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ABSTRACT A target tracking system with a laser rangefinder is developed, and the performance of the
developed system is verified by a numerical simulation and field tests. To develop the target tracking system,
appropriate coordinate systems, motion models, and estimation methods are selected, and a range filter is
designed to compensate for the measurement errors of the laser rangefinder. The range filter independently
processes the range measurements so that the target filter continuously produces the target information. The
entire target tracking system development process is described in detail to facilitate future work of a similar
nature. A scenario-based Monte Carlo simulation is performed to compare the performances of various state
estimation methods. Experimental tests involving a low-speed fishing boat and a drone are performed to
verify the performance and effectiveness of the proposed scheme. A separate performance analysis program
with a graphical user interface is developed to analyze the simulation and field test results.

INDEX TERMS Laser rangefinder, target tracking, state estimation.

NOMENCLATURE
peT Target position in ECEF coordinates
veT Target velocity in ECEF coordinates
pnT Target position in navigation coordinates
vnT Target velocity in navigation coordinates
ppT Target position in platform coordinates
peP Platform position in ECEF coordinates
Rpc DCM from camera to platform coordinates
Rnp DCM from platform to navigation coordinates
Ren DCM from navigation to ECEF coordinates
φ, λ, h Geodetic latitude, longitude, and altitude
ϕ, θ, ψ Platform roll, pitch, and yaw angles
A,E,R Azimuth, elevation, and range

I. INTRODUCTION
Target tracking of a maneuvering target is one of the major
problems in the field of defense and security. A target track-
ing system with various sensors, including a radar sensor,
image sensors (e.g., an electro-optical camera), and a laser
rangefinder (LRF), can be developed. In general, radar pro-
vides information on a target within a relatively wide field
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of view. However, a camera and an LRF are sometimes
combined to obtain information about a target in a limited
field of view with higher accuracy.

In this study, an LRF and electro-optical infrared image
sensor are considered for the tracking of a maneuvering tar-
get. The LRF, which has been widely used for various appli-
cations [1], [2], uses the time-of-flight principle andmeasures
the to-and-from travel time to determine the distance [3].
However, in addition to the typical additive noise signal,
exceptional signal attributes exist, including false measure-
ments in the range information from the LRF sensors. In
the case of false measurements, the target signal may not
be received because of the miss-hit (nonreflection) of the
laser pulse, an occlusion by any obstacle during the mis-
sion, or an unexpected external light source, e.g., the sun.
These attributes from the LRF sensor signals are character-
ized by actual data samples obtained from field experiments.
Therefore, an additional filter for the LRF sensor should be
designed to address the poor characteristics of the LRF and
to handle exceptional signal attributes from the sensor [4].

A constant-gain filter and Kalman filter (KF) can be used
for target tracking [5]. The alpha-beta filter (ABF) is a type
of constant-gain filter that has been widely used because
of its efficiency and easy implementation [6]. The KF was
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first introduced in the 1960s and has been widely utilized to
estimate the state information in various fields. The extended
Kalman filter (EKF), which incorporates a linearization pro-
cedure, was developed for nonlinear systems. The unscented
Kalman filter (UKF) is known to be more accurate than the
EKF when the system has a strong nonlinearity because it
does not compute the Jacobian at the expense of a larger
computational load.

The target tracking problem can be understood as a non-
linear state estimation problem incorporating various coordi-
nate systems. For example, target motion models, including
the constant-velocity (CV) model and constant-acceleration
(CA) model, are often described in a Cartesian coordinate
system such as the earth-centered earth-fixed (ECEF) coordi-
nate system. However, the measurement signals are obtained
in the sensor coordinate system according to themeasurement
mechanism. Note that typical measurement signals are given
as angles and ranges relative to the target, the transforma-
tion of which to a Cartesian coordinate system is nonlinear.
Therefore, performing target tracking in different coordinate
systems becomes a nontrivial problem. Rong Li et al. clas-
sified the tracking problem in various coordinate systems:
i) tracking in mixed coordinates, ii) tracking in Cartesian
coordinates, iii) tracking in sensor coordinates, and so on
[7]. Mahapatra and Mehrotra proposed the mixed coordinate
tracking of generalized maneuvering targets using the EKF
[8]. Song et al. developed a suboptimal KF with a pseudo-
measurement model by algebraically manipulating the origi-
nal nonlinear measurement equation [9]. Aidala and Hammel
utilized a modified polar coordinate system for bearing-only
tracking [10].

In this study, a dual-loop filtering system is designed. A
range filter is used to filter the signals from the LRF in the
inner loop of the system. The range filter includes a signal
processing scheme that can handle some exceptional cases
to improve the signal quality and enrich the information
extracted from the signals. Then, the filtered range signals
and image sensor information are converted to the ECEF
coordinate system. The state estimator for target tracking is
designed in the ECEF coordinate system, which is used to
construct the outer loop of the system. Various methods can
be applied to the state estimator design, among which we
consider the ABF, KF, EKF, cubature Kalman filter (CKF),
and UKF in this study.

Our contributions are as follows. First, a novel range filter
is designed to maintain the integrity of the range information
used in the state estimator even under various exceptional
signal attributes. Second, a framework for the development
of a target tracking system is proposed that incorporates a
scenario-based simulator and a performance analysis tool.
The proposed framework covers the algorithm development,
hardware implementation, and practical issues encountered
during a field test of the target tracking system. The hardware
implementation of the designed target tracking algorithm is
described in detail, and the effectiveness of the target tracking
system, verified via the field test, is discussed.

