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ABSTRACT The paper is motivated by the urgent need, imposed by the COVID-19 pandemic, for
trustworthy access to secure communication systems with the highest achievable availability and minimum
latency. In this regard, we focus on an ultra-dense wireless network consisting of FemtoAccess Points (FAPs)
and Unmanned Aerial Vehicles (UAVs), known as caching nodes, where there are more than one possible
caching node to handle user’s request. To efficiently cope with the dynamic topology of wireless networks
and time-varying behavior of ground users, our focus is to develop an efficient connection scheduling
framework, where ground users are autonomously trained to determine the optimal caching node, i.e., UAVor
FAP. Our aim is to minimize users’ access delay by maintaining a trade-off between the energy consumption
of UAVs and the occurrence of handovers. To achieve these objectives, we formulate a multi-objective opti-
mization problem and propose the Convolutional Neural Network (CNN) and Q-Network-based Connection
Scheduling (CQN-CS) framework. More specifically, to solve the constructed multi-objective connection
scheduling problem, a deep Q-Network model is developed as an efficient Reinforcement Learning (RL)
approach to train ground users to handle their requests in an optimal and trustworthy fashion within
the coupled UAV-based femtocaching network. The effectiveness of the proposed CQN-CS framework is
evaluated in terms of the cache-hit ratio, user’s access delay, energy consumption of UAVs, handover, lifetime
of the network, and cumulative rewards. Based on the simulation results, the proposed CQN-CS framework
illustrates significant performance improvements in companion to Q-learning and Deep Q-Network (DQN)
schemes across all the aforementioned aspects.

INDEX TERMS Caching, cache-hit-ratio, connection scheduling, femtocaching, femto access point (FAP),
reinforcement learning, unmanned aerial vehicle (UAV).

I. INTRODUCTION
Living in the COVID-19 pandemic area, we observe and
face, first hand, abrupt and sudden changes in our daily life.
In particular, the COVID-19 pandemic resulted in significant
dependence on the Internet and CommunicationNetworks [1]
as almost everything went online. Of particular interest to this
work, is the urgent need for trustworthy access to secure com-
munication systems with the highest achievable availability
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and minimum latency for timely transfer of large multimedia
contents especially to the ones living in remote and rural
areas [2], [3]. For instance, it is of paramount importance
under these pandemic situations to provide trustworthy ser-
vices to students leaving in remote areas, and to communities
without immediate access to the latest medical expertise,
the ones who might be too ill to travel or may be unable to
afford the cost of the trip. Consequently, there is an unmet
need for increasing the Quality of Service (QoS) of commu-
nication systems to adapt to the new online reality during
and post-pandemic times, while mitigating the burden of the
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network’s traffic over the backhaul channels. To meet the
dynamic nature of Heterogeneous Networks (HetNets) such
as unknown/varying number of active users, and adverse envi-
ronmental conditions, the focus of recent research works [4],
[5] have been shifted to the Reinforcement Learning (RL)
approaches instead of deriving fixed mathematical models.

In this paper, we aim to address the aforementioned issues
by incorporation of Unmanned Aerial Vehicles (UAVs),
as mobile caching nodes, and Femto Access Points (FAPs)
to increase the network’s coverage. In a coupled UAV-based
femtocaching scheme, however, it is critical to develop an
efficient connection scheduling scheme to assign an appro-
priate caching node to ground users. Generally speaking,
the overall objective of connection scheduling in HetNets is
to improve the QoS of ground users, UAVs, and FAPs. In this
regard, there are several conflicting objectives such as users’
access delay, energy consumption of UAVs, and handover
phenomena occurred between FAPs. As will be discussed in
the literature review section of the manuscript, recent HetNet
scheduling research works, however, mainly focused on one
of these issues. The main motivation behind this paper is to
address this lack of prior research studies on HetNet schedul-
ing to simultaneously satisfy concerns of ground users,
UAVs, and FAPs. The Convolutional Neural Network (CNN)
with Q-learning Connection Scheduling (CQN-CS) frame-
work is, therefore, proposed to address this gap. More specif-
ically, the first objective of the proposed CQN-CS framework
is allowing ground users to be autonomously trained to select
an optimal caching node, i.e., UAV and/or FAP. Moreover,
in contrary to existing research works [6], [7], where only
one criterion is optimized to improve the QoS of the network,
the proposed CQN-CS framework simultaneously considers
optimization of three metrics, which are the energy consumed
by UAVs, the probability of FAPs’ handover, and the users’
access delay.

A. LITERATURE REVIEW
Recently, several promising approaches have been devel-
oped to store the most popular multimedia contents in
local caching nodes, including femtocaching architec-
tures [8], Device-to-Device (D2D) communications [9], [10],
UAV-based frameworks [11]–[13], and a combination of
above schemes [14], [15]. In this regard, using UAVs over
wireless networks helps FAPs to offload traffic via wire-
less backhaul, improve the network’s coverage, and sup-
port a highly reliable and low-latency transmission [2], [16].
With the emphasis on the features of high mobility and
low-cost manufacturing, the satisfactory rate of clients will
increase through the utilization of UAVs as additional caching
nodes for providing services to ground users residing in
rural areas [17], [18]. Consequently, there has been recent
widespread attention to UAVs due to their impressive poten-
tials in supporting a wide range of commercial and indus-
trial applications [19]. UAVs provide an adaptive platform,
that can be altered by time-varying states of the environ-
ment and the need of ground users. Regarding the fact that

UAVs are aircraft without human pilots, there are several
approaches to manage and control multiple UAVs to lead
them in a specific trajectory without any collisions, includ-
ing manual and automatic modes [20]. For example, in a
manual mode, an operator who is aware of the environ-
ment is required. The interaction between operator and UAVs
should be managed in an optimum fashion based on an
Intelligent Adaptive Interface (IAI) design to maximize the
network performance [21]–[24]. In this paper, our focus is
on UAV-based femtocaching schemes, where a ground user’s
access is updated autonomously with any change of the envi-
ronment. In other words, we consider scenarios that users’
access to requested contents can be managed autonomously
by learning how to handle their requests in a trustworthy
fashion (via Reinforcement Learning (RL) techniques) within
a coupled UAV-based femtocaching network.

Recent developments on stand-alone UAV-based networks
have brought several benefits, including but not limited
to wide coverage and low-cost services. Therefore, several
UAV-based small cell networks were introduced, such as the
UAV clustering scheme [25], where UAVs play the role of
caching nodes to serve all terrestrial users in the network.
Reference [26], for instance, presented a wireless network
architecture that employed cache-enabledUAVswith the goal
of achieving considerable improvements in the users’ Quality
of Experience (QoE). A UAV-based machine learning algo-
rithmwas employed in [27] to predict the distribution of video
content requested based on Echo State Networks. A critical
drawback of using stand-alone UAVs in comparison to cou-
pled UAV-based and femtocaching schemes, is the limited
battery life of UAVs, particularly in situations where numer-
ous active users in the network request multimedia contents.
To overcome this issue, we consider a combination of UAVs
and FAPs in this paper to mitigate the traffic load on either of
the two. In this case, the overload on the backhaul link and
the energy consumption of UAVs reduce significantly.

One of the most remarkable aspects of wireless networks
is to enhance the QoS of ground users, in terms of the
user’s access delay. This has been investigated by several
researchers in both femtocaching (e.g., [8], [28]), and UAV
infrastructure networks (e.g., [29], [30]). Along this line
of research, authors in [8] introduced a fairness scheduling
framework to determine the most popular content in a femto-
caching network to minimize the user’s access delay. In this
regard, the requests of ground users are ranked according to
their previous experienced delay. Reference [31] introduced
a double Q-learning UAV-based framework to optimize fly-
ing trajectories of UAVs and increase the number of satis-
fied users in terms of the experienced latency. In this case,
the latency is defined as the waiting time, i.e., the time that
a user must be in a queue to be served by a UAV, the flying
time, and the transmission delay. To the best of our knowl-
edge, despite all the research conducted in this field, there
is no coupled UAV-based and femtocaching framework that
presents a connection scheduling based on the user’s access
delay. Capitalizing on the significance of this unmet quest,
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the paper proposes the novel CQN-CS framework to address
this gap.

Although potential benefits come by coupling UAVs with
FAPs for the development of advanced femtocaching strate-
gies, several critical challenges arise, especially keeping a
trade-off between the energy consumption of UAVs and
handover, occurring between FAPs. Existing solutions [15],
[29], [32]–[34] focused on the energy consumption of UAVs
(delays are not considered), for instance, in [15] a neural-
blockchain-based UAV-caching approach is designed to
provide a high reliability communication in terms of improve-
ment in the energy consumption of UAVs, the maximum
failure rate, the probability of connectivity, and survivabil-
ity. Authors in [32] proposed a closed-form model for the
energy consumption of rotary-wing UAVs with the aim of
optimizing UAVs’ trajectories and required communication
times allocated to handle user requests. In [35], a fixed
altitude for UAV’s fly is assumed and an Air-to-Ground
(A2G) communication scheduling scheme is proposed to
optimize the trajectory, transmit power, and speed of UAVs,
with the focus on decreasing the UAV propulsion energy
consumption. In summary, the focus of these research works
is on optimizing the energy consumption of UAVs, however,
without addressing challenges associated with additionally
introduced delays in the system that users experience when
their requests are served through UAVs.

