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ABSTRACT Automated driving is expected to enormously evolve the transportation industry and ecosys-
tems. Advancement in communications and sensor technologies have further accelerated the realization
process of the autonomous driving goals. There are a number of autonomous driving initiatives around the
world with varying objectives and scope, e.g. vehicle perception in a controlled environment or highway
settings. Autonomous driving in a more complex environment with mixed traffic poses major challenges.
The solutions for such environments is the focus of this paper. We start with a quick overview of
current autonomous driving development activities worldwide. We then discuss the solution concept for
autonomous driving in urban environments and its enabling components, e.g. road digitization and flexible
communication infrastructure, to realize an urban autonomous driving testbed. We highlight the major
challenges hindering the realization use-cases of Level 5 autonomous driving. Solution sketches to address
these or similar changes are briefly discussed. We also implement some elements of the solution approaches
on the real test-road. We demonstrate an artificial intelligence based approach for the analysis of real traffic
data measured on the testbed. We implement approaches for predicting the network resource demands and
allocation, which are crucial for realizing the use-cases of autonomous driving in complex environments. For
the experiments, real data from the test-road is used. Results show that traffic patterns and resource demands
are predicted accurately. These experiments are expected to instrumental for realizing other use-cases of
autonomous driving.

INDEX TERMS Autonomous systems, intelligent vehicles, network function virtualization.

I. INTRODUCTION
The advancement of sensor and communication technologies
has accelerated the pace of realizing autonomous driving
(AD). Although autonomous driving has gained more atten-
tion in the recent past, the concept was implemented decades
back and the farther past has witnessed a number of activities
in this regard. Autonomous Vehicles (AV) date back to 70s,
when the first autonomous car was presented by Tsugawa
at Japan’s Tsukuba mechanical engineering laboratory [1],
which was then followed by various other activities around
the world. Ernst Dickmann’s vision guided Mercedes Benz
in 1980 could reach 39mph in a controlled environment [2].
The two Daimler-Benz vehicles VaMP and Vita-2 drove for
over 620 miles in Paris in 1994. The DARPA urban challenge
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in 2007 focused on a 60 mile urban environment [3]. High-
Tech companies like Google have also become active in the
domain by initiating their autonomous driving activities. The
journey of building AVs has made its way through the initial
levels of automation and we will soon be witnessing Level 4
autonomous vehicles on public roads. Automobile makers
have already produced vehicles with features of level 3
automation, though some of the automobile makers have
recently withdrawn from the race e.g. Audi’s A8 Sedan [4].

The Society of Automotive Engineers (SAE [5]) provides a
clear understanding of the SAE international J3016 standard
describing the role of driver, system, and level of vehicle
automation. For each level, the Dynamic Driving Task (DDT)
procedure and fallback policy are defined. DDT is described:
as the real-time loopback procedure required to maintain
the operational and tactical functions intact while driving a
vehicle. DDT fallback defines the course of action taken to
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FIGURE 1. Figure capturing the complex environmental dynamics for autonomous driving.

achieve required DDT performance or achieve minimal risk
condition (MRC), in case of any vehicle failure, or Automated
Driving System (ADS) failure or approaching exit from
Operational Design Domain (ODD). ODD is the operat-
ing condition in which the system is intended; to perform
the automation. At levels 1, 2, and 3 the DDT fallback
is performed by the driver, and at Level 4 and Level 5,
the procedure is performed by the system, conditions applied.
In Level 4 automation, the automated driving system is
responsible for any lateral or longitudinal vehicle motion, the
ADS is responsible for sensing, monitoring, and responding
to events. ADS is responsible for achieving the MRC in the
response of any vehicle failure, ADS failure, or approaching
an ODD exit. However, ADS may request the passengers to
intervene and perform the DDT but would not reply if the
passenger does not reply. In the case of Level 5 automation,
the scope of ODD is unlimited. Meaning thereby, in any
condition, the ADS is responsible for DDT performance and
undertakes the DDT fallout procedure if required.

The race towards achieving the goals of fully autonomous
vehicles (i.e., Level 5) is continuing and the stakeholders,
including car makers and technology leaders, are consis-
tently evolving their solutions to achieve the required level
of automation for their vehicles. A further step towards the
autonomous driving reality was achieved with the establish-
ment of testing facilities and demonstrators around the world.
These testing environments are of vital importance for eval-
uating the capabilities of the autonomous vehicles under dif-
ferent environmental dynamics. One of the major objectives
of testing facilities is to create a realistic environment that
best represents the real environment autonomous vehicles are
going to operate in.

Dynamic traffic situations on public roads require coor-
dination between the AV, conventional vehicles and road

infrastructure. This is still a great challenge for autonomous
driving as evident from recent incidents involving AVs on
public roads. Cooperative driving relying purely on sensors
is prone to sensor errors, processing delays, and line-of-sight
restrictions [6].

The idea of autonomous driving rests on the capabilities
of vehicles to understand their environment and to react to
the dynamic events of the environment, which we term as the
vehicle’s perception or situational awareness. With the infor-
mation and sensory data from on-vehicle sensors, the vehicles
are able to create a perception of their environment. Vehicles’
perception together with the capability of interacting with
other vehicles does allow some level of automation but relies
on the vehicle’s visibility. It is unclear as to how capable
the AV can cope with different situations and environments.
Autonomous driving does pledge an increase in road safety.
The fact that a vehicle’s sensors are a limiting factor on
the quality and extent of the vehicles perception is however
detrimental to that pledge of increased safety.

The challenging question is: Will autonomous vehicles be
able to cope with unprecedented and complex situations?
Roads with unregulated traffic, temporary or dynamic obsta-
cles, vulnerable road users, sharp turns, etc., Figure 1 capture
these dynamics, by defining different road segments e.g., seg-
ment 1 is with simplified setting i.e., a straight road with clear
road marking. Autonomous vehicles operate on knowledge
from past experiences, either built-in by engineers or trained
using machine learning. However, not all variables and situa-
tions for decision-making are known in advance. Relying on
the information from on-vehicle sensors alone or implement-
ing pre-trained reactions to events may not suffice to achieve
the goals of level 5 autonomous driving [5].

To improve the situational awareness and environment
understanding of vehicles in complex urban environments,
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an improved version of Cooperative, Connected and Auto-
mated Mobility (CCAM) is provisioned, which is expected
to push the automated driving to the next level of vehicle
automation (i.e., SAE Level 4 and Level 5). This asks for
the upgrade of existing street furniture and key assets e.g.,
network infrastructure, roadside and cloud infrastructure and
vehicles to realise improved performance of autonomous
driving in complex urban environment.

These requirements drive a project of Germany (author
was the technical lead of the project) [7] to follow the
philosophy of ‘‘Intelligent vehicle is good but intelligent
environment is better’’. The project focused on providing
an end-to-end solution with a distributed and autonomous
decision-making framework that is envisioned as a promis-
ing step towards achieving human-like perception within
the vehicle and ensures road safety with fully autonomous
vehicles.

In this work, we discuss the necessary ingredients and
solutions that help achieve the objectives of higher automa-
tion levels. We provide details of road infrastructure and
communication infrastructure for cooperative, connected and
automated mobility (CCAM) use cases and demonstrate
their implementations. The paper is structured as follows:
In Section II, we present efforts around the world to create
testing facilities for autonomous driving. Section III details
how a testing facility for autonomous driving in an urban
environment is realized. Sections IV andV present this testing
facility’s distributed architecture of the compute and storage
infrastructure and the communication infrastructure respec-
tively. Section VI highlights major challenges hindering the
realization of fully autonomous driving. Some examples of
implemented use cases are presented in Section VII. Poten-
tial solution sketches are discussed in Section VIII. This
article also focuses on realizing the flexible communication
infrastructure employing 5G enabling technologies and end-
to-end autonomous management enabled by artificial intel-
ligence (AI) i.e., demand attentive infrastructure adaptation
based on learned traffic patterns. We demonstrate the fun-
damental step, which is the analysis of real traffic data col-
lected by various traffic sensors in the urban autonomous
driving testbed. Knowing future traffic demands provides
valuable inputs for efficient, low delay management of var-
ious autonomous driving infrastructure operations, e.g. com-
munication, MEC, or vertical services, this is discussed in
section IX-A. Section X concludes the paper.