This paper is organized as follows. In Sec. II, the theoretical
backgrounds of the coordinate systems, targetmotionmodels,
measurement models, and state estimationmethods are given.
In Sec. III, the development process of the target tracking sys-
tem is explained, followed by detailed design considerations
for the range filter and the state estimator. In Sec. IV, the per-
formance of the proposed target tracking algorithm is verified
using the scenario-based simulator and performance analyzer.
In Sec. V, the hardware implementation and experimental test
results obtained using a ship and drone are presented. Finally,
Sec. VI concludes this paper.

II. PRELIMINARY
A target tracking filter can be designed inmany different ways
depending on the building blocks selected, which include the
platform, hardware, and coordinate system. In this section,
some basic elements of a target tracking filter and the under-
lying theories are briefly summarized. The coordinate sys-
tems, target motion models, measurement models, and state
estimation methods are then discussed.

A. COORDINATE SYSTEM
Transformation between different coordinate systems is
required in the target tracking system. The coordinate systems
used in the target tracking system are introduced below.

1) WORLD GEODETIC SYSTEM 1984
The World Geodetic System 1984 (WGS-84), OwXwYwZw,
specifies each point uniquely in 3-D space using the geodetic
latitude φ, longitude λ, and altitude H, as shown in Fig. 1a.
Longitude is defined as the angle in the equatorial plane
between theOwXw vector andOwYw vector. Geodetic latitude
is defined as the angle between the equatorial plane and the
surface normal at a certain point on an ellipsoid. Altitude is
defined as the distance from the point to the reference ellip-
soid tangent plane. In this study, the global positioning system
(GPS) locations of the platform and the target are obtained,
and these locations are represented in theWGS-84. The target
GPS information is available only in the test environment.

2) EARTH-CENTERED EARTH-FIXED COORDINATE SYSTEM
The origin of the ECEF coordinate system (OeXeYeZe) is
located at the center of mass of the Earth. The axes of the
ECEF system are fixed with respect to the Earth’s surface.
The target tracking filter estimates the target states in the
ECEF coordinate system.

3) NAVIGATION COORDINATE SYSTEM
The navigation coordinate system (OnXnYnZn) has its origin
at the center of mass of the platform (On), and the axes
are aligned with the north (OnXn), east (OnYn), and down
(OnZn) directions, as shown in Fig. 1b. In this study, the target
velocity is represented in the navigation coordinate system.
Because the target tracking filter estimates the target velocity
in the ECEF coordinate system, coordinate transformation
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FIGURE 1. Schematic diagrams of the coordinate systems.

from the ECEF system to the navigation coordinate system
is required.

4) PLATFORM COORDINATE SYSTEM
The platform coordinate system (OpXpYpZp) shares its ori-
gin with that of the navigation coordinate system (Op), and

the x-axis (OpXp) points toward the head of the platform,
as shown in Fig. 1c. The z-axis (OpZp) points downward,
and the y-axis (OpYp) is aligned with the right side of the
platform. The platform coordinate system axes are obtained
through a 3-2-1 Euler angle rotation from the NED coordinate
system axes. The acceleration, attitude, and angular rate of the
platform measured by the inertial navigation system (INS)
mounted on the platform are provided in this coordinate
system.

5) CAMERA COORDINATE SYSTEM
The camera coordinate system (OcXcYcZc) has its originOc at
the center of the sensor axes. The x-axis (OcXc) points toward
the target. The camera coordinate system axes are obtained
through a 3-2-1 Euler angle rotation from the platform coor-
dinate system axes. The LRF is oriented in the same direction
as the x-axis of the camera coordinate system.

B. TARGET MOTION MODEL
In this section, several fundamental target motion models
are briefly explained. The models can be used in single-
model or multimodel algorithms. In this study, the target is
treated as a point mass. A continuous-time state-space model
describes the target motion, and the target motion model is
described in ECEF coordinates. A discrete-time linear model
can be obtained through linearization and discretization as

xk+1 = Fkxk + Gkwk (1)

where xk is the target state, wk is the process noise, Fk is
the state transition matrix, Gk is the process noise influence
gain, and the subscript k denotes the related time step. The
process noise is assumed to be a zero-mean white Gaussian
sequence, i.e.,wk ∼ N (0,Qk ), whereQk is the process noise
covariance.

Various simple low-order motion models can be success-
fully applied to the tracking of a wide range of targets with
moderate maneuverability. Therefore, in this study, a CV
model and a CA model are considered.

1) CONSTANT-VELOCITY MODEL
The CV model assumes that the target has CV motion
(including stationary motion) with zero-mean white Gaussian
acceleration noise. This model can be used for the tracking
of targets with relatively steady (zero-acceleration) motion,
which can be formulated as

xk = FCV xk−1 + GCVwk−1 (2)

where xk = [x, ẋ, y, ẏ, z, ż]T and

FCV =

8CV O2×2 O2×2
O2×2 8CV O2×2
O2×2 O2×2 8CV

 (3)

GCV =

0CV O2×1 O2×1
O2×1 0CV O2×1
O2×1 O2×1 0CV

 (4)
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with

8CV =

[
1 1t
0 1

]
, 0CV =

1t22
1t

 (5)

2) CONSTANT-ACCELERATION MODEL
TheCAmodel assumes that the target has CAmotion (includ-
ing CV motion) with zero-mean white Gaussian jerk noise.
This model can be used for the tracking ofmoderatelymaneu-
vering targets, which can be formulated as

xk = FCAxk−1 + GCAwk−1 (6)

where xk = [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]T and

FCA =

8CA O3×3 O3×3
O3×3 8CA O3×3
O3×3 O3×3 8CA

 (7)

GCA =

 0CA O3×1 O3×1
O3×1 0CA O3×1
O3×1 O3×1 0CA

 (8)

with

8CA =

1 1t
1t2

2
0 1 1t
0 0 1

 , 0CA =


1t3

6
1t2

2
1t

 (9)

