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ABSTRACT For multi-view convolutional neural network based 3D object recognition, how to fuse the
information of multiple views is a key factor affecting the recognition performance.Most traditional methods
use max-pooling algorithm to obtain the final 3D object feature, which does not take into account the
correlative information between different views. To make full use of the effective information of multiple
views, this paper introduces the hierarchical graph attention based multi-view convolutional neural network
for 3D object recognition. At first, the view selection module is proposed to reduce redundant view
information in multiple views, which can select the projective views with more effective information. Then,
the correlation weighted feature aggregation module is proposed to better fuse multiple view features.
Finally, the hierarchical feature aggregation network structure is designed to further to make full use of the
correlation information of multiple views. Extensive experimental results have validated the effectiveness of
the proposed method.

INDEX TERMS 3D object recognition, multi-view convolutional neural network, graph attention network,
feature aggregation.

I. INTRODUCTION
With the rapid development of 3D data acquisition
technologies, the number of the 3D models is growing explo-
sively. How to analyse the 3D model has attracts more and
more researchers’ attentions. The 3D object recognition is
an important research direction in the field of 3D model
analysis, which can be widely used in virtual reality, medi-
cal diagnosis, intelligent robot, remote sensing, autonomous
driving, etc [1]–[3]. The 3D Compared with 2D images, 3D
models contain more geometric, shape and scale information,
which can be represented with different formats, such as
point clouds, meshes, volumetric grids and so on [4]–[8].
The relatively mature 2D object recognition methods can’t be
directly applied to 3D object recognition. So it is necessary
for us to make an in-deep study of 3D object recognition.
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In recent years, deep learning has become the most popular
technique in the field of 2D image analysis and understand-
ing. Researchers have proposed a large number of deep neural
network models for image analysis and understanding tasks
such as image classification, image segmentation, image
retrieval and so on [9]. These deep learning based methods
have obtained better performance than traditional methods.
Because the 3D point clouds and 2D images have different
data structure, the deep neural network models designed for
the 2D images can’t be directly applied in the 3D point cloud
analysis. Compared with the 2D image based deep learning
method, the deep learningmethod for the 3D point cloud anal-
ysis is still in its infancy, and there are still many key technical
problems to be solved, such as the high dimensionality and
the unstructured nature of 3D point clouds [1].

In order to use the relatively mature 2D deep learning
technique for 3D point cloud analysis, the researchers have
proposed 3D deep learning methods based on multi-view
representation. The basic idea of this kind of method is
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similar to the principle of people’s object classification and
recognition mechanism from multiple views. The most rep-
resentative work is the 3D shape recognition method based
on multi-view convolutional neural networks (MVCNN) [4].
Firstly, the multiple projective images of the 3D model are
sent to the convolution neural network for feature learning.
Then the view pooling layer is used to fuse these features
together for learning the feature of the 3D model. One of
the key problems of the multi-view based 3D object recog-
nition algorithms is how to effectively aggregate the features
extracted from multiple views to generate the 3D object
feature. Most traditional methods [4], [7] fuse the multi-view
features through the max-pooling layer. The max-pooling
layer has permutation invariance, so it is stable for some
data disturbance. But the correlation information between
multiple views is ignored. As the recurrent neural network [9]
has achieved a very prominent performance in processing
sequence information, many researchers [10]–[12] using it
in multi-view object recognition by arranging multiple views
into a sequence according to their projective positions. For
the recurrent neural network based multi-view 3D object
recognition method, the position information can be used to
aggregate these views to a 3D object feature. With the deep-
ening of research, researchers found that some views play a
more critical role for the final recognition and some views
may cause interference for recognition. So we can increase
the weights of the related views and reduce the influence of
the irrelevant views by adding attention mechanism to further
improve the performance of 3D object recognition.