II. RELATED PROJECTS AND ENABLING TECHNOLOGIES
Realistic testing tracks are crucial to probing the capabil-
ities of autonomous vehicles. Various autonomous driving
labs aim at providing realistic traffic situations for train-
ing intelligent vehicles, e.g. obstacles detection, self-braking
and steering, and collision avoidance. Mcity [8] is a testing
facility at the North Campus of Michigan University in Ann
Arbor, which aims at evaluating the potential of automated
and connected vehicles by simulating the urban environment.
The simulation includes urban roads, roundabouts, crossings,

buildings, sidewalks, obstacles, and footpaths. AV function-
alities for different use cases are evaluated by simulating
scenario specific environments. Similarly, there are initiatives
with closed and controlled testing facilities to evaluate the
performance of AV solutions. Shanghai International Auto-
mobile City in China, K-City autonomous driving facility
in Korea [9], or Gunma University’s Aramaki campus in
Japan [10] are some of the examples for controlled test facil-
ities that are developed through public private partnerships.
Automobile makers have also been involved in creating such
testing facilities, e.g. Toyota Research Institute’s oval track
in the USA. Readers are also encouraged to refer to the
following list of autonomous driving testing facilities around
the world: e.g., C-ITS test corridor [11], [12], Colorado
testroad [13], Columbus connected corridor [14], Forth Road
Bridge Corridor in Edinburgh [15], [16] featuring full sized
autonomous buses operating at AV Level 4 autonomy, DTU
Lyngby Campus corridor [17], On-demand self-driving car
service to Frisco, Texas [18], and iMove, Autonomous park-
ing service for VW, Audi, and Porsche vehicles at Hamburg
Airport [19]. There are large number of test-roads focusing
on investigating different aspects of autonomous driving.
Readers are encouraged to refer to [20] for an updated list
of the test-roads around the globe and their scope.

Most of the facilities are in controlled or closed envi-
ronment, which do provide more realistic environmental
dynamics but pose the challenge to properly replicate the
dynamics of public roads in the controlled testing facility.
It goes without saying that no matter how detailed the envi-
ronmental dynamics are modeled for validating AV solutions
in simulation or controlled environments, the real environ-
ment (urban/rural) presents with unprecedented dynamics
that cannot easily be captured. This strengthens the need for
open and urban test facilities.

Consequently, recent clarifications of legal frameworks for
autonomous vehicles testing and operation have paved the
way for testing facilities to be extended or built on public
highways and even in urban areas, especially in the US,
Sweden, Germany, and China. These real environments allow
probing AVs in a wider breadth of autonomous opera-
tions, for example cooperative driving and mixed traffic.
End-to-end intelligent transport services, e.g. parking man-
agement, route planning, traffic control, infotainment can
also be developed and tested there. For this purpose, public
roads are upgraded with sensor and communication infras-
tructures supporting AVs. Germany’s ‘‘Digital Motorway
Testbed’’ on A9 autobahn [21] is the first public road that
allows testing AVs, which recognizes the importance of the
environment perception. The digitization of the A9 segments
includes, among others, communication infrastructure allow-
ing V2X communication and the use of 700 Mhz bands for
V2V communication. Additional public testbeds are being
deployed in several German cities, e.g. Karlsruhe, Düssel-
dorf, Berlin. In the city of Karlsruhe, the test site include
different road types, from reduced-speed areas and parking
lots up to interstate and highway roads. Urban test beds
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worldwide also aim at providing complex public environ-
ments for testing innovations of autonomous driving, e.g.
London (UK), Brainport (NL), Tampere (FI), Vigo (SP), or
Daejeon (KR). In the mentioned public test beds, commu-
nication infrastructure is identified as an important enabler
for autonomous driving, which explains the participation of
network operators and providers of vertical services in corri-
dor use-cases i.e., A2-M2 corridor [22] in the UK connecting
London urban and link roads in Kent or 5G network cover-
age for the Thessaloniki - Sofia - Belgrade corridor, which
will allow tests to be conducted with AVs over hundreds of
kilometers of motorways.

Achieving the evolved CCAM for higher levels of
autonomous driving is expected to be heavily comple-
mented by the communication infrastructure that meets
the service requirements (e.g., bandwidth, delay, sup-
ported speed for handover management, connection den-
sity, etc.) of communication amongst CCAM infrastructure,
autonomous vehicles, and backends of the automobile
makers. Recognizing the importance of communication
infrastructure for cooperative driving, recent development of
future communication network technologies aims at identi-
fying the requirements, the architecture and the approaches
with focus on autonomous driving applications. Standard-
ization groups like the Next Generation Mobile Networks
Alliance (NGMN) V2X task force, 5G Automotive Associ-
ation (5GAA), and TD-LTE, are cooperating with the auto-
motive industry to promote LTE and New Radio (NR) based
V2X solutions known as cellular V2X (C-V2X) technology.
Multi-Access edge computing (MEC) extends cloud comput-
ing capabilities closer to devices and services to the network
edge and is standardized by ETSI MEC group [23]. It is
increasingly recognized as an important enabler for future
mobile networks to support autonomous driving.MEC infras-
tructure has been designed to realize vehicle to everything
(V2X) communication in various autonomous driving test
beds, forexample in C-V2X (China), CAV (UK), or Concorda
(NL). An extensive review of MEC architectures is provided
in [24].

Beside the various digitization and communication tech-
nologies for enabling constant data flows, a cooperative
and distributed decision making framework also plays a
crucial role in enabling a stable autonomous driving sys-
tem. In [25], the benefit of cloud-based, central vehicles
control making use of collective sensing data from multi-
ple vehicles is realized. The authors demonstrate flexible
coordination of data processing between data center and
MEC infrastructure to eliminate the former’s delay con-
straint and the latter’s resource constraint in order to real-
ize stability of AV fleets. The authors of [26] propose an
integrated urban traffic management architecture with 5G
and MEC. The work demonstrates the benefit of an effi-
cient communication system in supporting vehicle local-
ization, data pre-fetching, traffic light control, and traffic
prediction during an accident rescue operation in urban
settings.

III. THE INGREDIENTS FOR AUTONOMOUS DRIVING
IN URBAN AND OPEN ENVIRONMENT
The challenges of urban and open environments are a lot
different than those of controlled, rural, and highway envi-
ronments. This work is in parts inspired by the Diginetps
and Smart City Berlin projects, an autonomous driving test-
road and digitized roundabout in Berlin. To understand the
challenges, let us have a brief overview of the ground truths of
urban test-road for autonomous driving at the center of Berlin,
Germany. There are two roundabouts with 5 ins and 5 outs,
the road itself has three lanes in each direction. Co-existence
of an autonomous vehicle with conventional vehicles in these
complex roundabouts require efficient control and extensive
knowledge of the roundabouts and their vicinity. We believe
that relying on vehicle research alone will not suffice to reach
the goals of Level 5 autonomous driving, which is why we
suggest a three-level solution architecture i.e., vehicle level,
roadside level, and central data-center level. The proposed
big picture is depicted in Figure 3. At each level, the sensory
data is collected by the IoTmiddleware that further makes the
data available to a smart decision engine that encamps vari-
ous AI mechanisms for different decision making instances.
The middleware APIs are exposed for developer of different
applications including traffic, parking, impact of traffic inten-
sity on environment, traffic data flow management, security,
filtering, and others. Let us now discuss the three levels and
their operations, which we depict in Figure 3.

A. INTELLIGENCE AT THE VEHICLE LEVEL
The Level 5 autonomous vehicles are required to have the
competencies of a human driver, specifically the ability to
make safe and rule-conforming decisions based on their
environment perception. An autonomous vehicle builds its
perception of the environment based on the sensory data
it captures through on-board sensors. It corresponds to the
capability of the vehicle to know its environment including
obstacles, road markings, traffic lights, other vehicles, pedes-
trians, cyclists, or objects. The autonomous vehicle is a com-
bination of sensors, actuators, sophisticated algorithms, and
powerful processors to execute software. There are hundreds
of such sensors and actuators in an AV, which are situated
in various parts of the vehicle. All these sensors feed into
what we know as Local Dynamic Map (LDM), which holds
all the vehicles knowledge. The LDM plays a key role when it
comes to the decision making at the vehicle level. In Figure 4,
we depict the well known four hierarchical layer structure
of the LDM [27], ranging from very static environmental
information to transient static to transient dynamic to very
dynamic information.

The standardized four layered architecture of LDM may
not cope with the requirements of Level 5 autonomous
driving i.e., capturing the real-time and external informa-
tion (e.g., perception created through on-road deployed sen-
sors, information from backends of automobile makers, city
authorities, prediction of environmental variables from edge,
etc.). Hence, evolution of the classical LDM is imperative.
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FIGURE 2. Different options/views of the developed AV GUI.

FIGURE 3. 3-layer architecture of perception creation and decision
making.

FIGURE 4. The traditional LDM layers of information.