Finally, handover is known as one of the inevitable phe-
nomena that needs to be mitigated in dynamic femtocaching
networks. Particularly, consecutive handovers trigger during
a request, if the ground user moves through the coverage
area of femtocells [36]. Since handover is one of the key
factors affecting the overall user’s access delay, we intro-
duced a Mobility-Aware Femtocaching algorithm based on
Handover (MAFH) in our previous work, in which the best
caching node is selected according to the Received Signal
Strength Indicator (RSSI) value and the velocity of ground
users as decision criteria [37]. In comparison to our proposed
CQN-CS framework, where candidate caching nodes consist
of UAVs and FAPs, the wireless network of [37] only con-
sisted of FAPs and mobile users, supported by Device-to-
Device (D2D) communications. One of the main goals of our
proposed UAV-based CQN-CS framework is to serve users’
requests to achieve the maximum QoS, in terms of having
a considerable reduction in users’ access delay. It should
be noted that the wide transmission coverage of UAVs in
comparison to FAPs, has brought several benefits, including
the ability to handle the majority of users’ requests. How-
ever, UAVs suffer from limited battery life, particularly in
situations that numerous active users in the network request
contents. On the other hand, by considering a dynamic fem-
tocaching network, where users move consistently in the lim-
ited coverage area of FAPs, serving users’ requests through
FAPs, leads to triggering frequent handovers. However, to the
best of our knowledge, there is no framework concerning this
problem of connection scheduling between FAPs and UAVs.
The paper addresses this gap.

B. CONTRIBUTIONS
The main novelty of the paper is the design of an autonomous
and decentralized HetNet scheduling approach via simultane-
ous incorporation of three key objectives, i.e., users’ access
delay, energy consumption of UAVs, and handover phenom-
ena. In other words, the proposed CQN-CS framework allows
ground users to autonomously determine (via the RL-based
component) an optimal caching node to handle their requests
without reliance on any central processing unit. In summary,
the paper makes the following key contributions:
• A practical UAV-based ultra-dense wireless network is
considered consisting of UAVs and unlimited-energy
FAPs, equipped with extended storage. In this model,
the femtocell infrastructure network is partitioned
according to the K-means clustering algorithm, where
normally distributed ground users located in each cluster
are served by its corresponding UAV. To incorporate
a real wireless network, the proposed scheme uses the
Difference Correlated RandomWalk (DCRW) model as
the mobility pattern, where the initial location of ground
users is determined based on the Angle of Arrival (AoA)
localization approach.

• Despite the surging interest in the coupled UAV-based
femtocaching networks, there is no framework concern-
ing the problem of connection scheduling over FAPs
andUAVs. The proposed CQN-CS framework addresses
this gap via its multi-objective optimization design with
the goal of minimizing the user’s access delay, energy
consumption of UAVs, and handover phenomena.

• To solve the constructed multi-objective connection
scheduling problem, we propose an efficient decen-
tralized and self-organizing framework to maximize
the QoS of the network by minimizing three objective
functions related to user’s access delay, energy con-
sumption of UAVs, and handover phenomena. Due to
the dynamic nature and unforeseen behavior of ground
users, we apply a Deep Q-Network (DQN) architecture
with CNN as an efficient RL approach to train our
coupled UAV-based femtocaching network to respond to
users’ requests in an optimal fashion.

The effectiveness of the proposed CQN-CS framework is
evaluated through comprehensive simulation studies in terms
of the cache-hit ratio, user’s access delay, energy consump-
tion of UAVs, handover, lifetime of the network, and cumu-
lative rewards. Simulation results illustrate that the efficiency
of the proposed CQN-CS scheme is considerably superior to
the Q-learning andDQN schemes over all the aforementioned
aspects.

The rest of this paper is organized as follows: In Section II,
the network’s model is described and the main assumptions
required for our algorithm are introduced. Section III deals
with introducing our multi-objectives model. In Section IV,
the proposed CQN-CS framework is introduced. Simulation
results are presented in Section V. Finally, in Section VI,
an overview of the results, and concluding remarks are
presented.
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II. SYSTEM MODEL AND PROBLEM DESCRIPTION
In this paper, we consider a UAV-based femtocaching net-
work consisting of a set of ground mobile users, denoted by
GUj, for (1 ≤ j ≤ Ng), Nf number of FAPs, denoted by
fi, for (1 ≤ i ≤ Nf ), Nu number of UAVs, as the flying
caching nodes, denoted by uk , for (1 ≤ k ≤ Nu), and a
cloud server. As depicted in Fig. 1, the transmission range of
FAPs, denoted byRf , is muchmore limited than that of UAVs,
denoted by Ru, where a UAV covers Nc number of FAPs in a
neighbourhood. Without loss of generality, it is assumed that
similar to FAPs that have the same storage of size Sf , UAVs
are equipped with the cache storage with an equal size of Su.

FIGURE 1. A typical structure of the proposed UAV-based femtocaching
model.

In this model, ground users request an equal-sized video
file cl , for (1 ≤ l ≤ C), with the probability of pl , where pl is
calculated based on the Zipf-like distribution as follows [38]

pl =
l−γ

C∑
r=1

r−γ
, (1)

where C denotes the total number of video contents in the
network, stored at a cloud-based content server, known as
the main server in the network, and γ represents the popu-
larity skewness. In a UAV-based femtocaching network, if a
requested content exists in the caching nodes including FAPs
and UAVs, the cache-hit occurs, otherwise, it is known as
a hit-miss and the requested content is served by the main
server. To decrease the video traffic load on the main server,
UAV-based femtocaching strategies increase the number of
requests directly served by FAPs and/or UAVs [39]. However,
due to the large size of video files, it is not feasible to store
all contents in the storage of caching nodes. Additionally,
taking into account the varying popularity of video contents
over time and the constraint of cache space in both UAVs and
FAPs, caching nodes’ contents are periodically updated in the
replacement phase according to the Fairness Scheduling algo-
rithm with an Adaptive Time Window (FS-ATW) presented
in [8].

In this paper, by focusing on the delivery phase, the main
goal is to propose a multi-objective UAV-based femtocaching

strategy based on a real dense network to determine how to
select caching nodes by ground users in order to enhance
the QoS, in terms of user’s access delay, minimize the
UAVs’ energy consumption and handover phenomena. In this
section, we briefly introduce some concepts required to
develop the proposed CQN-CS framework. In this paper, it is
assumed that all ground users randomlymove in all directions
with a specific velocity, that will be introduced in subsec-
tion ‘‘User Mobility Pattern.’’ Then, we will fully describe
four alternative ways to support users’ requests in subsection
‘‘User Access Pattern.’’ A summary of the notations used
hereinafter is provided in Table 1.

A. USER MOBILITY PATTERN
In this work, the Difference Correlated Random Walk
(DCRW) is considered to model the ground users’ movement
pattern, where the current position of GUj at time slot t ,
denoted by Lj(t) = [xj(t), yj(t)]T , depends on themovement’s
velocity. According to bivariate Stochastic Differential Equa-
tion (SDE), a ground user’s velocity at time slot t , denoted by
υ j(t) = [υ(x)j (t), υ(y)j (t)]T , is calculated as [40]

dυ j(t) = −
(
− log ς1 θ

−θ − log ς2

)
(υ j(t)− µ)dt + JdBt ,

(2)

where ς1 and ς2 denote auto-correlation parameters in (x,y)
coordinates, respectively, J denotes a (2×2) lower triangular
matrix with positive diagonal components to determine the
covariance of velocity shifts, and Bt represents a (2 × 1)
vector to illustrate the standard Brownian motion at time
slot t . In addition, µ and θ signify the mean velocity vector
and the DCRW model’s mean turning angle, respectively.
Accordingly, the location of the ground userGUj at time slot t
is obtained as [40]

Lj(t) = Lj(t − 1)+ υ j(t − 1)1t, (3)

where 1t represents the time interval between two consec-
utive estimated locations. To determine the initial location
of ground users, we utilize the Angle of Arrival (AoA)
scheme [41], [42], which has been recognized as an efficient
and high accurate triangulation localization method among
all the available schemes (e.g., see [43], [44]). By assuming
the known position of FAPs, the initial location of ground
user GUj at time t = 0, denoted by Lj(0) = [xj(0), yj(0)]T ,
is obtained as follows

xj(0) =
dn,i tan θi,j

tan θi,j − tan θn,j
, (4)

yj(0) =
dn,i tan θn,j tan θi,j
tan θi,j − tan θn,j

, (5)

where θi,j and θn,j represent the angle between x-axis and the
line between ground user GUj and FAPs fi and fn, respec-
tively [41]. Moreover, dn,i denotes the distance between ith

and nth FAPs.
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TABLE 1. List of Notations.