C. MEASUREMENT MODEL
The following nonlinear measurement equation is consid-
ered:

zk = h(xk )+ vk (10)

where zk = [A,E,R]T is the measurement, vk is the mea-
surement noise, and h(·) is the measurement function. In this
study, the measurement consists of the azimuth A, elevation
E , and range R, which can be represented as

A = arctan
(
yp

xp

)
(11)

E = arctan
(

zp√
(xp)2 + (yp)2

)
(12)

R =
√
(xp)2 + (yp)2 + (zp)2 (13)

where [xp, yp, zp]T is the target position in the platform coor-
dinate system. The measurements are assumed to be subject
to zero-mean white Gaussian noise, i.e., vk ∼ N (0,Rk ),
where Rk = diag(σ 2

A, σ
2
E , σ

2
R). To apply a linear filter,

the measurement vector is transformed into a position vector
in the ECEF coordinate system. That is, the following linear
measurement equation is used:

zk = Hkxk + vk (14)

where zk = [x, y, z]T and Hk is a measurement matrix.

D. STATE ESTIMATION
State estimation is very important in target tracking. There-
fore, a state estimation method should be carefully selected
based on the characteristics of the target and measurement
sensors. In this study, the ABF, KF, and EKF are considered.

1) ALPHA-BETA FILTER
The ABF is a constant-gain state observer. It is widely used
in target tracking systems mainly because it does not require
a system model. The prediction step of the ABF can be
described as [11]

p̄k = p̄k−1 +1t v̄k−1 (15)

v̄k = v̄k−1 (16)

where p̄k and v̄k denote the predicted (a priori) position and
velocity in the ECEF coordinate system, respectively, and1t
is a time interval of the estimation. The correction step of the
ABF can be described as

p̂k = p̄k + αr̃k (17)

v̂k = v̄k +
β

1t
r̃k (18)

where p̂k and v̂k denote the corrected (a posteriori) estimates
of the position and velocity, respectively, α and β are constant
gains for the position and velocity correction, respectively,
and r̃k is the measurement residual, defined as the difference
between the measured position value and the predicted posi-
tion value.

However, an alpha-beta-gamma filter (ABGF) provides
smoothed estimates of the position, velocity, and accelera-
tion. The prediction step of the ABGF can be described as
[11]

p̄k = p̄k−1 +1t v̄k−1 +
1t2

2
āk−1 (19)

v̄k = v̄k−1 +1t āk−1 (20)

āk = āk−1 (21)

where āk denotes the predicted acceleration. The correction
step of the ABGF can be described as

x̂k = x̄k + αr̃k (22)

v̂k = v̄k +1t āk +
β

1t
r̃k (23)

âk = v̄k +
2γ
1t2

r̃k (24)

where γ is the constant gain for the acceleration correction.

2) KALMAN FILTER
The KF also consists of two steps: a prediction step (time
update) and a correction step (measurement update). In the
prediction step, the state and covariance are updated accord-
ing to the target motion model as

x̄k = Fk−1x̄k−1 (25)

P̄k = Fk−1P̄k−1FTk−1 + Gk−1Qk−1G
T
k−1 (26)
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FIGURE 2. Flow chart of the development process.

where P̄k denotes the predicted error covariance andQk is the
process noise covariance. In the correction step, the state and
error covariance are updated according to the prefit residual
rk = zk − Hk x̄k as

x̂k = x̄k + Kkrk (27)

P̂k = P̄k − KkSkKT
k (28)

where P̂k denotes the corrected error covariance and the prefit
residual covariance Sk and KF gain K are calculated as

Sk = Hk P̄kHT
k + Rk (29)

Kk = P̄kHT
k S
−1
k (30)

3) EXTENDED KALMAN FILTER
The EKF is widely used for the state estimation of a nonlinear
system. In the prediction step, the state and the covariance are
updated using a Jacobian of the state transition function as

x̄k = f(x̄k−1) (31)

P̄k = Fk−1P̄k−1FTk−1 + Gk−1Qk−1G
T
k−1 (32)

where f(·) is a state transition function and Fk−1 =
∂f
∂x

∣∣∣∣
x̂k−1

.

In the correction step, the state and the covariance are updated
as

x̂k = x̄k + Kkrk (33)

P̂k = P̄k − KkSkKT
k (34)

where rk = zk − h(x̄k ) and

Sk = Hk P̄kHT
k + Rk (35)

Kk = P̄kHT
k S
−1
k (36)

with Hk =
∂h
∂x

∣∣∣∣
x̄k
.

III. SYSTEM DEVELOPMENT
In this section, the overall development of the target tracking
system is described. The design considerations for the range
filter and the state estimator are also explained.

A. OVERALL SYSTEM DEVELOPMENT PROCESS
The overall development process is depicted in Fig. 2. In the
first step, all the subsystems in the target tracking system
are defined, including the sensors, platforms, and targets. In
this study, an LRF and image sensors are considered. Various
platforms and targets, i.e., stationary and moving objects,
including cars, ships, and flight vehicles, can be considered.
Remark: Various types of platforms and targets must be

considered because the maneuvering characteristics are dif-
ferent for each. For example, cars and ships maneuver only
on the surface of the Earth, while airplanes can maneuver in
three-dimensional space. Ships may have irregular swaying
depending on the state of the sea, which does not occur for
ground-based vehicles. The cruising speeds for each are also
different.

In the second step, appropriate coordinate systems are
selected, and the transformation and relationship between
each of the coordinate systems are clarified. Detailed math-
ematical explanations of the various coordinate systems and
their transformations can be found in the Appendix. In this
study, the WGS-84 is selected to validate the developed
system through hardware experiments and numerical sim-
ulations. The NED coordinate system, the center of which
is fixed at the sensor platform, and the camera coordinate
system, the x-axis of which is pointed toward the target
position, are also considered.