We propose the extension of the LDM by introducing addi-
tional information layers that are fed with information from
external sources and other stakeholders. A version of the
evoled LDM is developed by the author and his research
group. The evolved LDM is capable of capturing and trans-
lating the external information. We have also designed and
developed coalitional learning approaches for improving the
perception and by training the machine learning models with
the local data of on-vehicles and on-road deployed sensors
(Similar to federated learning approaches). We were able

create a predicted environment layer in the evolved LDM
that assists in decision instances like trajectory planning, lane
change, or speed adaption. We skip the details of imple-
mented algorithms, as they are out of the scope of this
paper and will be published in a separate article. However,
readers are encouraged to refer to our earlier publications
using similar approaches [28], [29]. In Figure 2, we show the
screenshots of the GUI while carrying out some experiments
to study the performance of extended perception i.e., through
fusing the data from external sources (e.g., from the on-road
deployed sensors).

B. INTELLIGENCE AT THE ROADSIDE LEVEL
With the view to extending the vision of autonomous vehicles,
the environment is digitized and the distant information is
made available to the vehicles. The purpose of digitizing the
environment is to enable the environment to communicate
with the autonomous vehicles and other relevant stakeholders
(e.g., city authorities, communication service providers, etc.).
Digitization helps to describe the dynamic features of roads,
e.g. i) road condition sensors notify the vehicles if the road
segment is icy or muddy, ii) car parking sensors update the
autonomous vehicles of available parking spaces in the vicin-
ity, iii) traffic analysis sensors keep updating the autonomous
vehicles on the traffic situation in different road segments
that are even miles away, iv) environment sensors assist the
autonomous vehicles to reduce their impact on emissions and
other environmental variables. In Table 1, we provide the
high level technical description and the technologies of the
required sensors. The last column of table lists the parameters
measured by sensors.

Roadside level is the intermediate level in the architec-
ture. It corresponds to an enhanced roadside unit (eRSU),
which hosts computer hardware and communication inter-
faces. It does not only allow Vehicle to Infrastructure/Vehicle
(V2X) communication but also provides a platform to host
local services. It allows the connectivity to the near edge
of the mobile operator. This level creates upstream link to
connect with central data centre and creates downstream
link to connect with on-road deployed sensors and vehicles.
The eRSU on the downstream connects with various on-road
deployed sensors over Wi-Fi and to vehicles over DSRC
(802.11p) links. Being capable of collecting the data from
environment (via on-road deployed sensors) and from vehi-
cles, we implement approaches for sensory data fusion and
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TABLE 1. Types and description of sensors.

filtering to create patterns for different use cases. For this
purpose, we deploy an IoT middleware, an optimization and
machine learning toolbox, and a decision toolbox in the eRSU
(cf. Figure 3). The eRSU creates a map based on the infor-
mation collected from connected road sensors and vehicles.
We term the knowledge gained based on external environ-
ment information Perception at Edge (PAE). It is shared with
the vehicles for more informed decision making. For ready
reference the components of the proposed architecture at this
layer is pictorially shown in Figure 5.

C. INTELLIGENCE AT THE DATA-CENTER LEVEL
This level has the global view, as it communicates with all
the eRSUs and the vehicles. It hosts the backend of all the
on-road deployed sensors, the communication network core,
the network operation controllers, the service orchestrator,
computation infrastructure and the optimization and machine
learning toolboxes. The real-time and delay sensitive deci-
sions taken by the vehicle and edge levels. However, at the
central data-center level, the patterns are created based on the
sensory data collected from vehicles and all on-road sensors.
This global knowledge is contained in the Global Information
Module (GIM), which is shared with the lower level decision
making entities for a coordinated and consistent operation
of the overall infrastructure. In section IX-A, we demon-
strate the extraction of traffic demand patterns from sensor
data and prediction of future demand with machine learn-
ing approach. The predicted results allow different network
and service orchestrators to make informed decisions for the
managed infrastructures. For example, a proactive mobility
management approach based on user’s mobility patterns was
proposed in our previous work [30]. We rely on our previous

FIGURE 5. An overview of the edge architecture.

(e.g., [28], [31]) for modeling the decision mechanisms in
different scenarios.

In the next sections, we further provide the detailed spec-
ifications of the infrastructure that support the operation and
shared perception among the three intelligent layers dis-
cussed in this section.

IV. MULTI-ACCESS EDGE AND CLOUD INFRASTRUCTURE
The autonomous driving infrastructure plays an important
role in enablingCCAMoperations, e.g., by enabling extended
perception. A detailed architecture of the system components
and connectivity of such infrastructure is depicted in Figure 6.
In this section, we provide a detailed specification of the
road infrastructure including the application protocols and
message, and essential software and hardware components.

A. V2X INTERFACES SPECIFICATION
For different use case scenarios, the AVs rely on V2I and
V2V communication to exchange perception and
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FIGURE 6. End-to-end infrastructure components and interfaces for CCAM application.

control information. The LDM component in the AV
constantly updates its environment perception and shares
this information with the PAE instances hosted on the
eRSUs using available Wi-Fi, C-V2X (PC5 sidelink) inter-
faces. This allows additional information for the PAE and
GIM to construct a virtual map of a broader area. The
global map is also shared with all vehicles in the area
through PAE applications. Based on the environment per-
ceptions, the AVs coordinate their driving decision through
V2V interfaces. The vehicle interfaces are specified as
follows:
• V2V: Interfaces include both short-range low delay
communication for autonomous driving operations and
high bandwidth communication for CCAM applica-
tion and vehicle perception. The short-range interface
is based on DSRC (802.11p) wireless technology.
On DSRC interface, cooperative driving and traffic

control application protocols and messages are
implemented, e.g. Decentralised Environmental Noti-
fication Messages (DENM), Cooperative Awareness
Messages (CAM) or Basic Safety Message (BSM).
Other roadside infrastructure related messages are
also transmitted over the DSRC interface: Sig-
nal Phase and Timing Message (SPAT), In Vehi-
cle Information Message (IVI), and Service Request
Message (SRM).

• V2I: Communication for CCAM applications relies on
high bandwidth technologies with less stringent delay
requirements in contrast to the short-range communica-
tion technology. These interfaces are based on C-V2X
(LTE-V2X, 5G-V2X) and Wi-Fi technologies for the
transfer of media data, messages of the ITS V2X ref-
erence architecture protocols [32], or other IP-based
protocols.
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B. E-RSU INTERFACES SPECIFICATION
CCAM infrastructure operations involve the real-time update
of the GIM and PAE maps, their interactions with other ITS
and road management applications, and the management of
network and edge computing resources for those applications.
CCAM applications have a global instance deployed in data
center while location specific instances deployed on-demand
on eRSUs. PAE instances on eRSUs are constantly fed with
data from nearby road sensors through Wi-Fi and wired
interfaces. They synchronize the analyzed sensor information
with the global instance using application specific protocols
through cellular and wired interfaces. The RSU interfaces are
specified as follows:

• eRSU-2-eRSU: communication is based on high band-
width and low latency direct Wi-Fi connection. These
links serve as reliable transport and back-haul network
for road side infrastructure. The interfaces between
eRSUs is used by the Software Defined Network (SDN)
data and control plane, which provides a virtualized
network for the distributed MEC platform hosted on
the eRSUs.

• eRSU-2-MEC/Cloud: communication is provided by
4G/5G. The use of Mobile Network Operator’s MEC
infrastructure in the core network (CN) for CCAMappli-
cations enables their low delay communication from
eRSU. Autonomous vehicles with broadband access can
make use of this interface to access services hosted in the
road infrastructure.

C. E-RSU AND MEC SPECIFICATION
Based on the eRSU interface specification above, the eRSUs
include network interfaces and computing capability. For
the access network, the roadside unit provides DSRC and
Wi-Fi interfaces. The transport network has two inter-
faces: Cellular network and a redundant P2P wireless link.
In some cases, neighbouring eRSUs are connected through
another P2P wireless link. To provide edge computing
resources, a machine may be connected to the router in the
roadside unit. Depending on the deployment, roadside sen-
sors are connected through either wired or wireless con-
nections. Given that the transport network is created by
wireless links, only a 230V power supply is required to
provide power to the devices (230V, Power-over-Ethernet
(PoE), PoE+).

Given the high mobility nature of autonomous vehicle
applications, the mobile broadband network has been the
baseline infrastructure for the design of their MEC enabled
architecture. The ETSIMEC reference architecture [23] com-
ponents are required to be flexibly placed in cellular infras-
tructure. eRSUs coverage extend the mobile network with
small cell (SC) segments, which plays a significant role in
future autonomous driving scenarios. The Mobile Edge Host
(MEH) in the MEC architecture corresponds to the eRSU
component that provides computing, storage, and network
capacity for edge applications. Depending on how close the

applications are required to be placed towards UEs and AVs,
they must be dynamically deployed on MEH available in
different mobile network segments.