B. USERS’ ACCESS PATTERN
Given the location of users, all available FAPs and UAVs
in the vicinity of ground users are determined. Therefore,
by requesting content by ground user GUj, this request must
be served by one of the FAPs or UAVs in the neighborhood.
In some cases, however, the requested content cannot be
found in the storage of either available FAPs or UAVs, due
to the limited embedded storage of caching nodes. Conse-
quently, they need to provide the corresponding content from
the cloud server. To serve users’ requests, there are four alter-
native approaches, i.e., (i) FAP-ground user; (ii) UAV-ground
user; (iii) Cloud-FAP-ground user, and; (iv) Cloud-UAV-
ground user links. It should be noted that the last two
approaches would happen when the requested content does
not exist in the storage of either FAPs or UAVs.

This completes the description of the network’s model
and the main assumptions required for the development
of the proposed CQN-CS framework. Next, we construct
a multi-objective optimization problem over which the
CQN-CS framework is designed.

III. MULTI-OBJECTIVE OPTIMIZATION PROBLEM
In this section, we present users’ access delay, energy con-
sumption of UAVs, and handover of FAPs in order to formu-
late a multi-objective optimization problem. The constructed
optimization problem is associated with the selection of an
appropriate UAV and/or FAP among all candidate caching
nodes to serve users’ requests.

A. USERS’ ACCESS DELAY
By considering the common consideration in the literature
that all video files in the network are of similar size [18],
[28], [39], users’ access delay exclusively depends on the
connection type, i.e., the user’s request is served by the
FAP or the UAV. Note that this assumption is only used for

notational convenience as larger contents in caching-based
networks could be broken into the same length packets by
packetization. Additionally, another key factor that has a great
impact on the user’s access delay is the availability of the
requested content in the storage of FAPs and/or UAVs. If the
requested content can be found in the cache of FAP and/or
UAV, this request is directly handled by the caching node
and the cache-hit occurs, otherwise, the corresponding file
must be provided by the cloud server for FAP and/or UAV
to manage the request, and in this case, the ground user will
experience much more delay. As will be described shortly,
the user’s access delay is expressed as a function of the
distance between the ground user and the target caching node,
and the popularity of the requested file.

1) USERS’ ACCESS DELAY THROUGH UAV CONNECTION
To provide content via a UAV, an air-to-ground connection
from the UAV to the ground user must be formed. In such a
case that the requested content is not accessible in the UAV
cache, in addition to the air-to-ground connection, a ground-
to-air connection requires to be established as well, which is
the wireless fronthaul link between the cloud server and the
UAV. To determine the user’s access delay through UAVs,
due to the unavoidable obstacles throughout the network,
we consider both Line-of-Sight (LoS) and Non-Line-of-Sight
(NLoS) connections over the Cloud-to-UAV and the UAV-to-
Ground user links as follows:

• UAV-to-Ground User Link: The LoS and NLoS path loss
models from UAV uk to ground user GUj at time slot t
are expressed as follows [11]

L(LoS)
k,j (t) = L0+10η(LoS) log(dk,j(t))+χ (LoS)

σ , (6)

L(NLoS)
k,j (t) = L0 + 10η(NLoS) log(dk,j(t))+ χ (NLoS)

σ ,

(7)
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where L0 = 20 log
(
4π fcd0
c

)
represents the path loss

in reference distance d0, fc is the carrier frequency,
and c denotes the light speed. In addition, η(LoS) and
η(NLoS) indicate the path loss exponents of LoS and
NLoS, respectively, and dk,j(t) is the Euclidean dis-
tance between UAV uk and ground user GUj at time
slot t . Moreover, χ (LoS)

σ and χ (NLoS)
σ , as the shadowing

effects, denote zero-mean Gaussian-distributed random
variables with the standard deviation σ . Considering the
fact that the probability of LoS connection relies on the
environment, the probability of LoS link, denoted by
p(LoS)k,j (t), is expressed as [39]

p(LoS)k,j (t) =
(
1+ ψ exp

(
−ζ [φk,j(t)− ψ]

))−1
, (8)

where ψ and ζ are environmental constant parameters,

and φk,j(t) = sin−1
(

hk
dk,j(t)

)
represents the elevation

angle, where hk is the altitude of the UAV uk . In our
optimization problem, we assume that each UAV uk flies
in a fixed altitude hk over the hovering time. As a result,
the average path loss between UAV uk and ground user
GUj is calculated as

Lk,j(t)=p(LoS)k,j (t)L(LoS)
k,j (t)+ (1− p(LoS)k,j (t))L(NLoS)

k,j (t).

(9)

• Cloud-to-UAV Link: Similarly, since the terrain knowl-
edge is not available, the link between UAV and the
cloud cannot deterministically be identified as LoS or
NLoS. Therefore, we use probabilistic mean path loss
with two possible events (i.e., LoS or NLoS). The aver-
age path loss over the LoS and NLoS conditions is then
computed by considering p(LoS)c,k (t) denoting the proba-
bility of having a LoS, and 1−p(LoS)c,k (t) representing the
probability of having a NLoS link as follows

Lc,k (t)=p(LoS)c,k (t)L(LoS)
c,k (t)+(1−p(LoS)c,k (t))L(NLoS)

c,k (t),

(10)

where L(LoS)
c,k (t) = d−αc,k (t) and L(NLoS)

c,k (t) = βL(LoS)
c,k (t),

in which dc,k (t) denotes the distance between the cloud
server and UAV uk , and α and β represent the path
loss exponent and the additional path loss of the NLoS
connection, respectively [30].

To express the user’s access delay through UAVs, first
we calculate the cache-hit probability, i.e., the probability of
serving a request by UAV uk at time slot t , denoted by p(h)k (t),
and cache-miss probability, denoted by p(m)k (t), as follows

p(h)k (t) =
∑
l∈Ck

pl(t) ≤ 1, (11)

p(m)k (t) = 1− p(h)k (t), (12)

where Ck denotes a set of contents stored in the cache of
UAV uk . We use the fact that the popularity of contents
pl(t) in Eq. (11) is changing over time. Following a similar

concept used to form the average path loss in Eq. (10), there
are two possible events to define the user’s access delay
through UAV, i.e., the cache-hit event (which can happen with
probability of p(h)k (t)) and the cache-miss event (which occurs
with probability of p(m)k (t)). Accordingly, we have

Du(t) = p(h)k (t)D(h)
u (t)+ p(m)k (t)D(m)

u (t), (13)

where D(h)
u (t), known as the cache-hit delay through UAV,

is expressed as

D(h)
u (t) =

Lc
Rk,j
= Lc log−1

(
1+

Pk10Lk,j(t)/10

Ik (t, u−k )+ N0

)
, (14)

with Lc, Rk,j, Pk , and N0 denoting the size of file cl , the data
rate of the transmission from UAV uk to GUj, the constant
transmit power of UAV uk , and the noise power, respectively.
Moreover, Ik (t, u−k ) indicates the interference from other
UAV-to-Ground user links except for the corresponding uk
link. Similarly, the cache-miss delay, denoted by D(m)

u (t),
is calculated as

D(m)
u (t) = Lc log−1

(
1+

Pk10Lc,k (t)/10

Ik (t, u−k )+ N0

)

+Lc log−1
(
1+

Pk10Lk,j(t)/10

Ik (t, u−k )+ N0

)
, (15)

where the first term illustrates the user’s access delay associ-
ated with the Cloud-to-UAV link, while the second term on
the Right Hand Side (RHS) of Eq. (15) is related to the UAV-
to-Ground user link.

2) USER’s ACCESS DELAY THROUGH FAP CONNECTION
Another promising approach to provide the desired content
for ground users is serving the request by FAPs, which leads
to a ground-to-ground connection type between FAPs and
users. Similarly, if the requested content cannot be found in
the cache of neighboring FAPs, the corresponding content is
transmitted by the cloud server to the FAP, and then it is sent
to the ground user. Therefore, the user’s access delay through
the FAP connection is defined as follows

Df (t) = p(h)k (t)D(h)
f (t)+ p(m)k (t)D(m)

f (t), (16)

where D(h)
f (t), as the cache-hit delay through FAPs,

is expressed as

D(h)
f (t) = Lc log−1

(
1+

Pi|H̃i,j(t)|2

Ii(t, f−i)+ N0

)
, (17)

where H̃i,j(t) =
hi,j(t)√
Li,j(t)

illustrates the fading channel effect

with path loss between FAP fi and ground user GUj at time
slot t , where gi,j(t) = |hi,j(t)|2 represents the power gain
of the short-term fading channel coefficient hi,j(t), which
is a complex zero-mean Gaussian random variable with the
standard deviation equals to one, and Li,j(t) denotes the cor-
responding path loss. In addition, Ik (t, f−i) represents the
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interference from other FAP-user links excluding the corre-
sponding fi link.

