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ABSTRACT The accuracy of localization and mapping of automated guided vehicles (AGVs) using visual
simultaneous localization andmapping (SLAM) is significantly reduced in a dynamic environment compared
to a static environment due to incorrect data association caused by dynamic objects. To solve this problem,
a robust stereo SLAM algorithm based on dynamic region rejection is proposed. The algorithm first detects
dynamic feature points from the fundamental matrix of consecutive frames and then divides the current
frame into superpixels and labels its boundaries with disparity. Finally, dynamic regions are obtained from
dynamic feature points and superpixel boundaries types; only the static area is used to estimate the pose
to improve the localization accuracy and robustness of the algorithm. Experiments show that the proposed
algorithm outperforms ORB-SLAM2 in the KITTI dataset, and the absolute trajectory error in the actual
dynamic environment can be reduced by 84% compared with the conventional ORB-SLAM2, which can
effectively improve the localization and mapping accuracy of AGVs in dynamic environments.

INDEX TERMS SLAM, dynamic area detection, stereo vision, automatic guided vehicle.

I. INTRODUCTION
With the rapid development of industrial automation, auto-
mated guided vehicles (AGVs) have been widely used in the
fields of material transportation, smart storage, and power
grid inspection. The mature AGV guidance technologies
include magnetic [1], [2] and laser guidance [3], [4]. These
guidance methods have been under development for a long
time, but their respective shortcomings are also prominent.
Magnetic guidance must arrange magnetic tapes or magnetic
nails in the working area and use the magnetic sensor on
the AGV to identify and track these magnetic materials to
complete navigation. This method has poor anti-interference
ability and low accuracy. Laser guidance has high precision
but requires the placement of a sufficient number of reflectors
in the working environment that cover the size of the working
area and overcome the degree of occlusion of various parts
of the space. As an emerging technology in recent years,
visual guidance has the advantages of no prior marking, low
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sensor cost, rich information acquisition, and high localiza-
tion accuracy. As the core technology of visual guidance,
visual simultaneous localization and mapping (SLAM) has
become a hot topic of research in recent years.

Visual SLAM uses images as the only input, calcu-
lates camera position and reconstructs a three-dimensional
map through multi-view geometry to enable localization
in uncharted scenes and the creation of consistent maps.
MonoSLAM [5] can be considered the first approach to bring
the general SLAM problem from the robotic community into
pure vision. Since then, after several decades of develop-
ment, many impressive SLAM systems have emerged, e.g.,
ORB-SLAM [6], LSD-SLAM [7], and DSO [8]. These algo-
rithms are designed based on the assumption that objects in
the scene are stationary [9] and interference from dynamic
objects would directly affect localization and mapping accu-
racy. In AGV operation scenarios, dynamic objects, such as
people, forklifts, and other AGVs, inevitably exist. These
dynamic objects can cause false correspondences or occlu-
sion of previously tracked features, leading to tracking fail-
ure [10], which can cause the guidance system to malfunction
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and the AGV to travel out of the defined area, causing loss
of public property and personal safety issues. Improving the
accuracy of SLAM in dynamic scenarios has thus been an
important research direction [11].

To remove the influence of dynamic objects on the SLAM
algorithm, two consecutive frames and disparity information
are used to detect dynamic regions, and dynamic regions
are removed from the front end of the SLAM algorithm to
avoid false correspondences caused by objects in the dynamic
regions. The main contributions of this paper are as follows.

• A stereo SLAM based on dynamic region rejection is
proposed, in which a novel dynamic region detection
algorithm is integrated into the front end. The effect of
this dynamic area detection algorithm is independent of
localization accuracy.

• The SLIC algorithm is improved to remove the redun-
dant computations and improve the speed of dynamic
area detection.

• Experiments were performed using the KITTI dataset
and real scenes. The results demonstrate the effec-
tiveness of the proposed SLAM algorithm in various
dynamic environments.