The attention mechanisms have almost become a nec-
essary module in many computer vision tasks. They can
focus on the most relevant information of the input to make
decision, and then the performance of the model can be
improved effectively. So far, the researchers have proposed
a variety of attention mechanisms, such as hard attention,
soft attention, global attention, local attention, self-attention,
etc. When an attention mechanism is used for a sequence
based task, the researchers usually use self-attention. The
self-mechanism not only can be used to improve the perfor-
mance of the recurrent neural network or the convolutional
neural network, but also can be used to construct a powerful
model on the machine translation task. So following the
self-attention strategy, the graph attention network (GAT) has
been successfully used in multi-view network framework,
which can operate on graph-structured data [13]. The GAT
computes the hidden representations of each node in the
graph by attending over its neighbors. It is suitable to handle
3D data, and its computation efficiency is high because it
is parallelizable across node neighboring pairs. Furthermore,
the neighboring graph nodes reveal different importance to
the central graph node, which can be achieved by specify-
ing arbitrary weights to the neighbors. Based on the above
analysis, we select GAT to design the view-selection mod-
ule in this paper. The position information of the multiple
views can be considered in the process of multi-view feature
aggregation, and the degrees of influence of each view are

distinguished in the process of 3D object feature learning.
Extensive experimental results have shown that our proposed
method has better performance than the state-of-art methods.

The major contributions of this paper can be summarized
as follows:

(i) We design the hierarchical Graph Attention based
Multi-view Convolutional Neural Network (GA-MVCNN)
for 3D object recognition, which is a hierarchical feature
aggregation network using graph attention mechanism to
make full use of the correlation information of multiple
views.

(ii) To reduce the redundant view information in
multi-view based 3D object recognition method, the graph
attention mechanism based view selection module is pro-
posed to retain the projective views with abundant effective
information and discard the projective views with less effec-
tive information.

(iii) The correlation weighted feature aggregation module
is proposed to enhance the efficiency of information utiliza-
tion, which can assign different weights to multiple views by
measuring the information of them.

The rest of this paper is organized as follows.
Section 2 gives the related works about 3D object recognition
and graph neural networks. Section 3 introduces the proposed
3D object recognition method in detail including view feature
extraction, GAT based view selection, hierarchical feature
aggregation and network training. Section 4 reports the exper-
imental results and the detailed analysis. Finally, conclusions
are provided in Section 5.

II. RELATED WORKS
A. 3D OBJECT RECOGNITION
In recent years, great progress has been made in the field
of 3D object recognition. According to the representation
formats of 3D object data, existing 3D object recogni-
tion methods can be divided into three categories: voxel
based methods, point cloud based methods, and multi-view
based methods.

The voxel based 3D object recognition methods use the
voxels to represent the 3D object, which can be sent to
the 3D deep neural network for learning and recognition.
The voxels can be considered as 3D extensions of the 2D
pixels, and they have regular structures in 3D space. The
deep neural network designed for 2D image pixels [14] can
be easily extended to process voxels data. Wu et al. pro-
posed 3D ShapeNets [15] that first applied voxels to deep
neural networks. Maturana et al. proposed VoxNet [16] that
used 3D convolutional network to process voxels for 3D
object recognition. Choy et al. proposed 3D-R2N2 [17] that
took single or multiple images as input and used voxels to
reconstruct objects in the mesh. Sedaghat et al. proposed
ORION [18] that could simultaneously predict object class
labels and orientation labels to reduce the influence of object
orientation on recognition accuracy. Li et al. [19] proposed
FPNN that employs field probing filters to efficiently extract
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features from them. Generally speaking, the 3D object recog-
nition methods based on voxel representation can be directly
extended from the 2D deep neural network, but some 3D
structural information will be lost in the process of trans-
forming from point clouds to voxels. This is because that
some close 3D points may be mapped into the same voxel.
In addition, the low resolution of voxels will cause the loss
of local information, and the high resolution of voxels will
increase the memory consumption and calculation time of the
algorithm, which greatly limits the application scope of this
kind of methods.

The point cloud based 3D object recognition methods
directly take the 3D point clouds as the input of the deep neu-
ral network to realize end-to-end learning. The point clouds
have the characteristics of irregular spatial relationship, so the
existing 2D image recognition methods based on deep neu-
ral network cannot be directly applied or extended to point
cloud based 3D object recognition. The most representative
algorithm is PointNet [20], which use unordered point clouds
as input and can avoid partial data structure information loss
caused by point cloud processing. PointNet has been success-
fully used in 3D point cloud classification and segmentation.
In order to enhance the analysis ability of PointNet for com-
plex scenes, Charles et al. [21] proposed a hierarchical neural
network named PointNet++, which applies PointNet recur-
sively on a nested partitioning of the input point set. Inspired
by PointNet and PointNet++, Wang et al. [22] proposed
a dynamic graph convolutional neural network (DGCNN),
which uses EdgeConv layer to obtain local features. It can
not only ensure permutation invariance, but also capture
local geometric features. By stacking or recycling EdgeConv
modules, it could extract the global shape information and
achieved good results. Different from the classical feature
learning methods proposed by PointNet and PointNet++,
Su et al. [23] designed a new point cloud processing method
named SplatNet, which could directly operate on the point
clouds and transform the concept of receptive field into irreg-
ular point clouds. This kind of methods need not convert 3D
points to voxel or multi view representation, which can avoid
the loss of information in the process of format transforma-
tion. However, the unstructured disordered and large amount
of 3D point clouds also bring many technical challenges to
the design of 3D deep neural network model.