B. ENERGY CONSUMPTION OF UAVs
The energy consumption of UAV uk , due to transmitting file
cl with the size of Lc to ground userGUj, is calculated as [15]

E (LoS)
uk (t) = LcPT (t)τp + LcPR(t)τp + P

(LoS)
j (t)(τf − τp),

(18)

E (NLoS)
uk (t) = LcPT (t)τp + LcPR(t)τp + P

(NLoS)
j (t)(τf − τp),

(19)

where τf and τp represent the flyby and the pause times
of UAV uk , respectively. Moreover, PT (t), PR(t), and Pj(t)
denote the transmission and reception powers of 1 Mb file
sharing, and the received power at ground user GUj, respec-
tively, where P(LoS)j (t) and P(NLoS)j (t) are calculated as

P(LoS)j (t) = P(LoS)0 − 10η(LoS) log
(
dk,j(t)
d0

)
+ χ (LoS)

σ ,

(20)

P(NLoS)j (t) = P(NLoS)0 − 10η(NLoS) log
(
dk,j(t)
d0

)
+ χ (NLoS)

σ ,

(21)

where P(LoS)0 and P(NLoS)0 represent the received power at
distance d0 in LoS and NLoS models, respectively. Conse-
quently, the average energy consumption of UAV uk is

Eu(t) = p(LoS)k,j (t)E (LoS)
uk (t)+ (1− p(LoS)k,j (t))E (NLoS)

uk (t).

(22)

C. HANDOVER OF FAPs
Dynamic UAV-based femtocaching networks, consisting of
massively dense FAPs with small transmission ranges, are
exposed to triggering frequent handovers during users’ move-
ments. By considering RSSIi,j(t) as the received signal
strength by ground user GUj from FAP fi, we have

RSSIi,j(t) = RSSI0 + 10η log10
(di,j(t)
d0

)
+ χσ , (23)

where di,j(t) and d0 denote the distance between FAP fi and
GUj, and the reference distance equal to 1 m, respectively.
Moreover, η represents the path loss exponent, which is 10 dB
or 20 dB, and χσ is a zero-mean Gaussian with the standard
deviation σ that represents the effect of shadowing in our
femtocaching scheme [45].

During movement of the ground user GUj, once RSSIi,j(t)
drops below the threshold level Pth, defined as the mini-
mum signal strength that can be detected by ground users,
handover triggers, and GUj connects to another neighbor-
ing FAP with the strongest signal. Since the received signal
strength depends on the distance between the ground user
GUj and FAP fi, the low value of RSSIi,j(t) indicates that
GUj is far from FAP fi, leading to triggering handover within
the shortest possible time. Moreover, taking into account a

dynamic femtocaching network, where ground users move
consistently in the coverage area of FAPs, it is essential
to consider that the ground user GUj is becoming close to
the corresponding FAP or moving farther away during its
movement. Hence, we define 1i,j(t) as follows

1i,j(t)=RSSIi,j(t)−RSSIi,j(t − 1), i = 1, . . . ,U (f )
j , (24)

where U (f )
j denotes a set of accessible FAPs for the ground

user GUj. In this case, 1i,j(t) = 0, (1 ≤ i ≤ U (f )
j ), indi-

cates that the ground user GUj is a stationary user, therefore,
it should be connected to the FAP with the highest value
of RSSI . 1i,j(t) > 0 shows that the ground user GUj is
becoming close to FAP fi, while 1i,j(t) < 0, which is the
worst case scenario, shows thatGUj is moving far away from
FAP fi. In order to decrease the number of handovers, after
requesting a content by the ground user GUj, the RSSI value
of all candidate FAPs in the vicinity of GUj is measured and
the target FAP fi, with the highest value of handoverHOi,j(t)
is selected to serve the user’s request, where HOi,j(t) is
obtained as follows

HOi,j(t) = RSSIi,j(t)+1i,j(t). (25)

D. PROBLEM FORMULATION
Based on the above derivations and considering the system
model described in Section II, the goal here is to develop
an efficient scheduling connection to assign an appropriate
caching node (i.e., UAV or FAP) to ground users. To construct
the optimization problem, we consider the following three
objectives: (i) User’s access delay; (ii) Energy consumption
of UAVs, and; (iii) Handover phenomena. On the other hand,
to evaluate the efficiency of the proposed CQN-CS frame-
work, we use the following six performance metrics: (1)
Cache-hit ratio; (2) User’s access delay; (3) Energy consump-
tion of UAVs; (4) Handover; (5) Lifetime of the network,
and; (6) Cumulative rewards. Toward this goal, we formu-
late a multi-objective optimization problem with the aim of
minimizing the user’s access delay depending on whether the
user is served through FAPs or UAVs. Access delay experi-
enced by the jth ground user, energy consumption of UAVs,
and the occurrence of handovers are denoted by Dl,j(t) ∈
{Dfi,j(t),Du,j(t)}, E l,j(t), and HOl,j(t), respectively. Note
that subscript l ∈ Uj = {uk , f1, . . . , fU (f )

j
} denotes all caching

nodes in the vicinity of the ground user GUj. By considering
the system model in Fig. 1, our proposed wireless network
consists of some clusters, where each cluster is supported
by one UAV and several overlapped FAPs. Consequently,
the ground user GUj (for 1 ≤ j ≤ Ng) at time slot t
can access one UAV uk , (for 1 ≤ k ≤ Nu), and several
FAPs fi, i = 1, . . . ,U (f )

j . Therefore, the cardinality of all
caching nodes (UAV and FAPs) supporting the ground user
GUj at time slot t is given by |Uj| = |U (f )

j | + 1. One of the
most efficient methods to scalarize a set of objectives into a
single objective, is theWeighted Sum (WS) method, in which
normalized objectives are pre-multiplied by weights ωq, and
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are combined as follows

Fj(x) =
∑
l∈Uj

(
ω1 xlDl,j(t)+ ω2 xlE l,j(t)

−ω3 xlHOl,j(t)
)
, (26)

where Fj(x) denotes the cost function associated with the
ground user GUj, and x = [x1, . . . , xUj ] is an indicator
vector, where xl would be 1 if l th caching node serves the
request of the ground userGUj, otherwise it equals to 0. Note
that x1 illustrates the connection between GUj and UAV uk .
Moreover, the weight coefficient ωq should be valued in such
a way that the higher value of ωq indicates the superiority

of that parameter, where
3∑

q=1
ωq = 1. Since the dimension of

these three parameters is not the same, we assume normalized
values, where the delay associated with UAVs and FAPs
are normalized by the maximum tolerable delay of UAVs
(D(max)

u ) and that of FAPs (D(max)
f ), respectively. Similarly,

the energy consumption of UAVs and the handover parameter
are normalized by Emax and Pth, respectively. More precisely,
by considering the fact that ground users will experience
maximum latency in the boarder of transmission range of
both UAVs and FAPs, D(max)

u and D(max)
f can be determined

according to Eqs. (13) and (16), where dk,j(t) = Ru and
di,j(t) = Rf , respectively. Similarly, Emax is obtained accord-
ing to Eq. (22), where dk,j(t) = Ru in Eqs. (20) and (21).
Our aim is to minimize the objective function Fj(x). Note

that the minus sign for the handover parameter in Eq. (26) is
due to the fact that the RSSI value linearly depends on the
HOl,j(t) in Eq. (25). Therefore, connecting to the FAP with
the highest value of HOl,j(t) leads to decreasing the number
of handovers. In this case, we expand Dl,j(t) in Eq. (26) as

Dl,j(t) = Du,j(t)+
∑
l∈U (f )

j

Dfl ,j(t). (27)

Then, we can expand the objective function, including two
terms; UAV connection, and FAP connection, as follows

Fj(x) = ω1 x1Du,j(t)+ ω2 x1Eu,j(t)︸ ︷︷ ︸
,CU−G

+

∑
l∈U (f )

j

ω1 xlDfl ,j(t)− ω3 xlHOl,j(t)

︸ ︷︷ ︸
,CF−G

, (28)

where CU−G denotes the cost function associated with UAVs
and the ground users’ connections, and CF−G is the connec-
tion link between FAPs and the ground users. Consequently,
CU−G would be zero, if the ground user GUj should be
served by FAPs. Similarly, CF−G would be zero, when GUj
is served by UAV uk . To determine the time varying con-
nection scheduling of ground users, by considering the fact
that there are Ng ground users in the network, the proposed

multi-objective optimization problem is expressed as follows

min
x

∑
j∈Ng

Fj(x)

s.t. C1. xl ∈ {0, 1},

C2.
Uj∑
l=1

xl = 1,

C3. 0 ≤ Du,j(t) ≤ 1,

C4. 0 ≤ Dfl ,j(t) ≤ 1,

C5. 0 ≤ Eu,j(t) ≤ 1,

C6. RSSIi,j(t) ≥ Pth. (29)

For the above optimization problem, xl in constraint C1
is the indicator variable. Constraint C2 represents that the
request of each ground user is served by one caching node.
Constraints C3 ∼ C5 are utilized to illustrate all possible
caching nodes in the vicinity of the ground user GUj, where
the normalized latency associated with candidate UAVs and
FAPs, and the energy consumption constraints should be
positive and less than or equal to one. Moreover, constraint
C6 represents that the RSSI value should be equal to or
greater than the threshold level of RSSI (Pth), otherwise
handover occurs. Following a similar argument as in [28],
our minimization problem in Eq. (29) can be expressed as
a maximization problem, i.e.,

max
x

∑
j∈Ng

F ′j(x)

s.t. C1 ∼ C6, (30)

where F ′j(x) is defined as

F ′j(x) = ω1 x1
(
1−Du,j(t)

)
+ ω2 x1

(
1− Eu,j(t)

)
+

∑
l∈U (f )

j

ω1 xl
(
1−Dfl ,j(t)

)
+ ω3 xlHOl,j(t). (31)

This completes our formulation of a multi-objective opti-
mization problem to present the user’s access delay, energy
consumption of UAVs, and the handover of FAPs. Next,
we develop the proposed CQN-CS scheduling architecture
based on the developed multi-objective optimization formu-
lation.