In the third step, filters for target tracking are designed
for several coordinate systems. In this study, a range filter
is formulated for the camera coordinate system, and a state
estimator for position tracking of a target is formulated for
the ECEF coordinate system.

Now, let us describe the development of the scenario-
based simulator. First, various scenarios of the target and
platform are defined, and the filters are incorporated into the
simulator. The simulator computes the position and velocity
of the platform and target in the WGS-84 coordinate system
and the relative geometry. True signals are obtained from
the relative geometry, and the sensor measurement signal
is obtained from the true signals with noise. In this study,
an LRF and image sensors are considered, and therefore,
the measurement signal attributes of the LRF and image
sensors are mathematically modeled. Then, the performance
of the tracking filter is evaluated. Note that the parameters of
the filter should be tuned based on the considered scenarios.
The appropriate filter parameters may have different values
depending on the scenarios considered, thus yielding satisfac-
tory performance for each scenario. In this study, an analysis
tool with a graphic user interface (GUI) is developed and
utilized to verify the designed filter and to carry out gain
tuning. An explanation of the development of the scenario-
based simulator and the GUI-based performance analyzer is
given in Sec. IV. Finally, performance verification through
hardware experiments is conducted. The performance of the
developed target tracking system is verified against the actual
motion of the target. In this study, moving targets, including
a ship and a drone, are used for the field test. The hardware
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FIGURE 3. Flow chart of the range filtering algorithm.

implementation and performance verification are described
in Sec. V.

B. TARGET TRACKING FILTER DESIGN PROCESS
The target tracking filter is designed in two parts: the range
filter and the state estimator. The range filter processes the
raw range measurements and hands over the filtered range to
the state estimator. Then, the state estimator estimates the tar-
get information in the ECEF coordinate system based on the
processed range with the azimuth and elevation information
given.

1) RANGE FILTER
The distance from the platform equippedwith the target track-
ing system to the target is measured using an LRF, which is
vulnerable to various error sources and noise. Data processing
routines must generate consistent range information from the
raw data of the range measurements. In this study, the range
filter is designed by combining a 1-dimensional linear KF
with a set of data processing algorithms. The CV, CA, and
CJ models are considered for the target model.

The flow chart of the range filter is shown in Fig. 3.
At every time step, the range filter propagates the range
estimate according to the target model. The data processing
procedure to exclude invalid data is as follows. When a
range measurement is received by the LRF, the filter decides
whether or not to perform correction based on an assessment
of the received signal. If the received measurement is out
of the sensor detection limit, then the corresponding step
is immediately stopped, and the time-updated range is used

without a measurement update. If the received signal is a
valid signal for the first time after the last reset, then the filter
is reset with the current measurement. Otherwise, the filter
judges whether the measurement is from the target or clutter
by applying a gate based on the current estimate of the range
estimation error covariance. If the validmeasurement is found
to be outside the gate, then the filter records the elapsed time
since the last target measurement. If the target measurement
has not been received over the prescribed threshold time, then
the filter determines that the target of interest has changed
and initializes the estimation process according to the new
object. The measurement update is performed only when all
the aforementioned criteria are met.

Four decision stages are carried out to address outliers in
the LRF measurement, as shown in Fig. 3. First, the filter
regards the measurement as valid if it has a nonzero positive
value within the maximum operational range of the LRF
(20 km). Second, the filter state initialized with a temporary
range value is immediately replaced with the newly available
valid measurement. This stage is included because use of a
filter is necessary for system operation even if no available
range measurement exists. In addition, the dummy range
value does not need to be preserved once a valid measurement
is received. Third, the range filter forms a gate with varying
width. The gate is used to address the uncertainty in the target
motion, and the width is determined based on the knowledge
of the target maneuverability. In this study, three techniques
are used to compute the gate width: i) use of a fixed width,
ii) multiplication of the maximum target speed by the time
elapsed since the last measurement, and iii) estimation of the
error covariance of the range filter with a constant multiplier
(e.g., 3σ ). The final stage reflects the design requirement that
the filter should be able to change the target to be tracked
automatically if the measurement occurs outside the gate for
a certain period of time (12.5 s in the following examples),
which is different from the standard data association tech-
nique. With these four decision stages combined with the
standard KF, the range filter maintains consistent tracking of
the target even under temporary target loss.

2) STATE ESTIMATOR
The state estimator estimates the target states in the ECEF
coordinate system based on the range information received
from the range filter. In this study, both the linear and
nonlinear state estimators are considered. In the linear fil-
ter, the measurements in the sensor coordinate system are
transformed into the target position in the ECEF coordinate
system. Then, the filter estimates the target states based on
the system model. On the other hand, in the nonlinear filter,
the nonlinear measurement function is used directly. Even
though the target motion model may be nonlinear, only linear
motion models are considered in this study. The state estima-
tor updates the estimates through two steps: prediction and
correction. A detailed explanation of the linear and nonlinear
filters considered in this study was given in the previous
section.
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TABLE 1. Selection options for the scenario panel of the performance
analyzer.

FIGURE 4. Target tracking simulator and performance analyzer.

IV. SCENARIO-BASED NUMERICAL SIMULATION
In this section, a scenario-based target tracking simulator and
a performance analysis tool are developed for verification
of the proposed target tracking system. The purpose and
effectiveness of the simulator and tool in the development
process are discussed in detail.