The multi-view based 3D object recognition methods use
a series of 2D projective images of 3D objects to learn 3D
features. At first, this kind of methods use 2D convolutional
neural network to learn the feature of each projective image.
Then the extracted features are fused to obtain 3D shape
feature. The pioneering work is MVCNN [4], which uses the
convolutional neural network (VGG-M) [24] to learn the fea-
tures of different projective images and uses the view pooling
layer to fuse these features together to generate a feature vec-
tor of the 3D object. Up to now, most multi-view representa-
tion based 3D object recognition methods are designed based
on the structure of MVCNN. The disadvantage of MVCNN
was that the maximum pooling operation of the view pooling

layer ignored the correlation information between various
views. Feng et al. [25] proposed a group-view convolutional
neural network named GVCNN, which introduced a group-
ing module for the neglection of correlation between views.
Charles et al. [26] improved the performance of MVCNN
by using different azimuth and elevation angle rotation to
increase the training sample, and introducingmulti-resolution
3D filter to obtain different scales information of objects.
Kanezaki et al. [27] proposed a new neural network named
RotationNet, which could not only classify objects but also
estimate their pose. Unlike the previously mentioned meth-
ods whose perspective tags were known during training,
RotationNet could learn in an unsupervised manner from
unaligned object data sets. In addition, RotationNet could
perform well in the case of multiple views with fewer per-
spectives. He et al. [28] proposed a new loss function named
triplet-center loss (TCL) for multi-view convolutional neural
network, which solved the problem that the softmax loss
function didn’t consider the relationships within and between
classes. Jiang et al. [29] proposed MLVCNN that adopted a
novel view input strategy. Wei et al. [30] proposed a novel
view-based Graph Convolutional Neural Network, dubbed
as view-GCN, to recognize 3D shape based on graph rep-
resentation of multiple views. As the 2D image based deep
learning algorithms are mature, the multi-view based 3D
object recognition methods have achieved the most excellent
recognition performance. However, these methods are easy
to be affected by mutual occlusion between objects, which
will lose some structural information in the process of view
projection, and has certain limitations in the selection of
projective views. In addition, the view pooling operation used
for multi-view feature fusion will also lose some effective
information. Therefore, how to make full use of the corre-
lation between different view features and mine the effective
discriminative information contained in multi-view features
is still worthy of further research.

B. GRAPH NEURAL NETWORKS
One of the reasons why deep learning methods can achieve
outstanding performance in the fields of image classification,
semantic segmentation and machine translation is that the
data used in these fields belongs to Euclid space structure.
However, for the graph structure data in non-Euclid space
structure, such as social network, telephone communica-
tion network and biological network, their performances are
not satisfactory [31]–[33]. Driven by the actual application
requirements, how to deal with graph structure data has
attracted more and more researchers’ attentions.

The early researchers [34], [35] processed the data repre-
sented as directed acyclic graphs in the graph domain through
recurrent neural networks. The graph neural network (GNN)
was improved from the recurrent neural network [36], [37].
It can directly process more general graphs, such as recurrent
graphs, directed graphs, undirected graphs, etc. Generally,
the graph neural network consists of two parts: the propaga-
tion module and the output module. The propagation module
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FIGURE 1. Multi-view 3D object recognition algorithm based on graph attention network.

is used to transmit node information and update node sta-
tus. The output module defines different objective functions
according to different task requirements based on the repre-
sentation of nodes and connection edges. With the develop-
ment of the graph neural network, the related algorithms are
mainly divided into two kinds: spatial domain based methods
and frequency domain based methods.