IV. THE CQN-CS SCHEDULING FRAMEWORK
In this section, we present an optimum framework, the
CQN-CS, to identify how users access UAVs and/or FAPs
based on the RL model, in order to solve the optimization
problem of Eq. (30). To be specific, we first briefly introduce
the required background on RL, then we present the proposed
CQN-CS, which is an efficient DQN model with an embed-
ded CNN connection scheduling architecture developed for a
UAV-based femtocaching network.

A. REINFORCEMENT LEARNING
Generally speaking, RL algorithms consist of an agent, inter-
acting with an environment based on a set of given actions.
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The agent receives feedback, as a reward or punishment, from
the environment after each interaction, and updates its states
accordingly. Markov Decision Process (MDP) provides the
rigorous mathematical foundation for RL algorithms, and
includes a set of A actions, a set of states S, a transition
function T , and a reward function, denoted byR. Each action
at ∈ A at time slot t in any state st ∈ S results in a new
state st+1 ∈ S at time slot t + 1 based on the transition
function T (st , at , st+1) and a reward rt = R(st , at ). The
aim of MDP is to find the optimum policy π∗ to achieve
the maximum accumulated rewards obtained over an infinite
number of interactions [46], where π∗ is expressed as follows

π∗ = argmax
π

Eπ
{ H−1∑
t=0

γ trt+1|s0 = s
}
, (32)

where H denotes the number of finite episodes in MDP and
γ ∈ [0, 1] is the discount factor. The low value of γ leads
to maximizing short-term rewards, while a high value of γ
increases rewards over a longer period of time.

The Q-Network framework, as one of the most commonly
used value-based and model-free RL algorithms, can be
considered as a function approximator, where the value of
Q(st , at ) relies on action at and the state st of the agent at
time slot t , expressed as follows [46]

Q(st , at ) = Eπ
{ H−1∑
t=0

γ trt+1|s0 = s, a0 = a, at = π (st )
}
.

(33)

In this regard, the value of Q(st , at ) in each time slot is
updated by the agent as follows

Q(st , at )← (1−λ)Q(st , at )+λ(rt+γ maxQ(st+1, at+1)),

(34)

where λ ∈ [0, 1] is the learning rate. If the number of
states is finite, the Q-learning approach performs efficiently
to update the state-action value function in each state. In sce-
narios, where the number of states is infinite, however, it is
not feasible to visit all the states, therefore, deep learning
methods can contribute to approximate the state-action value
function. In deep Q-learning approaches, a deep model is
used for prediction and training, instead of building a Q-table
to look up and update values. In this paper, we apply CNN,
as one of themost efficient deep learningmethods, to estimate
Q-values.

B. THE CQN-CS ARCHITECTURE
Due to the dynamic behavior of the UAV-based femtocaching
network, which is a result of the mobility of ground users
in the environment, we train our CQN-CS model using QoS
requirements, including users’ access delay, and the QoE
from UAV and FAP perspectives. Fig. 2 illustrates the block
diagram of our proposed CQN-CS framework. By consider-
ing a slotted structure, each ground user learns how to access
the UAV and/or FAP autonomously, where each time slot t
consists of the following four steps:

1) STEP 1 (LOCALIZATION)
To determine the best caching node for serving a request,
we need to know all possible caching nodes in the vicinity
of ground users. Toward this goal and in the first stage,
the location of ground users must be estimated. According
to the AoA localization technique, the location of each user
is calculated based on Eqs. (4) and (5).

2) STEP 2 (CACHING NODE IDENTIFICATION)
In this phase and according to the constraint C2 in Eq. (29),
we need to determine all FAPs and UAVs in the vicinity
of the ground user GUj to build Uj = {uk , f1, . . . , fU (f )

j
}.

Accordingly, the distance between FAP fi and the ground user
GUj is calculated as follows√

(xj − xfi )2 + (yj − yfi )2 ≤ Rf , (35)

where (xj, yj) and (xfi , yfi ) represent spatial coordinates of
GUj and FAP fi, respectively. Therefore, all ground users that
are positioned in the transmission range of FAP fj can be
supported by the corresponding FAP. Similarly, to calculate
the distance between UAV uk and the ground user GUj,
we have √

(xj − xuk )2 + (yj − yuk )2 + h2uk ≤ Ru, (36)

where (xuk , yuk , huk ) is the spatial coordinate of UAV uk .
Since the height of ground users is much lower than the alti-
tude of flying UAVs, the height of ground users is negligible.
Note that the above statements are equivalent to constraints
C3∼C5. According to Eqs. (35) and (36), the set of available
candidate caching nodes for the ground user GUj, denoted
by Uj, is built.

3) STEP 3 (QoE BROADCASTING)
Given Uj, constructed from Step 2 above, all FAPs and
UAVs in the vicinity of the ground user GUj broadcast the
energy consumption and the probability of handover, calcu-
lated based on Eqs. (22) and (25). Considering these decision
criteria, consequently, results in theminimization of the user’s
access delay in the next time slots, obtained according to
Eqs. (13) and (16). Then, the cost of selecting FAPs andUAVs
is calculated by ground users based on the QoE, and air-to-air
and air-to-ground channel path loss models. Consequently, all
parameters in Eq. (30) are known. In the next stage, ground
users will select the target caching node, either UAVs or
FAPs, in order to maximize Eq. (30). Accordingly, to satisfy
constraints C1 and C2, only xl associated with the target
caching node would be 1.

4) STEP 4 (RESPONDING A REQUEST)
To solve Eq. (30), we propose a CNN-based Q-learning
approach in the context of the UAV-based femtocaching
network. Our CQN-CS framework, represented as a tuple
{st , at , rt }, has the following components:
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FIGURE 2. The block diagram of our proposed CQN-CS framework.

a: CQN-CS AGENTS
In our proposed CQN-CS framework, ground users, as the
intelligent members of our problem, act as agents.

b: CQN-CS ACTION SPACE
The CQN-CS architecture has an action generation engine to
find a globally optimized policy based on the previous states
to learn the most suitable action. Here, the action refers to the
selection of a suitable caching node to support ground users’
requests in various circumstances in terms of the location
of ground users, the battery life of UAVs, channels’ con-
dition, and the probability of handover. After requesting a
content by user GUj, this request should be served by one
of the caching nodes in the vicinity of GUj, denoted by
l ∈ Uj = {u(j)k , f

(j)
1 , . . . , f (j)

U (f )
j

}, where superscript (j), j =

1, . . .Ng, indicates all ground users in the network. Therefore,
all UAVs and FAPs in this set can be an action for GUj,
i.e., at = [u(1)k , f

(1)
1 , . . . , f (1)

U (f )
1

, . . . , u
(Ng)
k , f

(Ng)
1 , . . . , f

(Ng)

U (f )
Ng

]T ,

for (1 ≤ k ≤ Nu), which is equivalent to x =

[x(1)1 , . . . , x(1)U1
, . . . , x

(Ng)
1 , . . . , x

(Ng)
UNg

]T in Eq. (30). Therefore,

by selecting an action, the corresponding value of x(j)l would
be 1, otherwise it would be 0. Note that selecting the optimal
action leads to maximizing the reward of the network.

c: CQN-CS STATE
The action is selected based on the current system state st
at time slot t . In each time slot t , the value of user’s access
delay via UAVs and FAPs, energy consumption of UAVs,
and handover represent states in our proposed framework,
i.e., st = [Lj(t),D′u,j(t),E

′

u,j(t),D′fl ,j(t),HO′l,j(t)]T . More
specifically, st consists of the following five components:
• Lj(t): The location of ground user GUj at time slot t ,
which is determined according to Eq. (3).

• D′u,j(t): The total delay that the ground user GUj will
experience if its request is served by UAV uk until time
slot t .