Intuitively, SC segment will produce and consume most
application data. It goes without saying that applications for
autonomous driving are mainly data sensitive e.g., appli-
cations for generating collision warnings, applications for
identifying the vulnerable road users, etc. The data locally
generated by AV sensors and roadside components are com-
bined with downstream data from cloud services to provide
AV agents context for autonomous decision-making. With
their inherent computing capacity, AVs can be seen asmoving
MEHs. This raises the challenges for the management of
mobile edge platforms (MEP) and the orchestration of edge
applications. Due to the wider coverage of Radio Access Net-
work (RAN) components (eNB/gNB), mobile edge applica-
tions (MEA) are expected to aggregate situational data from
AVs and road sensors and provide AVs with a broader con-
text for more strategical decision-making. Samples of such
applications are traffic information and route planning ser-
vices. Where eNBs provide wireless backhaul to the eRSUs,
additional network management functions, e.g. mobility
management or resource management, could employ the
associated MEHs to increase network control efficiency by
timely reconfiguration of network components. Towards CN
and service segment, critical MEAs are increasingly con-
cerned with the management and orchestration of mobile net-
work provisioning, and MEC infrastructure in lower network
segment. Disappearing network and computing constraints of
centralized computing infrastructures allows CN and service
applications to be deployed in in data center or on a dedicated
server. Nevertheless, they may take advantage of manage-
ment and orchestration functions for MEP i.e., sharing of
user context, dynamic migration, load balancing, or high
availability. The application services must be designed and
implemented with the support for cloud-based provisioning
paradigms, e.g. XaaS, container, and micro-service-based
architectures.

In proportion with the high degree of distribution ofMEHs,
management and orchestration (MANO) of both MEPs and
application services has to deal with increasingly com-
plex network operations, service provisioning and compo-
sitions. While distributed MANO functions themselves can
be deployed on MEHs closer to the network segments to be
managed, centralized MANO in system layer is an inevitable
part of the architecture. With the global view and aggregated
intelligence, it deals with the business objectives of multi-
ple stakeholders i.e., service providers, operators, and users.
These objectives are translated to lower level operational
objectives and configurations to be carried out by the respec-
tive network, VIM and MEP control elements. As a result,
the control interfaces (reference points) between MANO ele-
ments constitutes a MEC control plane, which utilizes non-
negligible mobile network data plane resources. The delay
and reserved bandwidth for the MEC control plane must be
guaranteed to provide consistence and stable operation of
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the MEC platform depending on the selected application and
virtualization technologies.

D. DATA-CENTER INFRASTRUCTURE INTERFACES
SPECIFICATION
Beside the centralized CCAM service instances, the cloud
infrastructure also hosts network management and orchestra-
tion (MANO) applications. The network slice management
and orchestration service deployed in the central cloud plat-
form may coordinate difference network functions deployed
on eRSUs and AVs. Mobility and application aware net-
work management protocols are developed to meet e2e QoS
requirements of CCAMapplications. The cloud interfaces are
specified as follows:

• eRSU (MEC)-2-Cloud: Tomeet the high availability and
QoS requirements of CCAM scenarios, MEC infrastruc-
ture with central and distributed mobile edge hosts is
the main platform for microservice based CCAM appli-
cations. Mobile edge CCAM services are developed as
web services and composed by REST based protocols.

• Multi-Cloud: Platforms with large computing and net-
work capacities host various backend components of
CCAM services, e.g. data analytics, data fusion pro-
cesses, data bases, or service implementations. Depend-
ing on application scenario and service providers,
CCAM services can be deployed on cloud, near edge,
and far edge platforms. This raises the challenges for
service composition and interactions. The solutions for
such a highly flexible deployment is based on network
virtualization technologies, e.g. SD-WAN, tunnelling,
and hybrid cloud management and orchestration.

E. CLOUD INFRASTRUCTURE SPECIFICATION
The cloud infrastructure consists of a data center and a far
edge. The cloud infrastructure provides different QoS for
CCAM services allowing them to be flexibly deployed to
meet the use cases’ requirements. It is connected to the
Internet and external network through the data center net-
work. Additionally, a SDN based transport network allows a
direct high bandwidth and low latency connectivity between
the data centre and other (eRSU) infrastructure in the test-
road. The far edge infrastructure provides universal access
to deployed CCAM services through mobile broad band net-
work. In contrast to the access to public cloud infrastructure
through the Internet, the direct connection between the far
edge infrastructure and cellular CN allows very low delay
connectivity to the deployed services.

Depending on the QoS requirements, autonomous driv-
ing and network infrastructure management services may be
deployed on far edge or data centre. These services provide
the solution approaches at the data-centre level to support
autonomous driving use cases:

• Autonomous Driving Services at the Global Level:
Coordinate the distributed CCAM service instances
and provide global context for autonomous driving

application (i.e., GIM). Examples for such services are
the control center, data collection and storage, data ana-
lytics, machine learning components, etc.

• IoT middleware, data fusion, analytics, etc.
• Autonomous Network and Service Management Frame-
work: it is based on a meta-machine learning approach
that enables the autonomicmanagement of network enti-
ties and dynamically orchestrates the services in differ-
ent segments of the network.

• Software Defined Network (SDN) enabled core and
transport network: is designed and developed as cus-
tomized virtualized lite-core network (L-EPC) that
implements specialized network functions.

V. FLEXIBLE COMMUNICATION INFRASTRUCTURE
The communication infrastructure enables vehicle to vehicle
(V2V), vehicle to sensors, vehicle to data-center, and sensors
to data-center communication. Figure 7 presents an overview
of the communication infrastructure of the testbed. In this
section, the two constituting parts of the communication net-
work are described: roadside access and transport network,
and mobile broadband network.

FIGURE 7. An overview of communication infrastructure architecture.

A. SOFTWARE DEFINED ACCESS AND TRANSPORT
NETWORK
Figure 8 depicts the solution approaches at the roadside
level, which includes the software defined eRSU access and
transport network connecting them. Each eRSU has an SDN
switch with multiple radio interfaces, e.g., Wi-Fi, DSRC, etc.
A logically centralized controller is able to control the data
flows in the access network. The centralized control plane
is implemented as multiple controllers, which coordinate the
control of multiple access network segments.

To enable SDN control of wireless interfaces, multiple
extensions and customization are made to the OpenFlow
protocol implementation and wireless network stack. A vir-
tual interface managed by Open vSwitch is created for each
wireless interface. The wireless stack converts wireless net-
work events and measurements to Open vSwitch data and
update the flow tables for the managed interfaces, as shown
in the left of Figure 8. To overcome the lack of features
and restrictions current OpenFlow version (v1.5), various
extension are proposed and implemented as customized SDN
switch for the eRSU. This includes new OpenFlow header,
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FIGURE 8. SDNized wireless network.

instructions, and actions. Further extensions are made to
Open vSwitch data path (kernel forwarding path) by apply-
ing protocol oblivious forwarding (POF [33]) paradigm.
Packet processing rules are implemented as eBPF programs
and installed to the SDN switches using OpenFlow proto-
col by the central controller. The controller implements an
autonomous network and service management framework.
It incorporates meta-machine learning approaches on global
network information that enables the autonomic management
network entities and dynamically orchestrates the services
in different segments of the network. As a result, proactive
flow control rules are calculated to dynamically adapt the
network to application requirements and network states. The
proactive rules allows the low delay processing of packet
in data plane, increase control plane efficiency, and support
novel delegated mobility management. More details of the
mentioned techniques are provided in [30], [34]–[36].

B. BEYOND 5G NETWORK TECHNOLOGIES FOR CCAM
While the SDNized eRSU network can efficiently manage
the flows of large amount of data generated by the road-
side sensor and processed by roadside MEC infrastructure,
the mobile broadband access provides a reliable coverage
for the communication with the global CCAM services in
central data-center platform. The lite-EPC core is an in-
house developed LTE core with focus on mobility manage-
ment, session continuity to support high mobility operation
of AVs. The testbed may also provide emulate the multi-
operator and mobility management scenarios, which allow
the investigation of handover delays and service switchover
delayswhen the communication bit-pipes are provided by dif-
ferent providers. Additional interfaces may be implemented
to allow the interactions with other LTE/5G CN and the
end-to-end services and network orchestration platforms as
shown in Figure 9. The two core networks may implement
all the autonomous networkmanagement services, for this we
rely on author’s earlier publications. We next provide details
of the core network features specific to the AD operations of
connected infrastructure and vehicles.

FIGURE 9. Flexible communication infrastructure for CCAM application.