The methods based on frequency domain draw lessons
from the idea of signal processing. Firstly, the graph sig-
nals are converted from spatial domain to frequency domain
for convolution operation. Then, the graph signals are con-
verted from frequency domain back to spatial domain.
Bruna et al. [38] firstly introduced the idea of convolution
into the graph neural network, and realized the transforma-
tion of the graph from the spatial domain to the frequency
domain by means of the Laplace matrix of the graph. How-
ever, all the graph data needed to be loaded at the same
time during calculation, which has high time complexity and
could not be applied to large-scale graphs. Henaff et al. [39]
improved Bruna’s work to handle large-scale data tasks,
and proposed unsupervised and supervised graph estimation
method for data without given graph structure. By improving
convolution kernel, convolution process and pooling process,
Defferrard et al. [40] solved the problems of high compu-
tational complexity. Kipf and Welling [41] optimized the
above approach by restricting the filter to operate in the
neighborhoods of the nodes. From the above analysis, we can
conclude that all the frequency domain based filter learning
methods rely on the Laplace matrix. As the Laplace matrix
is easily influenced by graph structure, the model trained on
specific structure cannot be directly applied to the graphswith
different structures.

The methods based on spatial domain are mainly inspired
by the convolution operation in the convolutional neural
network. The graph convolution is defined through the spa-
tial relationship of the graph nodes, and the neighboring
nodes within a specific range are included in it. It has local
convolution invariance in the convolutional neural network.

Atwood and Towsley [42] proposed the diffusion convolu-
tional neural networks (DCNNs) that handled node classifi-
cation and graph classification tasks using H-hop matrix to
represent each node. Niepert et al. [43] proposed the learning
convolutional neural networks for graphs (PATCHY-SAN).
It maps graph nodes and their adjacent nodes to fixed-length
vectors, and then the features are extracted from them using
convolutional neural networks. Monti et al. [44] improved
and generalized the structure of the convolutional neural net-
works so that it could input and process non-Euclid structured
data and learn the features of different task requirements.
Hamilton et al. [45] proposed the Inductive representation
learning on large graphs (GraphSAGE) that obtained the
features of target nodes by learning an aggregation function
to aggregate neighbor nodes, which solved the problem that
the previous algorithm could not quickly obtain the features
of new nodes. From the above study, we can found that the
importance of each neighboring node to the center node of
the graph structure data was different. To solve this problem,
Veličković et al. [46] proposed the graph attention network
that learned the weights of neighboring nodes by stacking
the attention layers of the graph and realized the weighted
aggregation to neighboring node, which could solve inductive
problems and transductive problems.

III. THE PROPOSED METHOD
In this section, we introduce our proposed hierarchical Graph
Attention based Multi-view Convolutional Neural Network
(GA-MVCNN) for 3D object recognition. As shown in FIG-
URE 1, the proposed method has three main steps: (i) For
Each 3D object, it is projected into a series of 2D images,
and then the projective images are respectively sent to the
convolutional neural network for view feature extraction. (ii)
The extracted features of multiple views are aggregated inter-
relatedly and selectively by view Graph attention network
module and correlation weighted feature aggregation module
to form a global feature. (iii) The global feature is used
for 3D object recognition by the fully connection layer to
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FIGURE 2. The View-GAT based view selection algorithm.

realize the 3D object recognition. In the process of practical
application, our proposed method consists of two phase: the
training phase and the testing phase. Compared with other
methods, the proposed method can make better use of the
effective information of multiple views and achieve better
recognition performance.

A. VIEW FEATURE EXTRACTION
In the view feature extraction module, each 3D object is
first projected to generate multiple projective views. In this
paper, 12 projective views are obtained from 12 perspectives.
The virtual cameras are placed every 30◦ on the horizontal
plane 30◦ from the ground and points to the centroid of the
3D object. Then, the multiple projective views are respec-
tively sent to the convolutional neural networks, which are
pre-trained with ImageNet. In this paper, according to a series
of experiments, we select ResNet-34 to extract view features.
The results of comparative experiments are introduced in
Section 4. Furthermore, we use multi-view dataset to adjust
the parameters of ResNet-34. The parameter adjustment step
not only speeds up the subsequent training process, but
also improves the recognition accuracy. We take the vector
extracted before the fully connection layer of ResNet-34 as
the view feature {x0i }

N
i=1.

B. VIEW-GAT BASED VIEW SELECTION
The proposed view-GAT based view selection algorithm can
be briefly described as follows. Firstly, we build graph G0 by
making view feature {x0i }

N
i=1 as nodes, and adjacent projective

positional relationships between views are defined as the
edges. The graph G0 is sent to the graph attention network
(GAT) to get the updated node feature {x1i }

N
i=1, which can

make each node contain the feature of the adjacent nodes.
Then the node features are filtered by view selection mod-
ule to remove some redundant views. The flow chart of
the view-GAT based view selection algorithm is shown in
FIGURE 2. From FIGURE 2, we can see that the algorithm
includes two parts: the GAT module and the view selection

module. The detailed processing steps of the two modules are
shown in FIGURE 3 and FIGURE 4.