II. RELATED WORK
The solutions to the SLAM problem in dynamic scenes are
roughly divided into two categories according to the object,
the first of which is to operate on features and reduce their
influence on the estimation of pose [12]–[15]. Most SLAM
systems treat dynamic points as outliers and are not involved
in localization and mapping. Typical outlier rejection algo-
rithms, such as random sample consensus (RANSAC) [16]
used in ORB-SLAM and the robust cost function used in
PTAM [17], are able to reject dynamic features to some
extent but fail when the number of dynamic features is large.
In Ref. [13], robot odometry was used to obtain the funda-
mental matrix and dynamic feature points were rejected by
applying constraints on the epipolar geometry and flow vector
bound, the rejection effect of which is affected by the accu-
racy of the odometry. In Ref. [14], a method for calculating
static weights was presented. By combining the static weights
of each feature with depth information to estimate the camera
pose, the negative effects on the estimation caused by moving
objects are reduced. However, the above-mentioned methods
cannot completely remove the impact of dynamic objects.

The other solution to the SLAM problem in dynamic
scenes is to detect dynamic regions of the graph, which
are not involved in the subsequent algorithm [18]–[22].
In Ref. [19], superpixel segmentation on two consecutive
frames was performed, and propagated the superpixels of the
current frame propagated to the previous frame. The Jaccard
distance from the propagated superpixel to the superpixel of
the previous frame with the largest overlap was calculated,
and an adaptive threshold was used to determine whether
the propagated superpixel belonged to the moving object
using the Jaccard distance. In Ref. [20], the difference in
pixel intensity between the current frame and the ego-motion

compensated previous frame was used to roughly detect
motion. Pixel classification was done with the segmentation
of the quantized depth image. Since the ground is similar
to the depth of a dynamic object, this algorithm causes a
portion of the ground to be classified as dynamic as well.
Semantics, as high-level image features, can help the SLAM
system to better understand its surroundings [23], allowing
it to select features or optimize data association to improve
robustness. In Ref. [21], the contours of the semantic object
in the frame were segmented by SegNet. The model was
then combined with motion detection to determine whether
the object was dynamic or not. In Ref. [22], Mask R-CNN
was used to pixel-wise segment the priori dynamic objects in
frames and the SLAM algorithm does not extract features on
them. Dynamic objects are detected with multi-view geome-
trymodels and removed. The occluded background is patched
using the previous keyframe information. However, the use
of deep learning-based methods requires extensive training
of the network, which has high demands on computational
performance, and the resulting models may be affected by
the training data, leading to low generalizability and poor
interpretability.

In combination with the two categories of methods,
a SLAM algorithm based on the rejection of dynamic regions
is proposed in this study. First, the algorithm quickly identi-
fies the approximate regions of dynamic objects in the image
by a few feature points and epipolar geometry, avoiding the
processing of the entire image. Then, dynamic objects in the
region are segmented using a less computationally intensive
superpixel algorithm and easily accessible disparity infor-
mation. Finally, dynamic regions are excluded by dynamic
feature points and dynamic object boundaries, and only the
static regions are used for estimation of the pose, to obtain
more accurate trajectories and maps.

III. SYSTEM DESCRIPTION
Commonly used vision sensors for visual SLAMaremonocu-
lar cameras, RGB-D cameras, and stereo cameras.Monocular
cameras suffer from scale uncertainty in SLAM algorithms
due to the limitations of their sensor properties. RGB-D cam-
eras are capable of outputting RGB color maps and aligned
depth maps. Depth maps are calculated by actively emitting
an infrared beam of light and receiving its reflection. This
method has a limited measurement range and is susceptible
to the effects of infrared light emitted by sunlight or other
sensors. Hence, a binocular stereo camera was chosen as the
visual sensor in the work described in this paper.

Fig. 1 shows an overview of our proposed SLAM algo-
rithm. After acquiring the paired images, the disparity of
each point is calculated using semi-global block matching
(SGBM) [24] for stereo matching. Next, subsequent process-
ing is performed.