A. SIMULATOR AND ANALYSIS TOOL DEVELOPMENT
The simulator can consider various scenarios, i.e., trajecto-
ries, of the target and the platform equipped with the target
tracking system. The true signals are computed from the
relative kinematic geometry considering the trajectories in
the simulator, which are processed through a noise model
to generate the measurement signals. In the noise model,
the true signals are corrupted with zero-mean Gaussian noise.
Note that a random mask is applied to the range signal. The
random mask occasionally generates a false signal for the
range information, which represents the exceptional signal
attributes of the LRF sensor. The range filter handles the cor-
rupted range signal using a filtering algorithm and provides
the processed signal, which is used in the state estimator. The
state estimation filters are embedded in the simulator, and the
filtering is processed to obtain estimates of the target infor-
mation. Finally, the simulator is connected to the performance
analyzer. In this study, a performance analyzer with a GUI is
developed to facilitate performance analysis and filter tuning.
The GUI-based performance analyzer helps the user to tune
the filter design parameters. The whole process of the target
tracking simulator and the performance analyzer is shown
in Fig. 4.

The simulator and the analysis tool are developed in
the MATLAB R2020a environment. Fig. 5 shows the fil-
ter performance analyzer GUI window developed using the

FIGURE 5. Performance analyzer GUI.

MATLAB App Designer. In the scenario panel of the GUI,
the motions of the target and platform can be selected. Types
and directions of the target and platform can also be selected
on the same panel. The state estimation filters can be selected
in the scenario panel. The selection options in the scenario
panel are summarized in Table 1.
The tuning of the filter parameter is conducted in the

parameter tuning panel. After the filter type is selected in
the scenario panel, the parameter tuning panel automatically
shows the corresponding tunable parameters for the selected
filter. Finally, the simulation is conducted for the selected
scenario and parameter settings.

One of the most important steps in using the performance
analyzer is to select the most appropriate filter type and
parameters for a particular target of interest. First, the pros
and cons of each filtering method should be understood. For
example, nonlinear filters usually outperform linear filters
when it comes to nonlinear motion models at the cost of
higher computational complexity, and higher-degree motion
models are preferred to track a target with highmaneuverabil-
ity. If use of a specific target motion model is difficult, then
theABF can be used, which does not require a detailed system
model. Second, the filter parameters are adjusted to make the
best use of the selected filter type; this process is conducted
typically in an experimental manner or on the basis of the
engineer’s experience. For example, the ABF parameters can
be treated as step sizes, or they can be related to a steady-state
KF with the following formula [12]:

λ =
σwT 2

σv
(37)

r =
4+ λ−

√
8λ+ λ2

4
(38)

α = 1− r2 (39)

β = 2(2− α)− 4
√
1− α (40)

The optimal parameters can also be calculated in a similar
way [12]. On the other hand, the tuning process of KFs
consists of two aspects. The measurement noise level can
be adopted directly from the sensor sheets, and the process
noise level should be increased in proportion to the degree of
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FIGURE 6. Range filter response - Outbound case.

FIGURE 7. Range filter response - Cross case.

maneuverability of the target. Larger values are usually used
for the process noise when precise knowledge of the degree
of target maneuverability is not available.

The full simulation result is automatically saved in
comma-separated value (CSV) format and displayed in the
display panel. The display panel shows the position, veloc-
ity, and acceleration estimates from the simulation result.
Two or more different simulation results in the CSV format
can be imported and displayed simultaneously, which enables
comparative analysis.

B. TRACKING SIMULATION RESULT
Various scenarios can be considered using the developed
simulator. In this section, among many possible simulation
scenarios, three cases are selected and discussed: i) outbound,
ii) inbound, and iii) cross motion of the target. A ship-type
target (i.e., constant altitude) with a speed of 5-7 m/s is
considered in the simulation, where the platform is stationary.

1) RANGE FILTER VERIFICATION
In this section, the range filter simulation results are
presented. The sensor model includes application of a dis-
turbing mask to the true range signal that mimics the mea-
surement failure in the LRF sensor. The range measurement
is generated every 5 s throughout the simulation. Note that
the considered LRF has three operational frequencies from
0.2 Hz to 5 Hz, but the lowest frequency is used in normal
operational mode considering the life span of the equipment.
The measurement is corrupted by white Gaussian noise with
a standard deviation of 1 m. Then, the range measurement
is rounded off to the nearest integer, as in the real hardware

FIGURE 8. Position and velocity RMSEs of different filters.

system considered in this study. Finally, the zero range is
overwritten on the generated measurement when the LRF
misses the target, and the 200 m range is overwritten in the
case of occlusion, assuming the situation where an unex-
pected object comes in between the observation device and
the target. The filtering results are shown in Figs. 6 and 7.

Fig. 6 shows the exception handling result of cases of
LRF failure. The scenario of Fig. 6 is the outbound case
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TABLE 2. Summary of the Monte Carlo simulation results.

FIGURE 9. State estimator simulation results under detection failure - Outbound case.

and has two intervals of LRF failure, i.e., the [30, 40) s
and [50, 70) s intervals, as the disturbing mask. When the
LRF fails to detect the target, the range measurement output
becomes zero, as shown in Fig. 6. Note that when the LRF
fails to obtain the distance data, the range filter propagates
the model and does not conduct the measurement update.
Consequently, σ increases during the time interval of the LRF
failure.

Fig. 7 shows the exception handling result of occlusion.
The scenario of Fig. 7 is the cross case and has two intervals
of occlusion (blocking), i.e., the [30, 40) s and [50, 70) s
intervals, as the disturbing mask. In the occlusion case, it is
assumed that an obstacle occludes the target at a distance
of 200 m from the platform. The difference between the LRF
failure case and the occlusion case is the allowance of the
selection of different targets. The range filter is designed
to endure for the predefined time during which occlusion
occurs, i.e., the large discrepancy between the new mea-
surement and the previous measurement. However, if the
LRF measures an obstacle over the predefined endurance
time, then the filter automatically resets and considers it a
new target. In the simulation, the endurance time is set to
12.5 s. Note that in the first occlusion of [30, 40) s, the filter
still follows the target and propagates the estimated signal.
However, in the second occlusion of [50, 70) s, the filter resets
and changes the target because the time interval is longer than
the predefined endurance time.