Graph attention network (GAT): As shown in
FIGURE 3, the view feature {xi}Ni=1 is first linearly trans-
formed using a shared weight matrix W ∈ RF ′×F , where
F is the number of input features in each node and F ′ is the
number of output features in each node. Then they are joined
by a single-layer feedforward network whose parameter is
Ea ∈ R2F ′ . The output is processed by a nonlinear LeakyReLU
function. In order to compare the attention coefficients of
different nodes, we use the softmax function to normalize
them and eventually get the attention coefficient αij. In order
to retain the graph structural information, we only compute
the attention coefficient between nodes i and its adjacent node
j: αij, j ∈ Ni. Ni includes the node i itself and its first-order
neighborhood. The attention coefficient is defined as
follows:

αij =
exp(LeakyReLU (EaT [W Exi||W Exj]))∑

k∈Ni exp(LeakyReLU (EaT [W Exi||W Exk ]))
(1)

After that, we make a linear combination of the attention
coefficients and the corresponding features. Then we get the
output feature of each updated node through a nonlinear
activation function. In order to make the learned feature
more robust and prevent overfitting, we use the multi-head
attention method to aggregate multiple independent attention
coefficients and get the final node feature. The computation
formula is defined as below:

Ex ′i = σ (
1
K

∑K

k=1

∑
j∈Ni

αkijW
k
Exj) (2)

After the above steps, we can get the view feature {x ′i}
N
i=1

that has been updated by the graph attention network.
The updated feature has included the features of adjacent
views.

View selection module: The purpose of this module is
to select and remove the redundant views. As shown in
FIGURE 4, the nodes {v1i }

N/2
i=1 is initial sampling results
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FIGURE 3. The GAT module.

FIGURE 4. The view selection module.

using the farthest point sampling (FPS) method according
to the original node position coordinates {v0i }

N
i=1. Although

the diversity of sampling results can be guaranteed by using
the FPS method, the effectiveness of sampled view features
cannot guaranteed for feature recognition. Therefore, it is
necessary to adjust these nodes. In this paper, our node adjust-
ment method can be described as follows. Firstly, the sampled
node {v1i }

N/2
i=1 and its adjacent nodes are sent to a two-layer

perceptron. The output of the perceptron is the response value
about the possibility of which category does the view belongs
to. Then, the response values of view node and its adjacent
view nodes for each class can be obtained. Finally, the node
with maximum response value is assigned as the adjusted
node. The adjusted node is designed as follows:

x1k = argmax
j∈Ni

(max(V (x1j , θ
1))), k ∈ Ni (3)

where x1k represents the node feature after adjustment, θ1

represents the parameters of the two-layer perceptron, and Ni
represents the node i itself and its adjacent nodes. After view
selection, we can obtain the node features {x1j }

N/2
j=1 and the

new graph G1, which can be used for the following feature
aggregation step.

C. HIERARCHICAL FEATURE AGGREGATION
In this section, we aim to aggregate the extracted multi-view
features into a global feature. From the view selection step,
we can conclude that the views are not independent from
each other but related to each other in terms of position
and shape, which can provide more discriminative informa-
tion for 3D object recognition. So we design the hierar-
chical feature aggregation to obtain the global feature for
recognition, which consists of the correlation weighted fea-
ture aggregation module and the hierarchical aggregation
scheme.

Correlation Weighted Feature aggregation module:
Because each view has different contribution to the final
feature recognition, we can assign different weights to dif-
ferent views to improve the 3D recognition performance.
As shown in FIGURE 5, the node features obtained by the
GAT view selection module are firstly connected in pairs to
concatenate a matrix MN×N×2F . Then the matrix is sent to
a three-layer perceptron φ with LeakyReLU to obtain the
similarity matrix S(i, j), where the elements of the matrix
S(i, j) indicate the similarity degree of node features between
node i and node j. If a view has high similarities with other
views, it indicates that the view is more representative and
effective. And then, we sum the elements of each row of
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FIGURE 5. The correlation weighted feature aggregation module.