1) AD SERVICE HANDOVER
To ensure the seamless mobility of the vehicles and avail-
ability of the AD services throughout the road segments,
mechanisms should be in place not only on the intra-operator
(i.e., support for both horizontal and vertical handovers) but
also at the inter-operator levels. This asks for agreement on
the inter-core interactions and accordingly the development
of fitting interfaces/protocols. The situation gets more com-
plex when the AD services are provided by the third parties
and where the authorities are actively involved. One potential
direction to address this or similar issues is dynamic network
slicing. This is to say that an operator may compose a service
specific network slice, which the technologies of the target
operator may replicate by implementing proactive mobility
management and dynamic Service Level Agreement (SLAs)
approaches. In this connection, core network’s APIs may
be exposed to the other operator and stakeholders. Amongst
others, this will also allow flexible routing of user data plane
and accessing user context for 3rd party MEC infrastructure.
We implement an architecture for the interconnection of the
virtualized lite-EPC and 5G core network, inspired by the
architecture depicted in Figure 10, which is based on the local
breakout architecture specified by 3GPP [37].

In a typical scenario, CCAM services hosted on the MEC
are accessible to AVs and users through 5G core network
(i.e., P-GW). The functionalities of the 5G network are stored
in the Network Resource Function (NRF), whereas the ser-
vices produced by the MEC are registered in the service
registry of the MEC platform. Hence, to use the 5G ser-
vices, MEC communicates with the Network Expose Func-
tion (NEF), which allows 3rd party application to access the
APIs of 5G CN functions. NEF will act as a centralized point
to expose the services, and it will also check if all the requests
coming from outside the system are authorized to access the
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FIGURE 10. Multi-core-network functions chaining for network services
and common network functions for roaming support.

services. Far edge MEC may directly be connected with the
5G core. From the MEC perspective the User-Plane UPF is a
configurable distributed data plane. The control of that data
plane, i.e. the traffic rules configuration, now follows the
NEF-PCF-SMF route.

2) NETWORK SLICING
A 5G network slice instance is defined by 3GPP in [37],
which includes the CN Control Plane, User Plane Network
Functions and the next-generation Radio Access Network
described in [38].

To achieve the network slices for autonomous driving use-
cases, the core network is virtualized and multiple instances
are created. The virtualized platform are capable of com-
puting and network hardware virtualization technologies and
managed by a cloud management components. This allows
the flexible deployment of network slices, which consist
of various virtual network functions and services for the
infrastructure components’ communication demands. The
deployed system only supports a subset of autonomous driv-
ing use case related procedures, information and configura-
tions specified for network slice instance selection support
and network slicing for roaming support, which are described
in [37].

Multiple network slices may be deployed, which deliver
exactly the same features but for different groups of CCAM
infrastructure components. The slicing of 5G CN supports
all standard slicing and service types defined in [37]: eMBB,
URLLC,MIoT. The networkmay serve a single UE (e.g., AV)
with one or more network slice instances simultaneously
via a 5G-AN. The AMF instance serving the UE logically
belongs to each of the network slice instances serving the
UE i.e., this AMF instance is common to the network slice
instances serving a single UE. The selection of the set of
network slice instances for a UE is triggered by the first
contacted AMF in a registration procedure normally by inter-
acting with the NSSF, and can lead to a change of AMF.
A PDU session belongs to one and only one specific Network
Slice instance per PLMN. Different Network Slice instances

do not share a PDU Session; though different Network Slice
instances may have slice-specific PDU sessions using the
same data network name. During the Handover procedure
the source AMF selects a target AMF by interacting with the
NRF. Further description of the related procedures is provided
in [37], [38].

One important component of the network slicing infras-
tructure deployed in the testbed is the management and
orchestration (MANO) platform with slice management
functions as part of the service chain as shown in Figure 11.
These functions are managed by the global MANO plat-
form and expose a subset of management functions to slice
consumers. The MANO platform realizes a service delivery
paradigm with highly integrated networks, computing infras-
tructures, and application services. The boundary between
software applications and physical infrastructure has been
removed by the advancements of virtualization technologies.
The virtual 5G CN and application services are implemented
as dynamic compositions of micro services realizing applica-
tion and network functions. However, the complexity brought
about by the resulting increased interactions between the
application services and network functions, new business
models, new stakeholders, and their relationships requires
more efficient and intelligent management and orchestration
framework. The application of AI in MEC platforms makes
traffic optimization and network resource management more
efficient. Dynamic network slicing, for instance, includes
real-time selection of optimal data rate or choosing the best
5G slice configuration for CCAM services. Using AI in
dynamic network slicing enables differentiated qualities of
service (QoSs) for autonomous driving infrastructure compo-
nents. More details of the end-to-end virtual network function
MANO framework and implementation is provided in [39].

FIGURE 11. Network slice management and orchestration architecture
with slice management function as a service.

VI. MAJOR CHALLENGES
Availability of information from different stakeholders
(e.g, street furniture, city authorities, service providers,
neighbouring vehicles, etc.) to the autonomous vehicle in any
scenario plays very crucial role. This positions the commu-
nication bit-pipes as a major solution component to achieve
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the objectives of Level 5 autonomous driving. Hence, in this
section, we list major communication related challenges.
• Ch 1: Delay in Switching between 5G Standalone
Networks - Vehicles relying on external information
and C-V2X communication for creation of their environ-
ment understanding will need near real-time availability
of information. However, a vehicle moving with the
speed of 50kmph or more will go through coverage of
many small cells and likely to carryout frequent han-
dovers between standalone networks of 5G, which may
incur latency.

• Ch 2: Delay in Switching between 4G eNodeB and 5G
gNodeB - On the similar lines as in Ch2, if the coverage
footprint constitutes of heterogeneous mobile networks.
Handing over the between these mobile network tech-
nologies incur higher handover delays, specifically if
one of the technologies if pre-5G. Reducing the han-
dover delays in such settings is a major challenge.

• Ch 3: Delay in Switching between 5G Standalone
and Non-standalone networks - 5G network capacity
planning is expected to following the deployment of
NSA followed by SA. Hence, the coverage footprint of
the network will be a mix of these network technologies
over the stretch of a trajectory. On the similar lines as
above, in complex scenarios of L-5 autonomous driving,
the handover latency between these technologies should
be as low as possible.

• Ch 4: Under-covered and Low Capacity Coverage
Footprint - It goes without saying that not all the road
segments and city areas have enough network capacity.
Even if the installed capacity is enough for a region,
it may choke during busy hours of the day. To realize
all the use-cases of level 5 autonomous driving, the net-
work resources with required service quality should be
ensured under all circumstances.

• Ch 5: Improper Handover - In a complex urban envi-
ronment, the coverage footprint of mobile network is
usually irregular and creates improper overlapping/ han-
dover regions. Hence, to facilitate the required commu-
nication of autonomously driven vehicles, the execution
of handovers in the irregular coverage regions should be
smooth.

• Ch 6: Impact on Efficiency of Protocol(s) - As we
know that the change of point of attachment results
in: change of IP address, flow tables in the network
devices, and other services over the backhaul, core,
and radio segments of the network. Considering that
a large number of vehicles will frequently change the
point of attachments (switching eNodeBs, gNodeBs,
etc.), it should ensured that the required operations for
the aforementioned switching are executed within the
acceptable time (i.e., seamless handover).

• Ch 7: Unprecedented Network Load - The recent
transit from Internet-of-People (IoP) to Internet-of-
Things (IoT) consequences in dynamically varying
network resource demands. Availability of required

resources (specifically in terms of throughput) should be
ensured.

• Ch 8: Different Network Functions - Device isolation
provisions different network functions so that it can pro-
vide access to external traffice (i.e., from other vendors,
sources, etc.)

• Ch 9: Cloud Imparted Latency - It is expected that
MEC deployment will be a new normal when it comes
to infrastructure deployment of mobile networks. It is
expected to reduced the latency. However, when the
vehicle moves to a different cell the latency will increase
e.g., due to data exchange with neighbouring MECs via
cloud node, etc.

• Ch 10: APIs for 3rd Party Services - Autonomous
driving is looking into adapting the eco-system by
introducing new stakeholders and creating the rela-
tionships amongst them. For instance, the road infras-
tructure provider will be a key player in sharing the
on-road created perceptionwith vehicles, city authorities
will be actively involved in policy implementation, net-
work providers will ensure the exchange of information
amongst the relevant stakeholders, vehicles, and infras-
tructure. Hence, right interfaces, protocols, and APIs
should be developed, which are then exposed to the
stakeholders to implement the defined operations of the
inter-stakeholders relationships.