2) STATE ESTIMATOR VERIFICATION
Once the range filter design process is finished, the perfor-
mance of the state estimator should also be verified. The per-
formance analyzer helps the user tune the filter parameters.
The LRF signal attributes (disturbing mask) are not applied
in the analysis of the state estimator. In this study, the ABF,
ABGF, CV-KF, CA-KF, CV-EKF, CA-EKF, CKF, and UKF
are considered.

After the parameters of each filter are tuned, 100 Monte
Carlo simulations are conducted for the performance eval-
uation of these filters. The Monte Carlo simulation results
are summarized in Table 2 and Fig. 8. The average root
mean square errors (RMSEs) of the KF and EKF are smaller
than those of the ABF and ABGF. This result is reasonable
because the actual target movement is similar to that of
the CV model. The EKF is expected to show more robust
performance throughout various situations.

Example simulation cases of the filtering result in the
WGS-84 with the CV-EKF are shown in Figs. 9 and 10.
Similar to the range filter tuning results in Figs. 6 and 7,
the LRF failure and occlusion cases are considered for the
outbound scenario and the cross scenario.

3) TRACKING PERFORMANCE COMPARISON
We carry out a comparative study in two ways. First, a Monte
Carlo simulation is performed using 8 different filters for
the ‘cross’ case, where exceptional signal attributes other
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FIGURE 10. State estimator simulation result under occlusion - Outbound case.

FIGURE 11. Sensors for the field test.

than normal Gaussian noise are not considered to compare
only the estimation performances of the filters. The accuracy
of the position estimation is the primary factor determin-
ing which estimation method is used as the default filter.
The velocity accuracy is another important consideration,
whereas the acceleration accuracy is not compared explicitly
in this study. Note that the comparison results may differ
depending on the scenario and the filter parameters. Some
important characteristics of a scenario affecting the result are
the maneuverability of the target and distance range through-
out the scenario. A Monte Carlo simulation study on a single
scenario does not guarantee determination of which filter is
most appropriate. Moreover, a ‘best’ estimation method for a
wide range of operational environments does not exist, hence
the importance of the integrated framework proposed in this
study.

Second, the integrated target tracker combined with an
independent range filter is compared with a monolithic target
tracking filter. In the hardware system considered in this
study, the LRF is the only device that can experience a
radical change in measurements in unexpected situations.

The azimuth and elevation measurements are more robust
even when the target is not visible for a short period of
time because they are based on visual target tracking. There-
fore, it may be more efficient and robust to handle excep-
tional signal attributes by using an independent range fil-
ter instead of carrying out the whole process once using
only the main filter. Target tracking simulation results with
and without a range filter are shown in Figs. 9-10. Clearly,
the filter without a range filter quickly diverges when the
LRF does not perform properly. Moreover, once the filter
diverges, the tracking performance is not recovered even
after the LRF resumes providing accurate measurements.
On the other hand, the proposed filter does not diverge
and maintains a moderate error level during the abnormal
period without compromising the tracking performance in the
normal environment. Note that the range filter can also be
designed according to the motion model used and that the
optimal choice is dependent on the environment and the target
maneuverability.

V. PERFORMANCE VERIFICATION VIA A FIELD TEST
Field tests are performed to verify the performance and effec-
tiveness of the proposed target tracking system. A schematic
diagram of the hardware system is shown in Fig. 12.
A low-speed fishing boat and a multicopter drone are
considered, as shown in Fig. 13a and Fig. 13b, respec-
tively. A set of sensors is used to collect the target infor-
mation. Then, the designed target tracking algorithm is
implemented in the hardware for real-time target track-
ing. Target tracking is performed based on the predefined
sequences of the operational modes designed in the previous
sections.
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FIGURE 12. Schematic diagram of the hardware system.

FIGURE 13. Targets for the field test.

A. SENSORS
Let us introduce the sensors used in the target tracking sys-
tem. The electro-optical infrared device considered in this
study is an integrated system with image sensors, infrared
sensors, and an LRF. The device is mounted onto the plat-
form, which measures the distance and direction of the target
from the platform. The device used in the hardware experi-
ment is L3Harris TechnologiesWESCAMMX-10MS, which
is shown in Fig. 11a.

In this study, it is assumed that the image sensor always
points toward the target. This assumption is justified because
the software suite provides automatic video tracking (AVT)
through image processing. Because the AVT provides robust
target tracking, it is assumed that the sensor is always aligned
with the target. Therefore, the azimuth and elevation of the
target are the same as the pan and tilt angle of the gimbal.
However, in the field test, this assumption may be violated
by various factors such as target evasive maneuvers, vibration
of the platform, and atmospheric conditions [13]. This study
does not consider the situations in which a target tracking
error occurs in the image plane due to the disturbances men-
tioned.

In the experimental test, a relative misalignment exists
between the x − y plane of the platform and the floor of
the electro-optical infrared sensor, which may cause signif-
icant errors in the altitude estimates of the target. A level
meter is used to measure the alignment error of each axis,
and a compensation algorithm is implemented to estimate
the alignment error based on the measurements. The sen-

TABLE 3. Specifications of the sensors in the target tracking system.

sors used in the target tracking system are described in the
following.

1) LASER RANGEFINDER
The LRF measures the distance of the target from the plat-
form. In the operational situation, the LRF may measure the
distance of other objects instead of the target. In addition,
laser signals reflected from the waves may degrade the target
detection performance. As mentioned in the numerical simu-
lation section, the LRF measurements in the simulation take
into account the above characteristics. The detailed product
specifications of the LRF are summarized in Table 3. The
LRF resolution is the smallest change in distance the sensor
can detect in the quantity that it is measuring.