A. DYNAMIC REGION-OF-INTEREST EXTRACTION
The idea of the proposed approach is straightforward. The
first step is to use few feature points to roughly detect
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FIGURE 1. Proposed algorithm framework. The dynamic object detection
algorithm is integrated into the front-end, which consists of three steps:
SGBM, dynamic ROI extraction, and dynamic region marking.

moving objects based on an epipolar constraint. Popular fea-
ture extraction methods include scale-invariant feature trans-
form (SIFT) [25], speeded-up robust features (SURF) [26],
and features from accelerated segment test (FAST) [27]. SIFT
is scale and rotation invariant in nature. This excellent per-
formance results in a huge amount of computation and a long
computation time. SURF is an improvement on SIFT and can
increase computing speed by an order ofmagnitude, but it still
struggles with real-time performance. FAST is a corner-point
feature. It detects quickly by comparing the intensity of the
center point with the surrounding pixels. Fig. 2(a) shows the
corner points extracted from an image using the FAST extrac-
tor in OpenCV. The extracted feature points are dense and
stacked heavily, with some objects having few or even no fea-
ture points. To better detect dynamic objects, feature points
must be extracted uniformly in the image. A quadratic tree is
a tree-like structure with four sub-blocks under each node that
is commonly used for data classification in two-dimensional
space. By filtering the feature points in the image through
a quadratic tree, the distribution of feature points can be
made more uniform. The improved extraction process is as
follows. (1) The image is divided into several square regions
and the FAST extractor is used to extract excess features from
each square region. (2) The initial nodes are assigned to the
image and the feature points are put into the corresponding
nodes. (3) The process checks whether each node contains
one feature point only, and, if not, divides the region in which
it is located into four parts and assigns new nodes to these
four parts (the feature points in the old node are stored in
the corresponding new node). (4) Step (3) is repeated until
the total number of nodes that contain a feature point reaches
the desired number of feature points N. Fig. 2(b) shows the
effect of using this method to extract feature points, which are
evenly distributed in the figure.

A set of homogenous feature points
(
Pt−11 ,Pt−12 , · · · ,

Pt−1N

)
of a previous frame was extracted by the above

method. Tracking these points using the Lucas-Kanade
method [28] obtained the corresponding feature points(
Pt1,P

t
2, · · · ,P

t
N

)
in the current frame. Fundamental

matrices F between previous and current frames are calcu-
lated for these feature pairs using the 9-point algorithm, and
a more accurate value is obtained by RANSAC. For epipolar
geometry, relation exists between the point in the previous

FIGURE 2. FAST extraction. The red points are feature points, and the gray
lines in (b) are node boundaries.

frame and the epipolar line in the current frame as

L ti = FPt−1i , (1)

where Pt−1i =

[
x t−1i , yt−1i , 1

]T
is the ith feature point of the

previous frame and L ti = [Ai,Bi,Ci]T is the coefficient of
the epipolar line where the ith feature of the previous frame
is located in the current frame. If the scene is stationary,
the features tracked in the current frame lie on their corre-
sponding epipolar line. Conversely, feature points that are
not on epipolar lines belong to dynamic objects. The dis-
tance Depi from feature point Pti to its corresponding epipolar
line L ti is calculated by the following equation:

Depi =

∣∣Aix ti + Biyti + Ci∣∣√
A2i + B

2
i

, (2)

where x ti and y
t
i are the coordinates of point P

t
i . Owing to the

presence of noise, a point is considered to be a feature on a
dynamic object when Depi exceeds a certain threshold value.
The distance threshold is proportional to the disparity at that
point. It is determined by the following equation:

Tepi = αepi + βepidi, (3)

where αepi and βepi are constants and di is the disparity value
of point Pti in the current frame.

After the dynamic feature points are obtained
[see Fig. 3(b)], regions of interest (ROIs) are acquired for
segmentation and labeling in the next step. When the distance
between one dynamic feature point and another dynamic
feature point is not greater than the distance threshold Ts,
and the difference in disparity value between them is not
greater than the disparity threshold Tdisp, these two points
are considered to belong to the same object and are classified
as a group. The closer the object is to the camera, the larger
the area occupied by the object in the image, and the greater
the distance between feature points belonging to the same
object, so the distance threshold Ts is positively correlated
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FIGURE 3. Dynamic region-of-interest extraction. (a) is the disparity
image obtained by SGBM. The red points in (b) and (c) are dynamic
feature points. The red rectangles in (c) are dynamic region-of-interests.

with disparity. The threshold Ts is given by the following
formula:

Ts = αs + βsdi, (4)

where αs and βs are constants.
To exclude noise and other factors, an object is considered

to be moving when there are more than four dynamic features
on the object. The area in which the dynamic feature points
are located is the dynamic ROI. The extracted dynamic fea-
ture sets and dynamic ROIs are shown in Fig. 3(c).