• Ch 11: Support for Multi-interface Communication
- Owing to the fact that operator has deployment of
heterogeneous technologies covering different areas and
road segments, the need for optimal use of the available
network resources is imperative. Hence, operators may
opt for the simultaneous use of the multiple network
interfaces for enabling communication amongst the enti-
ties of autonomous driving. This however, is challenging
to achieve specially if most of the operations are to be
executed in real-time.

VII. USE-CASE SCENARIOS FOR LEVEL-5 AUTONOMOUS
DRIVING
Having discussed the intelligent environment concepts at the
edge and cloud levels and their realization by different infras-
tructure components to support AD, this section discusses
a few use cases of complex scenarios that are representa-
tive of level 5 autonomous driving. The use-case scenarios
are inspired by the ones detailed in 3GPP TS 22.186 [40]
and the documents mentioned therein. Readers are further
encouraged to refer to communication relevant requirements
for different use-case scenes in this 3GPP document. It should
be noted that use-case scenarios are carefully selected to
highlight the communication relevant challenges owing to
the fact that efficient communication is expected to be the
crucial component for realizing level 5 autonomous driving.
Although a few selected use-case scenarios are detailed in this
paper, we discuss the realization of the crucial scenes of the
scenarios due to limited paper length.
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A. AUTONOMOUS DRIVING IN COMPLEX SETTINGS
The standard document [40] refers to such driving as enabling
the semi-automated or fully automated driving. Consider
Figure 1, where a number of dynamics of the complex urban
environments are visualized. Some of the crucial scenes of
this scenario are: i) Lane merge - analysing the traffic flow of
the target lane e.g., system is capable of detecting existing
vehicles with their lane position, acceleration, speed, size,
etc. Such information should be made available for any road
segment of the urban areas. Having received this information,
the automated vehicle determines the best merge manoeuvre.
ii) Overtaking - analyzing the traffic and intention of vehicles
in front in the same and neighbouring lanes. iii) 360 percep-
tion - detects the events and objects on the road segments
around the autonomous vehicles, which are then used to cre-
ate the 360 degrees understanding of the environment. This
scene covers all the major critical maneuvers of the vehicle
of driving in urban environment.

For lane merging scene, automated vehicle may share their
sensory data directly or over the infrastructure with each other
to determine the best merge manoeuvre. For this the Vehi-
cles will rely on capabilities of C-V2X and other enabling
technologies like: MEC node, roadside infrastructure, road-
side radars and object detection sensors, etc. Presence of
the other vehicle or object (information about its size, exact
position, direction, speed, etc.) in the merging area should
be notified in real-time to the autonomous vehicle intending
to lane merge. Such information is exchanged by exploiting
the communication bit-pipes (either direct, PC-5 or indirect
5G/LTE-V/DSRC). Most of the aforementioned challenges
(i.e., Ch 1 - Ch 10) may be potential challenges for this scene
of the use-case scenario.

In the overtaking scene, there may be complexities as:
hampering of vision because of large trucks, faster moving
vehicle coming out a side street, sharp turn in front of the
preceding vehicle, vulnerable road user/pedestrian passage
in front of preceding vehicle, etc. Furthermore, the overtake
may take place on 2 lanes, 3 lanes, or more, where the situ-
ations of multiple simultaneous overtakes may occur. Hence,
relying on the communication and on-board sensors may
not suffice to meet the above or similar challenges. Relying
on the on-road deployed sensors and sensory information
from other vehicles is the way to go. This obviously requires
reliable connectivity, adequate bandwidth (e.g., for stream-
ing the video sensory data of preceding vehicle temporar-
ily), timely handover (e.g., for ensuring seamless availability
external information and 3rd party perception application,
etc.), extended vision of autonomous vehicles so that vehicles
may create perception of more than a few kilometers rather
than a few hundred meters. Similar to the lane changing
maneuver, this scene also highlights most of the challenges
(i.e., Ch 1 - Ch 10).

The 360 perception scene is an important scene and crucial
in enabling the use-cases of level 5 autonomous driving. The
idea is that autonomous vehicle is provided with information

FIGURE 12. In the smart parking use case, intelligent infrastructure
assists connected vehicles to find free parking spaces and to navigate in
parking maneuvers.

about its surroundings i.e., creating a perception of the full
surrounding of the autonomous vehicle. For creating such a
perception, the information from on-board sensors, on-road
sensors, that received from other vehicles and stakeholders is
fused. The information may represent: exact position, speed,
dimensions, trajectories, intention of maneuvers, etc. of other
vehicles/objects. Assuming that environmental variables are
very dynamically changing, the information about these vari-
ables have to be made available in real-time for processing
and decision making of autonomous vehicles. The challenges
(Ch 1 - Ch 10) are more relevant to this scene.

B. SMART PARKING
This use case showcases how roadside infrastructure and tra-
ditional, connected, and autonomous cars interact with each
other and with parking areas that are monitored by sensors.
On the test-road, different parking areas can be observed.
Parking lots next to the road to on-street parking (both parallel
on the side of the road and slanted parking in the middle of
the road) allow for the evaluation of infrastructure and driving
functions in different settings.

Three scenarios are evaluated in the test-road:

• Parking Management: Parking sensors monitor the state
of parking spaces in the testbed and communicate the
state to roadside and cloud infrastructure. The service
allows operators to guide connected vehicles to free
parking and long term data collection enables predicting
if parking will be available when a vehicle reaches its
destination in the area

• Sensor Fusion: Sensor data from vehicles and roadside
infrastructure (e.g. traffic cameras) is combined to detect
potentially hazardous situations, for example when a
vehicle pulls out of a roadside parking spot into oncom-
ing traffic

• Maneuver Sharing: Connected and automated vehicles
communicate their planned parking maneuver to other

VOLUME 9, 2021 33009



M. A. Khan: Intelligent Environment Enabling AD

vehicles and roadside infrastructure, for example when
braking to pull into a parking spot.

C. GREEN DRIVING
A vehicles’ environmental impact is caused by the use of its
engine, tires and brakes in the form of emissions (e.g. Carbon
monoxide, NOx) and fine dust. These emissions and particles
are caused by any moving vehicle and cannot be entirely
eliminated. However, intelligent and anticipatory driving as
well as smart traffic management can reduce the amount of
emissions and fine dust significantly.While the emissions of a
combustion engine are directly linked to the fuel consumption
and the efficiency of the exhaust filtration system, fine dust
created by abrasion of brakes and tires are linked to the
driving behavior. For example, a shorter route reduces tire
abrasions while a green wave reduces brake abrasions.

The Green Driving use case explores the efficacy of the
testbed, its systems and its autonomous vehicles in reducing
vehicles’ emission of exhaust gases and fine dust. Measuring
the levels of fine dust and emissions harmful for humans’
health, traffic control and intelligent transport systems can
steer traffic in a way to mitigate the vehicle traffic’s impact
on these levels in certain areas.

By integrating with ITS services (i.e., traffic analysis),
environment reading can be linked with the traffic volumes
at different times of the day. The impact of the traffic can
also be accessed relatively with the sensing of visitors in
the area by activity analysis sensors (visualizing motion and
dwelling time, objective measurement of hot spots, statistical
evaluation). Based on the assessment, traffic regulation can
be dynamically adapted to the perceived load of emission.
Traffic control andmanagement services deployed at the edge
can regulate traffic lights and average speed of AVs based on
both statistical and real-time data to minimize environmen-
tal impacts. Such dynamic regulation immediately results in
‘‘green-line’’ driving experience and avoids forming queues
and stop-and-go traffic, which greatly increase emission and
fuel consumption.

VIII. POTENTIAL SOLUTION DIRECTIONS
In this section, we sketch the solution directions to address
the aforementioned challenges and realize the use-cases.

A. DYNAMIC DEMAND ESTIMATION
Challenges Ch 1 - Ch 9 may be addressed if the system is pro-
vided with an estimated network resource demand in advance
so that relevant operations required for resource reservation
and allocation are carried out beforehand. For instance, if the
traffic intensity at different road segments is known then the
operator may do the proper capacity planning proactively.
Ch 1 - Ch 3 may be addressed by preempting the mobility
pattern the vehicles on the road segments and proactively
managing the handover/mobility operations. Ch 4, Ch 5, and
Ch 7 may be addressed by implementing proper resource
reservation and allocation, which can be made very efficient
if the algorithm is provided with estimated resource demands.

In a later section of this paper, we discuss the details of our
experiments for demand estimation, traffic patterns investi-
gation and resource allocation.

B. EVOLVING THE LOCAL DYNAMIC MAP
The IETF standardized four layered architecture of Local
Dynamic Map (LDM) may be evolved with additional layers
of information, which are populated with perception created
from on-road deployed sensors and learning mechanism in
the edge and cloud. These layers may also be populated AI
enabled approaches for predicting events, objects, variables
of the environment.