the similarity matrix S(i, j) to obtain S(i), where S(i) is the
effectivity score of each view. In order to compare various
views, we use the softmax function to normalize S(i) and
define it as the weight matrix W (i). The greater the weight
is, the higher the representativeness and effectiveness of the
view is. Finally, we can obtain the aggregation feature Fglobal
by multiplying the weight matrix and the node feature, whose
dimension is 1× F .
Hierarchical Aggregation Scheme: As shown in

FIGURE 1, we perform the view selection operation and the
correlation weighted feature aggregation operation twice to
obtain more informative global shape feature. The proposed
hierarchical aggregation scheme can be described as follows.
After the first view selection and correlation weighted fea-
ture aggregation, we can obtain the first aggregated feature
F1
global , as one part of the final global feature. Then for the

new graph G1 obtained by the first view selection operation,
we perform the second view selection operation and the sec-
ond correlation weighted feature aggregation operation, and
the second aggregated featureF2

global can be obtained. Finally,
the final global feature Fglobal is computed by concatenating
of F1

global and F
2
global. The final global feature Fglobal consists

of two levels of aggregated features, so it contains more
discriminative feature for recognition.

For the 3D object recognition task, the final global fea-
ture Fglobal is sent to three fully connected layers with
LeakyReLU. The dimension of the network output is the
number of classes. Finally, we classify the 3D object belongs
to the class with the maximum response value.

D. NETWORK TRAINING
The network training has two processes. The first process is
training the ResNet-34 network which has been pre-trained
by ImageNet, using multi-view dataset. By fine-tuning the
network parameters, we can accelerate the subsequent train-
ing convergence speed and enhance accuracy of the model.
The second process is removing the fully connected layer of
the ResNet-34 as the view feature extraction part, and then
adding it in the whole algorithm framework to achieve end-
to-end learning.

In the step of fine-tuning the network parameters of
ReSNet-34, we used the Stochastic Gradient Descent (SGD)
algorithm as the optimizer, whose weight attenuation coef-
ficient is set to be 10−3, the momentum is 0.9, the training
period is 30, the learning rate is 10−2, the batch size is 400,
and the learning rate is reduced by half for every 10 train-
ing periods. In the second process of the whole algorithm
framework, we also use SGD as the optimizer. The parameter
setting is almost the same as that in the first process. The
difference is that the learning rate is set to be 10−3. Each batch
contained 240 images, which come from 12 projective views
of 20 3D objects. The learning rate is set according to the
method in [47]. In the first training period, the learning rate
is linearly increased from 0 to 10−3. Then in the subsequent
periods, the learning rate is changed according to the follow-
ing formula:

lrt =
1
2
(1+ cos(

tπ
T
))lr (4)

where lr is the initial learning rate.

IV. EXPERIMENTS
In this section, we perform several experiments to validate
the classification and retrieval performance of GA-MVCNN
on different 3D object datasets. Firstly, we introduce the
dataset and experimental setting. Secondly, we give the
details on view feature extraction network structure selection.
Thirdly, we discuss the experimental results of the proposed
GA-MVCNNmethod and the representative 3D object recog-
nition methods. And then, we give the comparison results
of the proposed GA-MVCNN method and the representative
methods on 3D object retrieval task. Finally we conduct abla-
tion studies to analysis the influences of different modules.

A. PLATFORM AND DATASET
In this paper, the codes of all experiments are implemented
under pytorch framework. The running configurations are
as follows: The CPU is Intel Xeon E5-2630 V4. The mem-
ory size is 128GB, and the GPU is GTX2080Ti. The oper-
ating system is Ubuntu 16.04.3 LST. In order to evaluate
the recognition and retrieval performance of our proposed
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FIGURE 6. Some models of ModelNet40 dataset.

GA-MVCNNmethod, we adopt theModelNet40 dataset [15]
and the ShapeNet Core 55 dataset [48] to carry out experi-
ments.

The ModelNet40 dataset is a subset of the Princeton Mod-
elNet Dataset. It contains 12311 3D object models from
40 classes, including 9483models for training and 2468mod-
els for testing. Some models of ModelNet40 dataset are
shown in FIGURE 6. To conduct our experiments, we ran-
domly selected 100 models from each class, 80 models of
which are used as training data and 20 models as testing data.

The ShapeNet Core55 dataset contains 51190 3D object
models of 55 categories, which are further divided into 204
sub-categories. Some models of ModelNet40 dataset are
shown in FIGURE 7. We follow the official splitting sep-
aration method to divide the dataset into train, validation
and test subsets with the proportion of 70%, 10% and 20%
respectively. The data set has two versions: the normal ver-
sion and the disturbed version, whose all images are randomly
rotated. In this paper, we use the normal version to carry out
experiments.