B. DYNAMIC REGION MARKING
Once the dynamic ROI is obtained, the position of the
dynamic object on the image can be roughly confirmed.
For more accurate segmentation of dynamic regions, it is
necessary to segment the image and extract the contours of
dynamic objects. Simple linear iterative clustering (SLIC)
[29] is a k-means-based superpixel segmentation algorithm
that classifies pixels using the distance DSLIC between the
Lab color vectorC = [L, a, b] and the space vector S = [x, y]
of the pixel and cluster center as a measure of similarity. The
distance DSLIC is expressed as

DSLIC =

√√√√(∥∥Cj − Ci∥∥2
Nc

)2

+

(∥∥Sj − Si∥∥2
Ns

)2

, (5)

where j = 1, 2, · · · ,K denotes each cluster center and
i the pixels within the search range of the cluster cen-
ter. Nc and Ns are the maximum color distance and max-
imum spatial distance, respectively. The maximum color

distance Nc is determined from the image. The maximum
spatial distance Ns is equal to the initial spatial distance Sstep
from the cluster center, as follows:

Ns = Sstep =

√
m× n
K

, (6)

where m and n are the length and width of the image, respec-
tively, and K is the number of cluster centers sets. If the
input image is a grayscale map, the Lab color vector can be
simplified to a one-dimensional vector with only grayscale
values: C = [gray].
The steps of the SLIC algorithm are as follows. (1) The

cluster centers are distributed equally in the image with Sstep
as the distance. (2) The distances from each cluster center
to pixels are computed within a 2Sstep × 2Sstep region and
the pixel is assigned to the class with the smallest distance.
(3) The cluster center for each cluster is updated. (4) Steps
(2) and (3) are repeated until convergence (typically 10 repeti-
tions) to obtain better results. From the previous step, it can be
seen that each iteration must calculate the distance between
the cluster center and the pixels in its 2Sstep × 2Sstep range.
However, only the cluster of pixels near the edges would
change in each iteration. Calculating the distance between
the clustering center and its nearby pixels is completely
redundant. For real-time considerations, a new cluster update
approach is proposed inwhich only unstable pixels at the edge
are classified and computed for each iteration. The steps are
as follows. (1) The cluster centers are evenly distributed and
edge pixels are marked as unstable points. (2) The distances
from each cluster center to unstable points are computed
within a 2Sstep × 2Sstep region and the cluster and unstable
markers are updated. (3) The cluster center and the unsta-
ble flag of pixels adjacent to unstable points are updated.
(4) Steps (2) and (3) are repeated until convergence. The
criteria for updating the unstable point marker in step (3) can
be expressed by the following equation:

Flagp =


1, if cluster(p) 6= cluster(q)
∨ Flagq = 1

0, otherwise,

(7)

where q is the unstable point updated in step (2) and p the
pixel in the four neighborhoods of q. Fig. 4 shows the process
of updating the flags for unstable points. Superpixel segmen-
tation is performed on the dynamic ROIs using the modified
SLIC algorithm. The effect is demonstrated in Fig. 5(a), from
which it can be seen that the edges of the superpixels are better
able to outline the object.

However, one cannot distinguish which superpixels belong
to the same object, and so it is necessary to confirm the type of
boundaries of the superpixels. Generally, there are three types
of boundaries: co-planar, hinge, and occlusion. Creating a
disparity plane model for each superpixel, the disparity plane
model can be formulated by the following equation:

dp = αjxp + βjyp + γj, (8)
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FIGURE 4. Update of the unstable point. Identical colors indicate that the
points belonging to a single cluster center and the shaded areas indicate
unstable points.

where j = 1, 2, · · · ,K ; αj, βj, and γj are the disparity plane
parameters of the jth superpixel, xp and yp are the coordinates
of point p in the superpixel, and dp is the disparity value of
point p in the superpixel. Owing to mismatching and noise,
several outliers exist in the disparity obtained by SGBM. The
RANSACmethod was used to reject outliers to obtain a more
accurate disparity plane model.