C. INTELLIGENT ROAD INFRASTRUCTURE
Traditional roadside units should be evolved to intelligent
edge that do not only support V2X communication but
also serve as the perception creator, network manager, and
service orchestrator. In this connection, contributions may
include: IoT middleware integrating all the on-road deployed
sensors by developing the right drivers and protocols for
the type of sensors; communication solutions for down-
stream and upstream for implemented network slicing tomeet
the autonomous driving service requirements for the use-
cases. Traffic engineering approaches by developing the SDN
native applications, smart management and dynamic knitting
of VNFs, exploiting the service based architectural features
of 5G-C for efficient service crafting and network slicing, etc.
are some of the potential communication solution areas.

D. ACTIVE LEARNING FOR PLANNING, BEHAVIOR, AND
CONTROL LAYERS
Since the objects and environment is to be detected in real-
time and best maneuver should be executed for realizing
level-5 autonomous driving scenarios, it is imperative to
achieve real-time learning framework federating different
learning instances (e.g., on vehicle, intelligent edge, and
clouds) to meet the requirements of complex environmen-
tal dynamics. Multi-layer coalitional learning with speedup
framework is one potential research direction in this regard.
It should be noted that this approach advances and exploits
the deep learning approaches. The interplay of game-theory
and deep learning for autonomous driving may be investi-
gated. Approaches for speeding up for both deep learning
and gradient-based algorithm in the L-5 autonomous driving
use-cases may be investigated, as we expect deep learning
algorithms will have larger depth. Our earlier approaches
like Bregman based algorithms for speedup, meta-learning
for self-x network management, strategic deep learning algo-
rithms for robust games may be evolved. A coalition frame-
work to federate the learning mechanisms at the vehicle,
edge, and cloud levels. Furthermore, coalitional framework
may also be implanted with features for inter-vehicles coor-
dination (specifically in platooning use-case). For instance,
platoon formation may be based on coalition game-theoretic
approach. The utilities of vehicles will be modelled and
intra/inter-platoons coordination will be complemented by
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the information captured from on-road deployed sensors, on-
board sensors, and federated clouds [28], [29].

IX. IMPLEMENTATION OF BASIC SOLUTION
APPROACHES
Although a number of use-cases are crafted to be tested on the
testroad, in this section, we discuss initial set of experiments.
These experiments focus on dynamic demand estimation and
study of traffic pattern on the testroad, which are crucial
when it comes to realizing use-cases of autonomous driving
(refer to Section VII).

A. TRAFFIC PATTERN GENERATION
In this section, we demonstrate the analysis of traffic data
using a neural network regressor. The learned patterns enable
the prediction of future traffic demands, which are valu-
able inputs for other network and vertical service orchestra-
tion functions deployed in our data-center. For this study,
we rely on the traffic analysis sensors deployed around
the Ernst-Reuter-Platz, a major traffic junction of Berlin,
and image data has been automatically analyzed for a few
years. The data gathered (also available at https://flow.dai-
labor.de/datasets/ and https://daten.berlin.de, the outcome of
Smart City Berlin Project) includes vehicle counts for most
road segments, counts of pedestrians entering or leaving two
selected buildings as well as other metrics (e.g., number of
connected mobile devices) that correlate with activity on and
around the Ernst-Reuter-Platz.

Although various sensors are detailed in previous section,
for traffic pattern analysis, we focus here on a few types
of (visual) traffic, pedestrian and parking space observation
sensor, which are deployed around the Ernst-Reuter-Platz
and analyses of the image data captured since January 2018.
The data includes vehicle counts, counts of pedestrians enter-
ing or leaving two selected buildings, number of connected
mobile devices, parameters that correlate with activity on the
road segments.

1) AN OVERVIEW OF DEPLOYMENT SENSORS
For the traffic generation around the considered round-
about, 13 camera based sensors are deployed at the locations
depicted in Fig. 13.

• Location 1: multiple traffic analysis sensors, parking
sensor, and people counter.

• Location 2: multiple traffic analysis sensors.
• Location 3: traffic analysis sensor, people counter, and
multiple access points.

• Location 4:multiple traffic analysis sensors andmultiple
access points.

• Location 5: multiple traffic analysis sensors and APs.

Although the deployment was so carried out that the sensor
capture all the dynamics of the round about, there were still
some discrepancies at different times e.g., some dynamics
were hidden behind the trucks or busses. Obviously, this

FIGURE 13. Observed road segments (indicated by letters within white
circles, right) throughout the intersection including aggregated vehicle
counts (left, numbers on arrows) of 24 hours on 2018-01-24 for the
driving direction (indicated by the arrows’ directions).

affects the accuracy. But the experiments show that such
instances did not occur too often.

The sensors and equipment are configured to capture the
count of vehicles in the roundabout. In this connection the
following are is carried out: i) the traffic flow analyzers are
configured for the inflows and outflows at all the incoming
and outgoing segments of the roundabout; ii) the segments
nearer the incoming and outgoing roads are also covered by
the activity analysis sensors; iii) people count are configured
on the pedestrian areas and zebra crossings; iv) communica-
tion infrastructure is configured to enable near real-time com-
munication with the data-center. This configuration ensures
that the vehicles entered in the roundabout will remain in the
roundabout and may be tracked. Counts are aggregated in one
minute intervals and vehicle are classified by their types.

2) RESULTS OF TRAFFIC ANALYSIS
The experiments were initiated by carrying out the sanity
checks i.e., by visually conforming the traffic intensity pat-
ters at different times of the day and evaluating against the
expected patterns.We also carried out consistency checks and
an assessment of the system’s accuracy by:

• Properties Analyses: to analyze the properties and
nature of the recorded data, aggregation type, and time
resolution.

• Aggregation: to aggregate the statistics and compare
those with reference values (i.e., please refer to [41]).

• Time Relationship Analysis: to analyze time relation-
ships and constraints in the observed data based on the
spatial relation of the point of measurement (i.e., causal
and spatio-temporal correlations).

Vehicle counts are extracted from the image streams and
the numbers are recorded. The vehicles and types are classi-
fied with visual object detection. At specific times in the data
the typical distribution of vehicle types changes drastically.
Consequently, we decide to only use the aggregated (total)
counts of vehicles in this work and include the vehicle type
classification in future works.

For the traffic analysis, the data is accumulated in minute
intervals, our expectations include:
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FIGURE 14. Example for raw traffic volume (number of vehicles per minute) data as provided by the system over a period of 1.5 days
around Wednesday 2018-01-10 (top) and 5 minute averages of four selected locations highlighting a traffic interruption on 2018-01-25
(bottom).

• Matching: In this, we match the data with data from
other sources e.g., distribution over day and peaks, daily
averages, and other general trends for working days and
holidays etc.

• Temporal Closure: It is validated that the temporal clo-
sures may easily be detectable.

• Correlation: There should be simple and obvious cor-
relations observable between sensor stations, refer
to Figure 15.

• Detectability: Depending on time resolution, the phase
of traffic lights may be detectable, at least as statistical
artifact.

We explore the dataset by visualizing it using interactive
plots with freely selectable time ranges, freely selectable sub-
sets of sensor locations, and smoothing options. For a spatial
understanding the cumulative counts for a time-interval of all
the stations can be visualized on a map (cf. Fig 13).

It was observed that there are some common pat-
terns in daily traffic with simple explanations that match

well with other sources. The peaks (commonly referred
to as ‘rush hour’, usually present in the morning and
evening) are expected (see e.g. [41]) and easily spotted
(cf. figures 14 & 15). They are attributed to people going
to their daily business (8h-11h) and back home from work
(16h-19h). Weekends, holidays and bridge-days differ in this
regard, so that the first peak is reduced or absent and that
there is overall slightly less total activity. The data collected
at Ernst-Reuter-Platz differs only slightly in its characteristics
from those published in the 2014 report. One example being
that the 2nd daily peak is not reduced as much.

The data is valuable for creating valid models for the
traffic occurring on the Ernst-Reuter-Platz intersection to
optimize the routing of vehicles, by adapting traffic signal
phases or individual navigation decisions or can be used as
input to predict the state at intersections for the communica-
tion network.

For traffic volume predictions we trained a simple Neu-
ral Network regressor on the first 20 days of the test set
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FIGURE 15. Exemplary causal relations between sensor readings (here: inclusion): Because of the spatial arrangement all vehicles passing
sensor location ‘O’ (cmp. fig. 13) (the lower, green plot) should also pass sensor location P (the higher, blue plot) with some delay; the
plots show data of roughly three days around Sat./Sun., 13/14th of Jan. 2018.