• E
′

u,j(t): The total energy consumed by UAV uk at time
slot t for establishing a connection with the ground user
GUj.

• D′fl ,j(t): The total user’s access delay GUj due to the
connection with FAP fl .

• HO′l,j(t): The handover indicator of FAP fl at the user
side GUj.

Therefore, each ground user should build a Q-table, where
rows denote all possible states, and columns indicate actions.
However, since the number of states is infinite, it is not
possible to visit all the states. For this reason, we apply CNN
on the Q-Network to estimate Q-values. It should be noted
that by serving a request by FAPs, the energy consumption
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of UAVs has no change, therefore, the state value of the
energy consumption would be constant. Moreover, since we
assume that the handover phenomenon just occurs in FAPs
and ground users’ connection, there is no change in the state
value of handover when a request is served by UAVs. In such
a case that more than one ground user simultaneously selects
a specific caching node, the corresponding caching node will
randomly select one of them to support the request.

d: CQN-CS REWARD
According to the optimization problem in Eq. (30), any
reduction in the involved metrics (i.e., user’s access delay
via UAVs and FAPs, energy consumption of UAVs, and
handover) results in a higher reward. When it comes
to the problem of finding optimal action policies within
the Pareto optimal set in scenarios with multiple and
conflicting objectives, different multi-objective RL-based
models [47]–[49] were considered in the literature. In this
paper, we employ the weighted-sum approach, where the
underlying set of objectives is converted into a single
function by assigning a pre-defined weight to each indi-
vidual objective. More specifically, the reward function
in our multi-objective RL-based framework, denoted by
R(st , at ), is extended to a vector reward function, denoted
by R(st , at ) = [R1(st , at ),R2(st , at ),R3(st , at )], where
R1(st , at ), R2(st , at ), and R3(st , at ) represent the reward
function associated with the users’ access delay, energy con-
sumption of UAVs, and FAPs’ handover, respectively, calcu-
lated as follows:

R1(st , at ) =

{
1−Du,j(t), UAV Link,
1−Dfl ,j(t), FAP Link.,

(37)

R2(st , at ) = 1− Eu,j(t), (38)

and R3(st , at ) = HOl,j(t). (39)

In this case, the weighted-sum form of the Q-value is calcu-
lated as

Q(st , at ) =
No=3∑
q=1

ωqQq(st , at ), (40)

where No denotes the number of incorporated objectives.
Finally, the action associated with the largest Q(st , at ) is
selected by an agent [49]. Considering the Pareto optimality,
the trade-off is parameterized by the weight coefficients ωq ∈

[0, 1], where
No∑
q=1

ωq = 1 [49]. In this case, higher values

of ωq indicate the superiority of that objective. In this paper,
we have three conflicting objectives, i.e., users’ access delay,
energy consumption of UAVs, and handover phenomena
occurred between FAPs. To maintain a balance between the
QoS of ground users and the QoE of FAPs and UAVs, the pro-
posed connection scheduling framework aims to simultane-
ously satisfy concerns of ground users, UAVs, and FAPs. For
this reason, we assign equal weights to the three underlying
objectives. In this case, the policy is said to be Pareto optimal

if the value of π∗, obtained according to Eq. (32), strictly
dominates or is incomparable with the value functions of
other policies [49].

After selecting a caching node with the largest Q(st , at ),
the connection information associatedwith the corresponding
action, the location of the ground user, the probability of han-
dover, the energy consumption of UAVs, and the user’s access
delay are stored in the memory replay of the proposed CQN
model. In our proposed framework, for each state-action
pair, CQN approximates the Q-function by using CNN with
tunable weight parameters, which is a non-linear approx-
imator. The CNN model, however, needs to be retrained
due to the mobility of ground users and the dynamic nature
of UAVs (i.e., the battery life). Therefore, a replay mem-
ory is used for past experienced state-action pairs and the
associated rewards. The weight of filters in each layer at
time slot t is denoted by ξt . The observed state sequence,
including β state-action pairs at time slot t , is denoted by
φt = [st−β , at−β , . . . , at−1, st ], which is the input of the
CNN to estimate Q(φt , at |ξt ). The experience memory pool
is denoted byD = {e1, . . . , et }, where et = (φt , at , rt ,φt+1).
The state sequence in replay buffer em is selected randomly
to update the weight parameter ξt according to the Stochastic
Gradient Descent (SGD) method. By choosing ξt , our goal is
to minimize the loss function, denoted by L(ξt ), which is the
mean-squared error of the target optimal Q-function with the
minibatch updates, given by

L(ξt ) = Eφt ,at ,rt ,φt+1

[(
QT − Q(φt , at |ξt+1)

)2]
, (41)

where QT is the target optimal Q-function, given by

QT = rt + γ max
a′t

Q(φt+1, a
′
t |ξt−1)). (42)

Eventually, the action at is chosen for the state st based on the
ε-greedy algorithm. With the probability of (1 − ε), the best
action a∗t is chosen from the set of Q-functions as follows

a∗t = argmax
a′t

Q(φt , a
′
t ). (43)

Then, the user’s request should be served by the correspond-
ing caching node with action a∗t . Accordingly, the reward rt is
calculated by agent, and the new experience {φt , at , rt ,φt+1}
is stored in the replay memory by agent. The pseudo-code
of our proposed CQN-CS framework is outlined in Algo-
rithm 1. The rationale behind the design of Algorithm 1 is
described in more details based on the following steps:
• Initialization: In each epoch, all parameters are selected
according to the values shown in Table 2. Moreover,
we reset all the parameters related to the environment
such as the replay buffer. These actions are equivalent to
Lines 1-5 of Algorithm 1.

There are Ng number of ground users who are agents in
the proposed network model. The following steps will be
performed for all ground users in each episode, denoted by t .
• Localization: To construct the action space of each
agent, the current location of ground users and the
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Algorithm 1 The CQN-CS Framework
1: Initialization:
2: Set all parameters according to Table 2.
3: Initialize state-action pairs β.
4: Initialize batch size B.
5: Reset replay memory size.
6: for j = 1, . . . ,Ng do
7: for t = 1, 2, . . . do
8: Input:
9: s0 = [Lj(0),D′u,j(0),E

′

u,j(0),D′fl ,j(0),HO′l,j(0)]
10: Localization: Determine the location of ground
11: user GUj based on Eqs. (4) and (5).
12: Identification: Determine all possible caching
13: nodes in the vicinity of GUj.
14: QoE broadcasting: Calculate and broadcast the
15: energy consumption, handover, and delay.
16: Responding to a Request: Select the best
17: caching node according to the following steps
18: if t ≤ β then
19: Choose an action randomly at ∈ {1, . . . ,Uj}
20: else
21: Obtain CNN output Q(φt , at |ξt ) with input
22: φt and weights ξt .
23: Choose at via ε-greedy algorithm
24: end if
25: Observe Lj(t),D′u,j(t),E

′

u,j(t),D′fl ,j(t),HO′l,j(t))
26: Estimate the Reward rt and obtain
27: st+1 = [Lj(t + 1),D′u,j(t + 1),E

′

u,j(t + 1),
28: D′fl ,j(t + 1),HO′l,j(t + 1))]
29: Create state, action, and reward vector:
30: φt+1 = [st−β+1, at−β+1, . . . , at+1, st+1]T

31: Add the new experience {φt , at , rt ,φt+1}
32: to memory D
33: for d = 1, . . . ,B do
34: Select randomly (φd , ad , rd , φd+1) from D
35: Train CNN for N iterations
36: Calculate QT using Eq. (42).
37: end for
38: Update the weight parameter ξt using Eq. (41).
39: end for
40: end for
41: Output: Optimal UAV/FAP connection scheduling with

maximum rt .

possible caching nodes in their vicinity are gathered.
After initializing the location of ground users in the
environment, the current location of ground users in each
episode is determined according to Lines 10 and 11 of
Algorithm 1.

• Caching Node Identification: After identifying the loca-
tion of agents, all available caching nodes in the vicinity
of ground users should be determined. In this case,
the action space is constructed for each agent, which is
equivalent to Lines 12 and 13 of Algorithm 1.

• QoE broadcasting: To update the state space of ground
users, all UAVs and FAPs in the vicinity of each ground
user broadcast their energy consumption and experi-
enced handover, which is equivalent to Lines 14 and
15 of Algorithm 1.

• Responding to a Request: Considering the current state
space, each agent selects the best caching node in
such a way that its Q-value is maximized. If the value
of the current episode is less than a pre-specified
threshold β, a random action with a probability of
ε is selected (Lines 18 and 19); otherwise, an opti-
mal action is selected based on the ε-greedy policy
(Lines 21-24). After taking an action, the state-space,
the action-space, and the reward vector are updated and
stored in the memory of the CQN model (Lines 25-32).
For each state-action pair, CQN approximates the
Q-function using CNN with tunable weight parameters
(Lines 33-37).