The boundary energy is denotedE = Esmo+Eprior to deter-
mine the type of the superpixel boundary. Esmo is the plane
smoothness energy used to check boundary-plane agreement.
If two superpixels belong to the same object, which means
that they are co-planar, their disparity planes should agree.
If they are hinge type, then their disparities should agree in
their boundaries. If they are occlusion type, the occluding
one should be closer to the camera and have greater disparity.
Thus,

Esmo
(
θi, θj, oi,j

)

=



φocc
(
θi, θj

)
if oi,j = lo

φocc
(
θj, θi

)
if oi,j = ro

1
|Bi,j|

∑
p∈Bi,j

(
d̂ (p, θi)− d̂

(
p, θj

))2
if oi,j = hi

1
|Ui,j|

∑
p∈Ui,j

(
d̂ (p, θi)− d̂

(
p, θj

))2
if oi,j = co,

(9)

where θi and θj are the disparity plane parameters of the super-
pixels si and sj, respectively; oi,j denotes the type of bound-
ary between superpixels si and sj; lo denotes left occlusion,
where a small indexed superpixel occludes a large indexed
superpixel; ro denotes right occlusion, as opposed to lo; hi
denotes hinge; and co denotes co-planar. Bi,j is the set of
pixels on the boundary between superpixel si, sj;Ui,j is the set
of pixels in the concatenation of superpixel si and sj. d̂ (p, θi)
is the estimated disparity for point p. φocc

(
θfront , θback

)
is a

function that penalizes occlusion boundaries, which is given
by the following expression:

φocc
(
θfront , θback

)
=


λpen if

∑
p∈Bfront,back

(
d̂
(
p, θfront

)
−d̂ (p, θback)

)
< 0

0 otherwise.

(10)

FIGURE 5. Dynamic region marking. The blue lines in (a) are the
boundaries of superpixels. The red lines in (b) are the boundaries of type
occlusion. The rectangle regions in (c) are the result of dynamic object
detection.

Eprior is the complexity energy function used to make the
solution of the total energy more continuous:

Eprior
(
oi,j
)
=


λocc if oi,j = lo ∨ oi,j = lo
λhinge if oi,j = hi
0 if oi,j = co,

(11)

where λocc, λhinge are constants with λocc > λhinge > 0.
The boundary type of each superpixel is obtained by min-

imizing the energy function E . In Fig. 5(b), the red lines
indicate the boundaries of type occlusion, which provide a
good delineation of the objects in the figure. Starting at the
dynamic feature point, the search for boundaries proceeds
in the positive and negative directions of the x and y axes
and stops when an occlusion-type boundary is found. The
minimum enclosing rectangle is obtained for all found bound-
ary points. The rectangular regions are the dynamic regions,
as shown in Fig. 5(c).

C. TRACKING AND MAPPING
The proposed robust SLAM algorithm uses the same frame-
work as ORB-SLAM, which is divided into three indepen-
dent threads: tracking, local mapping, and loop closing. The
image is divided into static and dynamic regions by the above
method. The tracking thread only extracts feature points in the
static region to match the map points and calculates the poses.
Optimization of camera pose is accomplished by minimiz-
ing reprojection errors using motion-only bundle adjustment
(BA). The local mapping thread is responsible for managing
the map points and performing local BA to optimize the
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position and map points when a new keyframe is input. The
loop-closing thread detects whether a loop has occurred, and
when a loop occurs, it stops the local mapping thread to create
a new thread to perform a global BA of the poses and map
points. Fig. 6 shows the processing of map-point matching
as well as the top view of the localization and mapping
results. ORB-SLAM only uses RANSAC to reject dynamic
feature points that do not match the currently estimated pose
to ensure the accuracy of the localization. However, because
of the large number of dynamic feature points, some are
considered as inliers involved in the estimation of the pose
and mapping. Dynamic features of map points are stacked in
front of the camera and existing static objects are repeatedly
added to themap. The camera position drifts accordingly. The
proposed method does not extract feature points in dynamic
regions, which means that no feature points in the dynamic
region are involved in map-point matching. Therefore, local-
ization andmapping are not affected by dynamic regions. The
map is built accurately, and the camera pose is stable.