B. VIEW FEATURE EXTRACTION NETWORK SELECTION
AND CONVERGENCE ANALYSIS
In order to find the optimal network structure for view feature
extracting, we testify the proposed 3D object recognition
method using different network structures. Here, we respec-
tively use the network structures of AlexNet, VGG-16,
ResNet-18, ResNet-34 and ResNet-50 to perform 3D object
recognition experiments. From TABLE 1 we can see that the
ResNet-34 network structure performs best in term of the Per
Class Accuracy and the Per Instance Accuracy. Furthermore,
the training time is within the acceptable range. Therefore,

FIGURE 7. Some models of ShapeNet Core55 dataset.

TABLE 1. The algorithm performance under different network structures.

the ResNet-34 network is adopted as the base network of our
proposed GA-MVCNN method.

FIGURE 8 presents the changes of the Per Class Accuracy
with respect to training epochs, and FIGURE 9 presents the
changes of the Per Class Accuracy with respect to training
epochs. From FIGURE 8 and FIGURE 9, we can conclude
that no matter which network structure is used, the proposed
GA-MVCNNmethod is convergent. The ResNet-34 network
based GA-MVCNN method converges better than other base
network based GA-MVCNN methods.

C. CLASSIFICATION EXPERIMENTS ON MODELNET40
In this section, the proposed GA-MVCNN base 3D object
recognitionmethod is used to perform 3Dobject classification
experiments on ModelNet40 dataset. Then, we compared our
proposed method with other state-of-the-art methods, includ-
ing the voxel based methods, the point cloud based methods,
the multi-view based methods and the panoranmic-view
based methods. In order to evaluate the robustness of the
proposed methods, we randomly selected the training and
testingmodels 10 times to obtain the same 10 cross-validation
splits. We average 10 classification accuracies as the final
results. TABLE 2 presents the quantitative experimental
results on ModleNet40. We can see that the performances of

33330 VOLUME 9, 2021



H. Zeng et al.: Hierarchical GA-MVCNN for 3D Object Recognition

FIGURE 8. The Per Class Accuracy vs training epoches.

FIGURE 9. The Per Instance Accuracy vs training epoches.

TABLE 2. The classification accuracy of each method on
ModelNet40 data set.

the multi-view based methods are higher than other kinds of
methods, and our proposedmethod outperform othermethods
in both of the two criteria. The Per Class Accuracy is 1.2%
higher than that of the second-highest MHBN [53] method,

and the Per Instance Accuracy is 1.2% higher than that of the
second-highestMVCNN-new [7]method. The improvements
justify the effectiveness of our proposed GA-MVCNN base
3D object recognition method. Furthermore, the standard
deviation of the Per Class Accuracy is ± 1.3%, and the
standard deviation of the Per Instance Accuracy is ±2.1%.
From experimental results, we can conclude that the proposed
method have good reliability.

D. RETRIEVAL EXPERIMENTS ON SHAPENET CORE55
In this section, we evaluate the retrieval performance of our
proposed method on ShapeNet Core55 dataset. In the training
stage, we first generate multiple views of the 3D object.
Then we train our proposed network for classification task.
The output vector in the front of the final fully connection
layer of the network is used as the 3D object feature in
the following retrieval experiments. For the testing sample,
we first compute its corresponding global feature using the
trained network. Then, we use the L2 distance measure to
obtain the retrieval results. Given a 3D object to be queried,
the first 1000 retrieved 3D objects are taken as the retrieval
result. In the experiments, we use three popular criteria:
F-score, mAP and normalized discounted cumulative gain
(NDCG) with testing range N equaling to 1000. We calculate
micro-averaged values to describe the influence of differ-
ent classes sizes and macro-averaged values for the entire
database.
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FIGURE 10. Randomly select the top 10 retrieval results of 5 categories for visualization.

TABLE 3. Comparison of retrieval performance with different methods on the normalized ShapeNet Core 55 data set.