2) ELECTRO-OPTICAL INFRARED SENSOR
The image sensor is typically used to detect, recognize,
and identify the target within a limited field of view. The
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FIGURE 14. Field test results - Boat target.

FIGURE 15. Field test results - Drone target.

electro-optical infrared (EO/IR) image sensor involves a
video camera operating in the visible and infrared portions of
the electromagnetic spectrum. The visible range of an image
sensor benefits from the availability of color data and high-
quality optics. On the other hand, IR sensors offer effective
nighttime visibility. The disadvantage of image sensors is that
the measurement is affected by atmospheric conditions such
as weather changes, sunlight, and wakes [14].

3) GIMBAL
All built-in sensors are mounted on a two-axis gimbal, which
has an actuated axis pan (azimuth) and tilt (elevation) to
stabilize the pointing direction of the sensors. A controller
is designed to follow a given azimuth and elevation com-

mand. In practice, some disturbances may cause tracking
errors or jitter, such as kinematic coupling and mass imbal-
ances [13]. Several studies have been conducted on the con-
trol law under these disturbances [15], [16].

4) PLATFORM GPS/INS
To locate a target in an inertial coordinate system (the ECEF
coordinate system in this study), an accurate position and
attitude of the platform are required. The platform GPS/INS
sensor provides the position and attitude of the platform with
high accuracy.

5) TARGET GPS RECEIVER
A GPS receiver is mounted onto the target to obtain its
actual location information to verify the accuracy of the
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FIGURE 16. Filter state - Boat target.

FIGURE 17. Filter state - Drone target.

designed tracking filter. The GPS receiver used in the hard-
ware experiment is a BL-1000GT GPS racing recorder
from Qstarz, as shown in Fig. 11b. The detailed prod-
uct specifications of the GPS receiver are summarized
in Table 3.

B. FIELD TEST
Field tests are performed to demonstrate the effectiveness
of the proposed system. The filter parameters used in the
field tests are summarized in Table 4. The range filter is
set to propagate the estimated range up to 20 s when no
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TABLE 4. Selected filter parameters for the field test.

FIGURE 18. Tilted mounting surface.

valid measurement occurs for a period of time. During
the propagation-only period, the gate width is continuously
expanded under the assumption that the target can move
in an arbitrary direction at a rate of no more than 15 m/s.
Note that the process noise level of the state estimator is
more conservative than that of the range filter and that the
measurement noise levels are determined based on the sensor
specifications. In the field test, a low-speed fishing boat
(Fig. 13a) and a small drone (Fig. 13b) are considered the
targets. The targets perform prescribed maneuvers within a
10 km distance from the sensor. The target tracking filter
runs online, and the filter output is monitored in real time
by a human operator. Furthermore, GPS receivers (Fig. 11b)
are attached to the targets, and the GPS-based position and
velocity are compared offline to the filter output. The GPS-
based velocity is calculated by using the speed and heading.
The complete setup of the hardware system for the field test is
shown in Fig. 12. The equipment in the gray boxes represents
the main components of target tracking, while the others are
auxiliary devices for operation, monitoring, and analysis. The
main equipment is installed on the ground so that the attitude
of the platform is fixed throughout the test.

The first field test is performed with the boat target, one
typical case of which is presented here. Figs. 14 and 16 show
the measurement and estimation results. In this test, the sen-
sor location is fixed on the ground, and the boat travels from
the west to the east at 5 km/h, maintaining an approximately
3 km distance from the sensor, as shown in Fig. 16. In Fig. 14,
two kinds of errors are observed. First, offset errors exist
in the position estimates and the range measurement, which
are due to the platform position initialization error. Second,
the slopes of the GPS data and the estimates are different
because of an incorrect platform attitude initialization. These

FIGURE 19. Coordinate transformation scheme.

errors can be eliminated by increasing the accuracy of the
platform position and attitude initialization.

The second stage of the test is performedwith amulticopter
drone after precise initialization. In this stage, most of the
error sources are eliminated except for the sensor misalign-
ment. As shown in Fig. 15, the latitude, longitude, and altitude
were precisely estimated. Figs. 17a and 17b show that the
range filter constantly provides range estimates even under
detection failure until the filter is commanded to perform
a hard reset. Fig. 15c shows that meter-level altitude errors
exist, but it is difficult to judge the true accuracy due to the
poor altitude accuracy of the GPS data. The source of the
remaining errors is considered to be the sensor misalignment.
This error can be fixed by applying a simple rotation compen-
sation algorithm using inclination measurements.

In summary, the sources of error can be divided into two
types. First, systematic errors exist, most of which can be
significantly reduced. The target information is computed
based on the knowledge of the sensor position and attitude.
Systematic errors are caused by the platform position on the
Earth, platform attitude with respect to the local horizon,
and relative attitude of the mounting surface with respect to
the platform, as shown in Fig. 18. Second, random errors
exist that are more difficult to compensate for. Every single
measurement is prone to be corrupted by white Gaussian
random noise. In practice, it is difficult to accurately obtain
the target velocity using only a GPS receiver. Finally, some
errors occur in a rather discontinuous manner. The video
tracker and the LRFmay fail to detect the target due to clouds,
ground objects, the sun, and the target being out of range.
In this study, most of the aforementioned errors are addressed,
but some discrepancies still exist between the estimated and
true (at least approximately) values of the target position and
velocity. The errors can be further analyzed effectively by
performing proper unit tests and improving the performance
of the filter algorithm.