FIGURE 6. Localization and mapping comparison. These images are the
same frame during the sequence processed by the SLAM system. The
green points in the top row of the figures are the matched map points
and the red rectangle is the dynamic region detected by the proposed
method. The red points in the bottom row are the map points, and the
green triangles are the poses of the camera.

IV. EXPERIMENTAL RESULTS
The proposed method was tested on both public datasets and
real scenarios to verify its performance. The AGV used was a
two-wheeled differential vehicle with a binocular camera that
outputs a grayscale image of size 752 × 480. The computer
employed was a Lenovo Y50-70 laptop with an i5-4210H
CPU and 8 GB of RAM running Ubuntu 16.04.

A. DYNAMIC REGION DETECTION
The dynamic region detection algorithm proposed in the
paper was validated as described herein. Since there are no
publicly available datasets for dynamic objects, the data used
in this experiment are images from the KITTI dataset [30]
containing dynamic objects and a photo set taken by the
AGV in real scenes. Fig. 7 shows examples of dynamic area

detection on the photo set of real scenes including vehicles,
bicycles, and pedestrians on a road. Fig. 8 shows examples
of dynamic area detection on the KITTI dataset, with the
dynamic target being all moving vehicles. It can be observed
that the method proposed in this paper is able to accurately
segment the dynamic regions of the figures. The proposed
algorithm can distinguish between two different dynamic
objects even in the presence of occlusion of the moving object
(e.g., the second and third columns of both Figs. 7 and 8).
Some static features are incorrectly identified as dynamic
features (e.g., the first two columns of Fig. 7 and the second
column of Fig. 8). The reason for this phenomenon is that
there are too many dynamic feature points in the figure,
resulting in an inaccurately calculated F matrix. When the
dynamic region is later identified, these feature points are not
surrounded by boundaries labeled as occlusion, so the region
is not recognized as dynamic.

FIGURE 7. Examples of dynamic area detection on realistic photos. First
row, disparity images obtained by SGBM; second row, dynamic regions of
interest; third row, results of SLIC and boundary marking; fourth row,
dynamic areas (red rectangles) and ground truths (green rectangles).

Table 1 shows the results of this method for the KITTI
dataset and the photo set of real scenes. Table 2 shows the
evaluation indexes in dynamic target detection. Precision and
recall are calculated by the following equations:

P =
TP

TP+ FP
, (12)

R =
TP

TP+ FN
, (13)

TABLE 1. Dynamic area detection results.
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FIGURE 8. Examples of dynamic area detection on KITTI benchmark. First row, disparity images obtained by SGBM; second row, dynamic regions of
interest; third row, results of SLIC and boundary marking; fourth row, dynamic areas (red rectangles) and ground truths (green rectangles).

TABLE 2. Algorithm evaluation indexes.

where TP is the number of correctly identified dynamic
objects, FP the number of incorrectly identified dynamic
objects, and FN the number of undetected dynamic objects.
The Intersection over Union (IoU) is the ratio of the inter-
section and union between the detected region of a dynamic
object and its ground truth:

IoU =
DR ∩ GT
DR ∪ GT

, (14)

where DR is the detected region of dynamic object and GT
the ground truth of the dynamic object.

As can be seen from Table 2, the method advanced in
this paper yields good results for all indexes, with both a
precision and recall of over 85%. In the photo set of real
scenes, the indexes are higher than those using the KITTI
dataset because the dynamic objects in the figure are closer
to the camera and the imaging is larger in the figure.