• Termination: At the end, weight parameters are selected
in such a way that the loss function, expressed in
Eq. (41), is minimized. Consequently, the optimal
action, which leads to increasing the Q-value, is selected
by each agent at episode t .

C. COMPUTATIONAL COMPLEXITY
As previously mentioned, due to the infinite number of states
in the UAV-based femtocaching framework, the size of the
action-state space observed by each ground user is relatively
high. In such scenarios with a high number of state-action
pairs, the computational cost of conventional Q-learning
algorithms is significantly high. Therefore, Deep Q-Learning
(DQN) models are typically used where instead of storing
expected rewards associated with each state-action pair in
a Q-table, a Deep Neural Network (DNN) model is used to
select the actions according to the agent’s current state [50].
In complex problems such as the one at hand, several informa-
tion sources (such as the position of agents, their movement
directions, and available caching nodes) are simultaneously
required to perform the action selection task. CNN architec-
ture is an attractive solution to extract the relevant features
from this pool of information. CNN-based architecture uses
convolutional kernels to compress the state-space and extract
temporal correlations between the current state of a ground
user and previous state-action pairs. Within the CNN archi-
tecture, weights are shared between the episodes, which leads
to a considerable reduction in the computational complex-
ity. To compute the computational complexity of the pro-
posed learning method, we follow the approach introduced in
Reference [51] as CNN constitutes the main component
(computational wise) of the proposed CQN-CS framework.
The computational complexity of CNN depends on the
number of multiplications in each convolutional layer [51].
Generally speaking, CNN models consist of Nl number of
convolutional layers, where each layer includes Fl filters with
size W f

l × L
f
l , zero-padded by Pl number of padding layers,
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and with stride size of Sl . Moreover, there are Nfc number
of fully connected layers, including Nr number of Rectified
Linear Units (ReLUs) to estimate the Q-value associated
with each possible action. By considering the fact that the
pooling and fully connected layers take only 5 − 10% of
the computational time [51], the computational complexity
of CNN can be expressed as follows

N =
Nl∑
l=1

Fl−1W
f
l L

f
l FlW

o
l L

o
l , (44)

where l is the index of the convolutional layer. Terms Fl−1
and Fl denote the number of input channels and the number
of filters of l th layer, respectively. In addition, W o

l and Lol
represent the width and the length of the output, calculated
as follows

W o
l =

W o
l−1 −W

f
l + 2Pl

Sl
+ 1, (45)

and Lol =
Lol−1 − L

f
l + 2Pl

Sl
+ 1, (46)

where Sl and Pl are the size of stride and padding layers
corresponding to the l th layer, respectively. To calculate the
computational complexity of the learning process of the pro-
posed CQN-CS according to Eqs. (44)-(46), the value of
F0×W o

0 ×L
o
0 is equal to βlsU . In this case, β is the temporal

memory depth, ls is the length of the state space that is equal
to 5, and U represents the number of possible actions in each
episode.

V. SIMULATION RESULTS
In this section, we evaluate the performance of our proposed
CQN-CSUAV-based femtocaching framework in terms of the
cache-hit ratio, user’s access delay, energy consumption of
UAVs, handover, cumulative rewards, and the lifetime of the
network. For the scenarios under simulation, we investigate
how the CQN-based connection scheduling scheme affects
the aforementioned performance metrics.
Simulation Setup:We consider an ultra-dense network with
the radius R = 5000 m, covered by a cloud server. In our
proposed network, there areNf = 240 FAPs with Rf = 30 m,
uniformly distributed in the network, where each FAP over-
laps with neighboring FAPs. Additionally, by considering the
restrictions of the aviation regulations, we consider Nu = 10
UAVs flying horizontally at a specific altitude hk = 100 m,
for (k = 1, . . . ,Nu) to cover a region of the network with
Ru = 500 m. The area of interest is divided into K clusters
according to the K-means algorithm, whereNc ∈ {20, 25, 30}
neighboring FAPs are covered by a UAV. Table 2 illustrates a
list of parameters.

To consider the dynamic nature of the environment,
we assume the Difference Correlated RandomWalk (DCRW)
model for the mobility pattern of ground users. By requesting
a content by ground users, each UAV hovers at its location or
flies a distance to manage the request, which both of them are
energy consuming. However, since these concepts have been

TABLE 2. List of Parameters.

well studied in the literature of positioning management of
UAVs, we only focus on the energy consumed by stationary
UAVs to handle a request, depending on the distance between
the UAV and the ground user, channel condition, and avail-
ability of the requested content in the cache of UAV. The
proposed CQN-CS framework is performed for 100 epochs.
By considering the fact that the battery life of UAVs is
limited, we assume that each epoch is terminated if the total
energy consumption of at least one UAV exceeds the UAV’s
battery life. Our CNN model consists of two 2-dimensional
convolutional layers and two Fully Connected (FC) layers.
Convolutional layers consist of 256 filters, each with the size
of 3 and stride 1. We use max-pooling and ReLU as the
activation function in each layer. The first FC layer consists
of 512 ReLU units and the second FC has 256 ReLU units.
To the best of our knowledge, there is no coupled UAV
and femtocaching framework, studied from the connection
scheduling perspective, for comparison purpose. Therefore,
we introduce two baseline models for comparison:
• Q-Network Connection Scheduling (QN-CS) UAV-
based Femtocaching Scheme: In this algorithm, the best
caching node to handle users’ requests is selected as
the result of a Q-learning framework. All parameters of
the RL approach, including actions, states, and rewards
are kept similar to our proposed scheme for a fair
comparison.

• Deep Q-Network Connection Scheduling (DQN-CS)
UAV-based Femtocaching Scheme: Similar to the pre-
vious baseline, all the parameters are the same as our
proposed framework, with the difference that in this
baseline, we useMultilayer Perceptron (MLP) instead of
CNN with two hidden layers, where each layer consists
of 256 neurons.

Taking the above considerations into account, we illustrate
the superiority of our proposed CQN-CS framework com-
pared with conventional schemes from the aspect of the
cache-hit ratio, user’s access delay, energy consumption of
UAVs, handover, cumulative rewards, and the lifetime of the
network.

A. PERFORMANCE EVALUATION
In this subsection, we first evaluate the effectiveness of the
AoA scheme as an efficient localization method to esti-
mate the proximity of ground users, in order to determine
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possible caching nodes in their vicinity. Fig. 3 illustrates
a typical 20 × 20 m2 area, where ground users are ran-
domly distributed. By Assuming (xj, yj) and (x̂j, ŷj) as the
real and the estimated coordinates of user GUj, respectively,
the Root Mean Square Error (RMSE) is defined as RRMSE =√√√√ 1
Ng

Ng∑
j=1

(x̂j − xj)2 + (ŷj − yj)2 to evaluate the accuracy of

location estimation. Taking into account the multipath and
path loss effects, the RMSE of the AoA method in our
proposed network is about 0.4 m, which is acceptable in
comparison to the transmission range of FAPs.

FIGURE 3. A typical location estimation result based on the AoA
localization scheme.

We evaluate the convergence of the proposed CQN-CS
framework in Fig. 4. More specifically, the convergence of
the proposed CQN-CS framework is the crucial property to
obtain a policy, which maps states to the optimal actions.
According to Eq. (41), the main goal of the learning process
is to minimize the loss function, which is the mean-squared

FIGURE 4. The convergence of the proposed CQN-CS framework.

error of the target optimal Q-function with the minibatch
updates. Fig. 4 illustrates the convergence behavior of the
proposed CQN-CS scheme. According to the result shown
in Fig. 4, the CQN-CS framework converges after 80 epochs,
which is an acceptable speed.

Cache-hit ratio is a metric used to express the number
of requests served by caching nodes, either FAPs or UAVs,
in each episode. We assume a pre-specified threshold for the
battery life of UAVs, where reaching the energy consumption
of at least oneUAV to the threshold level is known as the game
over in our RL network. The normalized cache-hit-ratio,
denoted by CH(n), consists of two terms, i.e., the satisfied
requests served by FAPs, denoted by CHf , and the satisfied
requests managed by UAVs, denoted by CHu, given by

CH(n)
=

CHf + CHu

CHmax
, (47)

where CHmax is the maximum value of CH in all episodes.
Fig. 5 evaluates the performance of our proposed scheme
and other two baselines mentioned above from the aspect
of the cache-hit ratio in different epochs. According to the
results in Fig. 5, we can see that the area below the curve
increases as the number of epochs grows. This is due to
the fact that by passing the time, our network learns how to
manage requests to expand the lifetime of UAVs. Moreover,
our proposed CQN-CS method experiences more cache-hit-
ratio, which indicates its superiority.

FIGURE 5. The normalized cache-hit ratio versus different epochs.