VI. CONCLUSION
A target tracking system using a laser rangefinder was
developed based on a range filter and a state estimation
algorithm. General guidelines for the selection of the coordi-
nate systems, motion models, and estimation methods were
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presented. The development process was described in detail
to facilitate future research of a similar nature. The perfor-
mance comparison results of various state estimationmethods
were presented. Finally, a target tracking algorithm with the
combined range filter and state estimator was designed, and
the effectiveness of the proposed method was demonstrated
through numerical simulations and experimental tests.

Developing a single universal target tracking system that
works optimally against all kinds of targets is nearly impos-
sible. The system presented in this study was designed to
be appropriate for a single gently maneuvering target with
the specified sensor combination. Some additional problems
must be solved to deal with a highly maneuverable tar-
get or multiple targets, and the sensor requirements should
also be changed considering the target characteristics. Never-
theless, the development process proposed in this study can
be applied effectively and efficiently to a wide range of target
tracking systems, and the fundamental algorithms proposed
here can be utilized for various tracking systems.

APPENDIX
This section introduces the coordinate transformation for-
mula used in the target tracking algorithm. A schematic
diagram of the coordinate transformation process is shown
in Fig. 19. This section consists of four parts. Each subsection
gives details about the coordinate transformation formula
used in the corresponding area of Fig. 19.

A. WGS-84 TO ECEF
To convert the position from the WGS-84 to the ECEF coor-
dinate system, the following equations can be used.

x = (ρ + H ) cosφ cos λ (A.1)

y = (ρ + H ) cosφ sin λ (A.2)

z = (ρ(1− e2)+ H ) sin λ (A.3)

where φ, λ, andH denote the geodetic latitude, longitude, and
altitude, respectively, a and e denote the semimajor axis and
eccentricity, respectively, and ρ = a

1−e2 sin2 φ
.

B. ECEF TO WGS-84
The position information of the object provided by the GPS
receiver is expressed in the WGS-84. To verify the perfor-
mance of the tracking filter, it is necessary to convert the esti-
mated location information from the ECEF coordinate system
to the WGS-84 coordinate system to compare the estimated
target position with the data from the GPS receiver mounted
on the target. Three components of the ECEF coordinate sys-
tem, which are represented as x, y, and z, are converted to the
geodetic latitude (φ), geodetic longitude (λ), and altitude (H ),
respectively. The geodetic longitude can be easily calculated
as

λ = tan−1(
y
x
) (B.1)

The geodetic latitude and altitude are obtained from the iter-
ative algorithm summarized in Algorithm 1.

Algorithm 1:Geodetic Latitude and Altitude Calculation
Algorithm
Given x, y, and z
Initialization; H ← 0; N ← a;
while δH > ε do

φ← tan−1[ z√
x2+y2

(1− e2N
N+H )−1]

N ← a√
1−e2 sin2φ

H ←
√
x2+y2

cosφ − N

*x, y, and z are the components of the position in the
ECEF coordinate system, and a and e are the semimajor
axis and eccentricity of the Earth, respectively.

C. CAMERA TO ECEF
The built-in sensor of the electro-optical infrared sensor pro-
vides the azimuth and elevation information in the platform
coordinate system. Moreover, the LRF in the EO/IR device
provides the range information. Thus, a coordinate transfor-
mation is required to obtain the target information in the
ECEF coordinate system. The detailed conversion process is
as follows.

1) CAMERA TO PLATFORM
The location of the target in the platform coordinate system is
determined from the geometric relationship shown in Fig. 1c
as

ppT =


R cosE cosA

R cosE sinA

R sinE

 (C.1)

where ppT is the position of the target in the platform coor-
dinate system and R, E , and A denote the range, elevation,
and azimuth of the target, respectively. A difference exists
between the position of the attitude sensor (center of the
measurement device) and that of the platform. Generally,
the effect of this difference on the accuracy of the sensor is
negligible.

2) PLATFORM TO NAVIGATION
The attitude information of the platform (roll, pitch, and
yaw angles) can be accurately estimated from the embedded
GPS/INS measurements. With the platform Euler angles,
the coordinates can be converted from the navigation coor-
dinate system to the platform coordinate system through the
3-2-1 Euler transformation as

Rpn =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ
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cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1


(C.2)

where Rpn is a direction cosine matrix from the navigation
to the platform coordinate system and ϕ, θ , and ψ are the
roll, pitch, and yaw angles of the platform, respectively. The
direction cosine matrix from the platform to the navigation
coordinate transformation can be obtained by transposing Rpn
as

Rnp = (Rpn)
T (C.3)

Thus, the coordinate transformation from the platform to
the navigation coordinate system can be expressed in the
following equation as

pnT = Rnpp
p
T (C.4)

where pnT and ppT are the positions of the target with respect to
the navigation and platform coordinate systems, respectively.

3) NAVIGATION TO ECEF
The platform latitude and longitude are required to obtain the
position of the target in the ECEF coordinate system. The
direction cosine matrix can be expressed as

Rne =


cos(π/2+ φP) 0 − sin(π/2+ φP)

0 1 0

sin(π/2+ φP) 0 cos(π/2+ φP)




cos λP sin λP 0

− sin λP cos λP 0

0 0 1

 (C.5)

Ren = (Rne)
T (C.6)

where φP and λP denote the geodetic latitude and longitude,
respectively.

The position of the target in the ECEF coordinate system
can be obtained by

peT = Renp
n
T + peP (C.7)

where peT and peP denote the positions of the target and
platform in the ECEF coordinate system, respectively.

D. ECEF TO NAVIGATION
In this study, the estimated target velocity is compared with
GPS receiver data in the navigation coordinate system. The
target velocity in the ECEF coordinate system is converted to
the navigation coordinate system by

vnT = Rnev
e
T (D.1)

where vnT and veT denote the target velocity in the navigation
and ECEF coordinate systems, respectively.
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