FIGURE 16. Response of neural network regressor trained on 2 weeks of data. Predicting the traffic volume given the minute of day. The
two curves are predictions for workday (Mon.-Tue. in cyan) and weekend (Sat./Sun. in red) with correspondingly colored training instances
in the background.

from a total of an equivalent of 38 days of available data.
We experimented with different input formatting, the number
of layers and neurons trying to find a comparatively sim-
ple and small network, that produces acceptable predictions,
as shown in Figure 16. Of course, this depends on the accu-
racy required for the application intended. We finally settled
on a network with 100 neurons in a single hidden layer,
L-BFGS [42] as solver and tanh as activation function, using
the following features:

• Minute of the day (0..1439),
• Day of week (0..6 Mon.-Sun.),
• Is a holiday (true, false),
• Vehicle count of that minute (number) - the class
label/output.

Additional promising features, which we think to have a
high potential to improve prediction accuracy, are: Seasonal
vacations (school) or weather information. However these are

not yet included because of the limited amount of available
data (less than a year) at this point.

B. AI ENABLED NETWORK DEMAND ESTIMATION AND
NETWORK RESOURCE ALLOCATION
This experiment focuses on estimating the network resource
demands and allocation for autonomous vehicles on the test-
road. As mentioned earlier that the road segment shown
in Figure 17 is driven by the fact that it is most complex
segment with 5 ins and 5 outs, where each in and out are
3 lanes. It also has cuts and walkways for pedestrians. Hence,
meeting the requirements for communication services is of
utmost importance to enable the exchange of right informa-
tion for execution of the right critical maneuvers.

Figure 17 depicts our understanding of the traffic flow on
the considered road segment. There are 5 paths defined (as
can be seen in the figure), which are represented by different
colors i.e., blue, grey, black, green, and red. These paths are
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FIGURE 17. Figure highlighting the trajectories on the Ernst-Reuter-Platz.
Different colors correspond to traffic flow with specific entry and exit
points.

covered by different network cells. The paths are decomposed
into multiple trajectories to highlight the entry and departure
areas with respect to network cells, which are summarized
in Table 2.

TABLE 2. Trajectories (Represented by T).

The data is capture through IoT middleware from on-road
deployed sensors is forwarded to the central database after
being anonymized at the sensors. So far, 8 months of data
have been collected on the considered round-about through
the on-road deployed sensors and communication infrastruc-
ture. The sensors capture the data of different road users
including: motorcycles, cars, trucks, pedestrian, etc. Obvi-
ously, these road users have varying communication bit-pipe
requirements for C-V2X communication and infotainment
based on their position, on-vehicle deployed sensors, and
inter-vehicle-infrastructure-pedestrian communication, etc.

Analyses of such datasets enable us to predict the traffic
intensity on, and occupancy of the roads. Hence, smartly cho-
sen assumptions for communication bit-pipe requirements for
different applications (e.g., ITS services, infotainment, etc.),
we are able to predict the communication requirements and
consequently assist in capacity planning on different road
segments.

1) SOLUTIONS IMPLEMENTATION STAGES
To achieve the basic objective of identifying and track-
ing the road users so that fitting communication C-V2X
bit-pipes are made available at all locations on the road
segment, we worked out a basic design. The design is

pictorially depicted in Figure 18. As can be seen that the data
server contains regularized dataset to perform supervised and
unsupervised learning techniques.We process the real dataset
(captured through on-road deployed sensors) with different
machine learning algorithms to trace mobility and activity of
the road users.

FIGURE 18. Figure depicting the conceptual view of the implemented
approach for demand estimation by explicitly highlighting different
stages.

We implemented a data pre-processing stage, which fur-
ther implements data regularization and data personalization
stages. In the data presonalization stage, necessary adjust-
ments to the data is made for different scenes of the scenarios.
To separate features of the datasets, we carried out the data
representation activity. In this connection, operations such as
k-field validation were performed. When it comes to improv-
ing the results, standardization. These stages are followed by
choosing and applying algorithm to predicts traffic intensity
and resource demands with highest accuracy.

2) GROUND TRUTH AND DATA QUALITY VALIDATION
Having acquired the right dataset, we needed to verify the
ground truth of the dataset. Figure 20 shows the first two
Monday’s dataset and pattern in this graph correlate with
each other means data is in the right shape. We have carried
out a complete exploratory data analysis to understand traffic
density patterns in Ernst-Reuter-Platz roundabout. One of
the major objectives of data analyses was to assess the data
for its quality to be used for modeling the demands exam-
ination. During the analyses, it was observed that sensory
data of some of the sensors is missing for a few hours.
This consequences in dataset, where not everyday has the
same number of rows. However, we assume that a day fully
captured, if 54,000 sensory readings from sensor is available.
We believe that the assumption is realistic, as it captures
the environmental dynamics on small enough time quanta.
In our experimental settings, as soon as road user is detected,
we define two boxes, source and destination. If the object
passes through the source and then through the destination
box, it counts as +1. So the number in the data indicates
the total number of detected vehicles that passed through the
defined boxes. The former definition implies that it will count
only moving vehicles.

3) RESOURCE ALLOCATION AND DEMANDS PREDICTION
Based on the discussion in previous subsections, it is evident
that we are now capable of estimating the communication,
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FIGURE 19. Figure depicting the processing stages of data analysis and
machine learning implementation.

FIGURE 20. Curves showing the traffic count on 2 Mondays.

bit-pipes in dynamic setting. This allows us to implement
various algorithms for resource allocation against the pre-
dicted demands. The performance of the implemented algo-
rithms was measured e.g., through Root Mean Square Error
(RMSE). We capable of predicting the next location and
signal strength of a moving vehicle in the road segment.
Hence, accordingly we can allocate the right amount of com-
munication resources following the estimated demands. since
the considered settings are specific to a complex road seg-
ment, time series dataset results proved to be very attractive
together with classification algorithms and k-fold validation.
The results are summarized in Table 3

An important fact to highlight here is that inspired by the
user-centric paradigm, we have taken great care of satisfying
device layer demands and at the same time maximizing the
profit function of operators i.e., by modeling the profit func-
tion of the operator as a function of users’/ vehicles’ satis-
faction. The details are avoided here due to space limitations,
however, the readers are encouraged to refer to a variant of
our approach in [28], [43], and [44].

C. RESOURCE ALLOCATION MODELS
We implemented different variant of the resource allocation
approaches based on the estimated network demands. The
details of resource allocation models may be found in [44],

TABLE 3. Population setting results.

TABLE 4. Proportional resource allocation.

which include: over-provisioning, proportional priority, uni-
form, and manual resource allocations. However, for ready
reference in what follows next, we provide the details of a
few selected models.

1) PROPORTIONAL RESOURCE ALLOCATION
In this method of resource allocation, we focus on achieving
the fairness. This is to say if the available bandwidth is
more than or equal to demand then the cell is provided with
required bandwidth. Otherwise, the available bandwidth is
allocated proportional to the bandwidth demands by each cell.
Table summarizes the resource allocation for the available
cells. Experimental results are shown in Figure 21, where the
resource allocation is carried out as expected i.e., the band-
width is allocated proportional to the bandwidth demands.

FIGURE 21. Proportional resource allocation.

2) PRIORITY BASED RESOURCE ALLOCATION
In this settings, the implemented algorithm allocates the
resources by taking into account the priority assigned to cells
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e.g., the cells covering path in red color of Figure 17 is given
higher priority. This is to say in situations of higher demands
than the capacity, the system will allow the reservation of
resources following the defined priority values, which could
be in terms of percentage.

This turns out to be an effective way to provide the
bandwidth where traffic congestion becomes a normal phe-
nomenon. This algorithm gives priority to the max traffic
either two-node or one node.

3) MANUAL RESOURCE ALLOCATION
In this method, operators can manually select the bandwidth
for a specific cell for certain periods of time. There are two
options in this algorithm: one operator can assign the band-
width by percentage, the second operator can give the quan-
tity of bandwidth each cell manually. Figure 22 expresses
the manual technique that we did, bandwidth value is not
changing because this value is to remain the same for certain
time window.

FIGURE 22. Priority based resource allocation.

FIGURE 23. Manual resource allocation.

X. CONCLUSION
In this paper, we briefly reviewed current activities related
to autonomous driving, especially the deployment of test
beds in controlled environments and on public roads world-
wide. We have discussed the concepts, e.g. road digitaliza-
tion or flexible communication infrastructure, for reaching
the ambitious goals of fully autonomous driving vehicles.
We have highlighted the challenges hindering the realization
of autonomous driving. The potential solution approaches
are discussed directing the readers towards potential research
areas. We discussed the solutions designed for the large-scale

autonomous driving project of Berlin. We also demonstrated
the use of machine leaning approach for traffic demand
prediction.
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