B. STEREO SLAM WITH DYNAMIC REGIONS REMOVED
The SLAM algorithm proposed in this paper was validated
using sequences containing dynamic scenes of the KITTI
dataset. Sequence 01 is a highway scene and sequences 03,
04, 05, 07, and 08 are town scenes, in which sequences
05 and 07 contain loops. There are two metrics to evaluate

SLAM systems: absolute trajectory error (ATE) and relative
pose error (RPE). The ATE is the difference between the
estimated trajectory and ground truth, which can directly
reflect the algorithm accuracy and global consistency of
the estimated trajectory, and is usually used to evaluate the
performance of the whole SLAM system. The RPE calcu-
lates the difference in the amount of pose change over the
same time stamp and is suitable for evaluating the drift of
the system. We employed the absolute trajectory root-mean-
square error (RMSE) tabs [31], average relative translation trel
and rotation rrel errors [30] for quantitative evaluations.
We compare the proposed method with the ORB-SLAM2 [6]
and DynaSLAM [22] for experiments, and the experimental
results are shown in Table 3. Note that the ORB-SLAM2 and
DynaSLAM mentioned in this paper are both their stereo
versions. In this experiment the loop-closing threads of all
algorithms are open. It can be seen that our method performs
better than the other two methods for these KITTI datasets
containing dynamic targets. In these sequences, most of the
vehicles are parked on the curb and occlude larger areas of
the frame. DynaSLAM excludes all cars as dynamic objects
without distinction, leaving fewer feature points for local-
ization. In contrast, our method only eliminates the moving
vehicles, so that ours performs better than DynaSLAM for
most sequences.

To verify the effectiveness of the proposed algorithm in
real dynamic scenes, five dynamic scenes were designed.
Scene 1 shows the AGV stationary in a dynamic environ-
ment. Scenes 2 and 3 show the AGV driving a straight
line approximately 13.6 m long in a dynamic environment.
Scenes 4 and 5 are scenes in which the AGV travels
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TABLE 3. Contrast Experiments Results on KITTI Dataset (Units: m).

TABLE 4. The ATE of Each Algorithm for Real Environment (Units: m).

TABLE 5. The RPE (Translation Part) of Each Algorithm for Real Environment (Units: m).

a 6.4 m × 8.8 m rectangular loop in a dynamic environment.
The dynamic environment of scenes 1, 2, and 4 are low
dynamic, with only one person crossing in front of the AGV.
Scenes 3 and 5 are highly dynamic, with at most three people
appearing in front of the screen at the same time. They pass
or walk in front of the AGV. Particularly, in scene 5, there
is a person who keeps leading the way in front of the AGV
during the whole rectangular loop travel. Tables 4 and 5 show
the ATE and RPE (translation part) of each algorithm for
scenes 1–5, respectively. To facilitate further comparisons,
the RMSE, mean error, median error, and standard deviation
(S.D.) are presented in these tables. RMSE is susceptible
to large or occasional errors and is better able to be used
to evaluate the robustness of the algorithm [32], whereas
S.D. is better able to be used to evaluate system stability [33].
In this experiment the loop-closing threads of all algorithms
are open.

As can be seen from Tables 4 and 5, the proposed method
performs similarly to DynaSLAM in real dynamic scenes,
but outperforms ORB-SLAM2. In the case of scene 1,
in which the camera is stationary, the proposed method drifts
essentially unaffected by the pedestrian. In scenes 2–5,

FIGURE 9. Trajectory error of each algorithm in scene 1. (a) is the frame
with id 150, the pedestrian was walking to the right in front of the
camera. (b) is the frame with id 250, the pedestrian was turning. (c) is the
frame with id 350, the pedestrian was walking backwards.

the localization accuracy of the proposed method is higher
compared to ORB-SLAM2, where the average improvement
values of RMSE and S.D. are approximately 84% and 79%
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FIGURE 10. The number of dynamic feature points rejected by the
proposed method in scene 1. Our method works well most of the time,
but fails in a few cases, such as when the pedestrian turns
(frame 241-263), or when the pedestrian moves slowly
(frame 272-279, etc.).

for ATE and approximately 31% and 41% for RPE, respec-
tively. The results of scenes 3 and 5 show that the proposed
method performs well even in a highly dynamic environment.
The improvement of the proposed method over ORB-SLAM
in the KITTI dataset is lower than that in the real scenes, due
to the wide field of view of the camera used in the KITTI

dataset and the small percentage of dynamic objects in the
image, most of which can be removed by RANSAC.