We compared our proposed GA-MVCNN based 3D object
recognition method with the ZFDR method [54], the Deep-
VoxNet method [55], the DLAN method [56], the Rota-
tionNet method [27], the Improved GIFT method [57],
the ReVGG method [55], the MVFusionNet method [55],
the CM-VGG5-6DB method [55], the GIFT method [58], the
MVCNN method [4], the PANORAMA-ENN method [59],
the PANORAMA-NN method [60] and the SPNet_VE
method [52]. TABLE 3 presents the comparative experi-
mental results. On the micro setting, our proposed method
outperforms all the comparative methods by 0.5%-52.1%,
0.2-58.2% in terms of F-score and mAP. In terms of NDCG
criteria, our proposed method is lower than the Rotation-
Net method and the SPNet_VE method, but it is higher
than other comparative methods. On the macro setting, our
proposed method outperforms all the comparative methods

by 1.4%-43.9%, 0.1-35.7% in terms of F-score and mAP.
In terms of NDCG criteria, our proposed method is only
lower than the SPNet_VE method. From the above analysis,
we can prove the effectiveness of our proposed GA-MVCNN
method.

Furthermore, some retrieval results that include the given
query and the top 10 retrieved 3D models; mistakes are
highlighted in red. From FIGURE 10, we can see that the
retrieval results of the Bowl class with ID 2880940 and the
Table class with ID 3991062 is wrongly retrieved have wrong
results, while the retrieval results of the other four classes
are correct. Analyzing the poor results of the Bowl class and
the Table class, we can find that the projective views of this
class are similar. So it is very important to select a good
view projection strategy for the multi-view based 3D object
analysis methods.
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TABLE 4. The ablation studIES.

E. ABLATION STUDIES
In this part, we perform ablation studies to test the influence
of different modules in our proposed GA-MVCNN method.
We use the ResNet-34 based experimental results as the
benchmark, and the ablation studies includes the validity of
the module, the effectiveness of the hierarchy and the influ-
ence of the view projection strategy. To evaluate the contribu-
tions of each module, we remove the graph attention network,
the view selectionmodule and the feature aggregationmodule
respectively from the GA-MVCNN framework. The effec-
tiveness of the hierarchical structure is studied by ablating the
second layer of GAT based feature aggregation structure and
comparing the corresponding experimental results with the
complete algorithm. To investigate the influence of projection
strategy, we adopt the regular dodecahedron projection struc-
ture, where each vertex is a projection position to generate
20 views for each 3D object. Then we compared the 20-view
based GA-MVCNN method with the above 12-view based
GA-MVCNNmethod. The experimental results are shown in
TABLE 4.

Compared with the benchmark method, our complete
12-view based GA-MVCNN respectively improved by 1.6%
and 1.1% in terms of the Per Class AccuracyAcc. and the
Per Instance AccuracyPer Ins Acc. After removing the GAT
module, the Per Class Accuracy. and the Per Instance Accu-
racy Per Ins Acc. decreased by 0.8% and 0.7% respectively.
By removing the view selection module, both the Per Class
Accuracy and the Per Instance Accuracy dropped by 0.4%.
The removing of the correlation weighted feature aggregation
module led to 0.7% and 0.5% drops respectively on the Per
Class Accuracy and the Per Instance Accuracy, which proved
the effectiveness of the module. The above experimental
results show that each module has its own contribution to
the final GA-MVCNN method. After removing the second
layer View-GAT, the Per Class Accuracy and the Per Instance
Accuracy decreased by 0.9% and 0.5% respectively, which
verified the effectiveness of the hierarchy structure. After we
increased the number of views from 12 to 20, the Per Class
Accuracy and the Per Instance Accuracy increased by 1.2%
and 0.6% respectively. It indicates that a more complicated
3D projection strategy would improve the final performance

because the projective views may have more discriminative
information of 3D objects.

V. CONCLUSION
This paper mainly presents a novel hierarchical graph atten-
tion based multi-view convolutional neural network for 3D
object recognition. It uses the view selection module to
reduce redundant view information in multiple projective
views, which can retain the projective views with abun-
dant effective information and discard the projective views
with less effective information. Then, we use the correlation
weighted feature aggregation module to enhance the effi-
ciency of information utilization, which can assign different
weights to multiple views by measuring the information of
them. Furthermore, we use the hierarchical feature aggre-
gation network structure to make full use of the correlation
information of multiple views. To evaluate the effective-
ness of the proposed method, we designed the classification
and retrieval experiments respectively on datasets Model-
Net40 and ShapeNetCore55. Compared with other meth-
ods, our proposed method performs better. Through abla-
tion experiments, the effectiveness of the GAT based view
selection module, the correlation weighted feature aggrega-
tion module and the hierarchy feature aggregation framework
have been validated.
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