Fig. 6 illustrates the cumulative rewards of all caching
nodes in each epoch before the energy consumption of at
least one UAV reaches the battery life of the UAVs. Accord-
ing to the definition of rewards in our CQN-CS framework,
connecting to the nearest FAP instead of the far one leads
to a remarkable reduction in the user’s access delay and
handover, followed by increasing the reward value. UAV’s
connection would be efficient in such cases where there is
no available FAPs, and/or when serving by UAVs leads to
the lower experienced latency than by FAPs. Fig. 6 illustrates
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FIGURE 6. The variation of cumulative rewards versus different epochs.

the distribution of cumulative rewards for different clusters
in each epoch, where the number of clusters is equal to the
number of UAVs (i.e., 10). Then, we run the program for
10 iterations. As it can be seen from Fig. 6, the cumulative
rewards variations of the proposed CQN-CS framework is
much less than the DQN-CS and the QN-CS approaches,
which means our proposed algorithm reaches the optimum
connection scheduling immediately.

Fig. 7 evaluates the performance of the proposed CQN-CS
algorithm with other schemes from the aspect of the net-
work’s lifetime, depending on the energy consumption of
UAVs. Note that there are three parameters which have a
great impact on the energy consumption of UAVs; (i) The
number of requests they served; (ii) The distance between the
requested ground user and the UAV, and; (iii) The probability
of the existence of LoS link between them. By considering
all these metrics in our proposed scheme, UAVs are involved
in such communications that consume less energy as much as
possible, which leads to expanding the network’s lifetime.

FIGURE 7. Normalized lifetime of the network in each epoch.

Fig. 8 compares the normalized average delay that all
ground users in the network experience through the proposed
CQN-CS, the DQN-CS, and the QN-CS frameworks. Note
that the users’ access delay depends on the availability of
the requested content in the cache of the responsible FAP
and/or UAV, otherwise, the corresponding content must be
provided by the cloud server, leading to more delay. Taking
into account that the location of the ground user has a great
impact on the distance between the responsible caching node
and the ground user, followed by the channel condition, dif-
ferent ground users may experience a wide range of latency.
As it can be seen from Fig. 8, ground users during their
movement and by considering the unforeseen conditions of
the UAV-based femtocaching network, learn how to manage
their requests by optimal caching nodes to experience lower
latency.

FIGURE 8. The normalized average users’ access delay versus different
epochs.

In Fig. 9, we evaluate the handover rate in the proposed
CQN-CS framework along with other baselines versus the
number of epochs. Handover rate, denoted by HR(t), indi-
cates the probability of handover, occurring between FAP fi
and the ground user GUj at time slot t , which is obtained as

HR(t) =
Pth

HOi,j(t)
, (48)

where the high value of HOi,j(t) means that the ground user
connects to the close FAP instead of the far one, leading to
a decrease in the handover rate. In a dynamic femtocaching
network, however, ground users may become close or farther
away from the nearest FAP during their movements, which
is considered in our proposed CQN-CS framework, denoted
by 1i,j(t). To illustrate the handover rate improvement of
our proposed CQN-CS framework, we compare the handover
rate, with the case that1i,j(t) is disregarded, which is named
CQN-CS2 framework. Fig. 9 illustrates the superiority of
our proposed CQN-CS framework in terms of the average
handover rate.
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FIGURE 9. Handover rates versus different epochs.

Finally, we compare the performance of the proposed
CQN-CS framework with the DQN-CS and QN-CS baselines
from the aspect of the average energy consumption of UAVs
in Fig. 10. Using the fact that the coverage areas of UAVs are
much more expanded than FAPs, all users that have access
FAPs can be managed by UAVs, as well. Despite FAPs,
that are unlimited energy caching nodes, serving through
UAVs inherently decreases the lifetime of UAVs’ battery.
Consequently, it is essential to manage ground users by FAPs,
especially in such cases that ground users have access to at
least one FAP to extend the lifetime of the network. As it
can be seen from Fig. 10, the average normalized energy
consumption of UAVs in our proposed CQN-CS framework
is lower than the other schemes. In addition, the variation of
the energy consumption of UAVs is negligible in comparison
to the two baselines.

FIGURE 10. The normalized average energy consumption of UAVs versus
different epochs.

FIGURE 11. Normalized network’s lifetime versus number of ground
users.

FIGURE 12. Normalized network’s lifetime versus the number of FAPs in
each cluster.

Moreover, we evaluate the effects of the number of ground
users, the number of FAPs in each cluster, and the total
number of content in the network on the performance of
the UAV-based femtocaching network in Figs. 11-13. Prior
research studies [28], [53] considered a small-scale wireless
network with a limited number of ground users and multime-
dia content and illustrated the impact of the number of ground
users and caching nodes on the network’s performance. As it
can be seen from [28], [53], considering a large number of
ground users and multimedia content in wireless networks
lead to a considerable increase in the number of distinct
requests. In this case, providing high QoS and QoE com-
munication links through the network is more challenging
in comparison with a small-scale wireless network. Note
that if a UAV-based femtocaching framework can perform
effectively in an ultra-dense wireless network, it will defi-
nitely perform well in small-scale wireless networks. For this
reason, we consider a sufficiently large number of ground
users and multimedia content. According to the results shown
in Fig. 11, increasing the number of ground users leads to an
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FIGURE 13. Normalized network’s lifetime versus number of multimedia
content.

increase in the number of requests in each time slot. Since
the network’s lifetime depends on the energy consumption
of UAVs, managing more requests by UAVs considerably
reduces the network’s lifetime. Fig. 12 illustrates the impact
of the number of FAPs in each cluster on the network’s life-
time. Increasing the number of FAPs in each cluster decreases
the distance between FAPs and ground users. Therefore,
ground users experience less delay by connecting to FAPs
instead of UAVs. Therefore, the majority of requests will be
managed through FAPs, which increases the network’s life-
time. Finally, Fig. 13 evaluates the normalized network’s life-
time versus the total number of content in the network. Note
that increasing the number of content increases the content
diversity throughout the network. Consequently, the number
of requests that can directly be served through caching nodes
decreases. Therefore, the requested content should be pro-
vided by the cloud server, leading to consuming more energy
by UAVs.

Fig. 14 illustrates the robustness of the proposed CQN-CS
method against the Channel State Information (CSI) uncer-
tainty. It should be noted that the state space of the pro-
posed deep Q-Network, including users’ access delay, han-
dover, and UAV’s energy consumption is prone to noise.
Consequently, the CSI uncertainty and RSSI measurement
errors have potential negative impacts on both the state
and action spaces. To evaluate the noise robustness of the
proposed CQN-CS, we have computed the cumulative reward
(after a specific epoch where the proposed CQN-CS frame-
work is well trained) versus different values of the noise
power. By considering the fact that the common value of
noise power in UAV-based femtocaching networks is in the
range of −174 ≤ N0 ≤ −94 dBm [39], [52], our pro-
posed CQN-CS framework is robust against CSI uncertainty
and RSSI measurement errors for a small value of noise
(see Fig. 14). It is worth mentioning that in the existing
literature onUAV-based femtocaching, commonly−174 dBm
is used as the value of the noise power [15], [18], [52]. It can

FIGURE 14. Normalized cumulative rewards versus different values of
noise power (dBm).

be observed from Fig. 14 that the proposed CQN-CS is robust
in this vicinity. On the other hand, to evaluate the performance
of the proposed approach, comparison studies are performed
based on the worst-case scenario (−94 dBm) and as can
be seen in Figs. 5-13, our proposed method outperforms its
counterparts in the worst-case scenario. To further improve
the robustness of the proposed CQN-CS, robust RL mod-
els [55] can be incorporated within the CQN-CS framework,
which is the focus of our ongoing research.

VI. CONCLUSION
In this paper, we presented a Convolutional Neural
Network (CNN) with Q-learning Connection Scheduling
(CQN-CS) architecture in an ultra-dense UAV-based fem-
tocaching network. To improve the network’s coverage
and support a highly reliable and low-latency transmis-
sion, we deployed UAVs beside FAPs over a heterogeneous
wireless cellular network. In order to select the optimal
caching node, i.e., UAVs and/or FAPs, we formulated a
multi-objective connection scheduling problem, with the
focus on minimizing the user’s access delay by maintaining a
reduction in the energy consumption of UAVs and handover
phenomena. The mobility of ground users, however, leads
to a time-varying topology of the wireless network. For
this reason, we proposed the CQN-CS framework to train
our coupled UAV-based femtocaching network to respond
to users’ requests in an optimal fashion. Simulation results
showed that the proposed CQN-CS scheme improves the
cache-hit ratio, user’s access delay, energy consumption of
UAVs, handover, cumulative rewards, and network’s lifetime
during each epoch when compared to Q-learning and Deep
Q-Network (DQN) schemes. In this paper, our focus was
on the outdoor environment, where both UAVs and FAPs
operate efficiently. With the emphasis on the poor signal of
UAVs in indoor areas, our future research involves the deploy-
ment of a cluster-centric and coded UAV-based femtocaching
framework in a heterogeneous integrated network, covering
both indoor and outdoor environments. In addition, our future
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direction is to investigate the security factor and the effect of
other mobility patterns on the performance of the proposed
CQN-CS framework.
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