves, i.e., the dotted
lines in Fig.1 and Fig.2) in the density-sensitivity space,
respectively.

V. NUMERICAL SIMULATION AND RESULTS ANALYSIS
For the convenience of simulation, we rewrite Eq. (9) into the
following difference form:

ρj (t + 2τ)− ρj (t + τ)

+ τρ20

 (1− p)
[
V
(
ρj+1 (t)

)
− V

(
ρj (t)

)]
+
p
n

[
V
(
ρj+n+1 (t)

)
− V

(
ρj+1 (t)

)]


+ λτ
[
ρj (t + τ)− ρj (t)

]
−
τλ

n

n∑
l=1

[
ρj+l (t + τ)− ρj+l (t)

]
= 0 (43)

To verify the theoretical results and reveal the impact
of multi-anticipative average flux effect on traffic flow,
we choose the fourth-order Runge-Kutta method to simulate
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FIGURE 3. Space-time evolution of the density after t = 10000 time steps,
where a = 0.98.

the new model described by Eq. (43). The periodic boundary
is used by choosing the following initial conditions:

ρj (0) = ρ0 = 0.25,

ρj (1) = 0.25 (j 6= 100, 101) (44)

FIGURE 4. Density profiles of density waves at t = 10200 corresponding
to patterns in Fig. 3, respectively.

ρj (1) = 0.25− 0.01 (j = 100) (45)

ρj (1) = 0.25+ 0.01 (j = 101) (46)
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In the simulation, the total lattice is N = 200, vmax = 2,
p = 0.1, λ = 0.2 and a = 0.98.

Figure 3 depicts the simulation results of the space-time
evolution of the density after t = 10000 time steps. Fig. 3(a)
exhibits the results of Nagatani’s model (i.e., p = 0 and
λ = 0). Figs. 3(b)-(d) display the density evolution of the
new model corresponding to the three cases of n = 1,
2 and 3, with p = 0.1 and λ = 0.2, respectively. From
Fig. 3(a)-(c), one can see clearly that a small stochastic dis-
turbance will make the initial stable traffic flow evolve into
traffic density waves propagating backwards, because the
stability criterion of Eq. (18) has not been met as a = 0.98.
The propagating behaviour of the congested traffic waves can
be characterized by the kink-antikink solution of the mKdV
equation corresponding to the nonlinear analytical results in
Section IV. Meanwhile, one can find that the traffic stability
will become better and better with increasing n, especially,
the initial disturbed traffic flow will recover to its stable state
and the density wavewill disappear after a long time as shown
in Fig. 3 (d), which means that the multi-anticipative average
flux effect can strength the stability of traffic flow obviously,
and suppress the traffic jams effectively.

Figure 4 displays the density profile obtained at t = 10200
corresponding to Fig. 3. It can be observed obviously that the
amplitude fluctuation ofNagatani’smodel ismuch larger than
those of the new model, which indicates that the traffic jams
appearmore easily and are difficult to evanishwhen themulti-
anticipative average flux effect is neglected. Additionally,
as the value of n increases, the fluctuation of the density
decreases gradually until it disappears when n = 3. All these
results show that taking into account the multi-anticipative
average flux effect can improve the traffic stability effec-
tively, which further verifies the above linear and nonlinear
analytical results.

VI. CONCLUSION
In this paper, we established a new lattice hydrodynamic
model by considering the multi-anticipative average flux
effect under ITS environment. The stability condition and
mKdV equation near the critical point are obtained by using
the linear stability analysis and nonlinear analysis theory,
respectively. The phase diagram comparison and analysis
show that the new model has the largest stable region among
three models. Moreover, stabilizing traffic flow is more
influenced by the average flux difference effect than the
mean expected flux field effect. The simulation results also
demonstrate that considering multi-anticipative average flux
effect and increasing the number of the sizes ahead can
effectively improve the stability of traffic flow, which are
in good accordance with the theoretical findings. Hence,
it is reasonable to consider the multi-anticipative average
flux effect to alleviate traffic congestion in traffic flow
modeling.

In the future, some research based on other models and
the corresponding comparison will be done. Besides, we will
further explore the two-lane lattice model by incorporating

lane-changing behaviors and other important aspects (e.g.,
the driver’s attributions).
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