Fig. 9 shows the comparison of the trajectory error between
the proposed method and ORB-SLAM2 in scene 1. The
pedestrian walks from the left to the right of the camera
at frame 125, turns at frame 230 then walks to the left,
and finally walks out of the camera’s view at frame 420.
The trajectory of ORB-SLAM2 begins to drift to the left
when the pedestrian appears, and then drifts to the right
when the pedestrian turns around and walks back. The tra-
jectory error is stabilized at 0.18 m after the pedestrian
walks off the screen. In contrast, the proposed algorithm
is almost unaffected during the entire pedestrian walking
process. Fig. 10 shows the number of dynamic feature points
that are rejected in each frame of scene 1. In this experiment,
we extract a total of 1200 feature points per frame. These
rejected feature points which should have been extracted on
the dynamic region would be replaced by feature points in the
non-dynamic region to ensure that there are enough feature
points for localization and mapping.

Fig. 11 shows the estimated trajectories of ORB-SLAM2,
DynaSLAM, and the proposed method for scenes 2–5, and
the ground truths of each scene. ORB-SLAM2 drifts badly
when a dynamic object passes in front of the camera, with
maximum trajectory errors of 1.56 and 3.85 m in scenes 2 and
3, respectively. Even after global optimization, the maximum
trajectory errors for scenes 4 and 5 are 1.12 and 2.45 m,

FIGURE 11. Estimated trajectories and ground truth in each scene. The coordinates of all starting points (black points) in the figure are (0, 0).
Black dashed lines in the graph are ground truth. The blue, green and red lines are the estimated trajectories of ORB-SLAM2, DynaSLAM and
our method, respectively.
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respectively. Whereas the maximum trajectory error of our
method is only 0.31 m. The estimated trajectories of the
proposed algorithm in these four scenes are roughly the same
as those of DynaSLAM, but those of DynaSLAM are much
smoother.

TABLE 6 shows the average time spent in real scenes
for the front-end part of each algorithm. Note that the run-
time results of DynaSLAM which uses Mask R-CNN in the
dynamic segmentation part are obtained by running on an
Nvidia GeForce GTX 860M GPU. In contrast, our method
only used CPU, and can reach 7.4 frames per second (fps) in
real operation, basically meeting the real-time requirements
of current AGV localization and mapping.

TABLE 6. Runtime for the Front End of Each Method (Unit: Ms).

V. CONCLUSION
A SLAM algorithm based on dynamic region rejection is
proposed in this paper. The dynamic feature points are filtered
out using the fundamental matrix, which is computed using
the feature pairs obtained by tracking the optical flow in
successive frames. Then, the boundaries are labeled using the
disparity plane of the superpixels, combining dynamic feature
points to obtain dynamic regions. The proposed SLAM algo-
rithm does not extract feature points in the dynamic region but
only uses the information in the static region to estimate the
pose, thus removing the negative effects caused by moving
objects on the algorithm and improving localization andmap-
ping accuracy. Experimental results in both the KITTI dataset
and a photo set of real scenes elucidate that our dynamic
area detection algorithm is both accurate and efficient. The
proposed improved SLAM algorithm performs better than
ORB-SLAM2 in theKITTI dataset and in real-world dynamic
scenarios with higher localization accuracy. Its accuracy is
comparable to DynaSLAM, but faster, capable of reaching
7.4fps. In summary, the proposed algorithm can effectively
improve localization and mapping accuracy in dynamic envi-
ronments and can meet the real-time demands of AGVs.

However, our method is not perfect and there are some
limitations. First, our method does not perform well when
dynamic objects are moving slowly or only partially in
motion. Second, some constants in the algorithm need to be
set relying on experience or trial and error to get better perfor-
mance. In future work, we need to improve the sensitivity of
our method. And design adaptive threshold constants so that
the algorithm performs equally well in different situations.
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