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ABSTRACT Mapping socio-economic indicators with a raster format is still a great challenge. The nighttime
light (NTL) datasets have been widely utilized to estimate the socio-economic parameters. However,
the precision of the published datasets was too coarse to meet related issues such as flood losses assessment,
urban planning, and epidemiological studies. The present study calibrated gross domestic product (GDP),
population (POP), electric consumption (EC), and urban build-up area (B-A) at 100 m resolution for 45 cities
of China in 2018 using Luojia1-01 NTL datasets via random forest (RF) as well as geographically weighted
regression (GWR)model. The linear regression (LR), back propagation neural network (BPNN), and support
vector machine (SVM)methodswere selected for comparisonwith GWR andRFmodels. Besides, the Suomi
National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) was chosen
for comparison with Luojia1-01. The ten-folded cross-validation (CV) has been used for evaluating accuracy
at county and city scales. Finally, the distribution maps of socio-economic parameters were illustrated
and some findings were obtained. First, the validation results revealed that the calibration at the city-scale
outperformed the county or district scale. Second, the precision of the Luojia1-01 NTL dataset surpassed
the NPP-VIIRS NTL dataset on the same administrative scale except for some specific situations. Third,
the precision of the simulation for the gross domestic product (GDP) is the highest than the others, followed
by electric consumption (EC), build-up area (B-A), and population (POP). Fourth, the optimum model
varied according to the socio-economic parameters. Fifth, the distribution of socio-economic parameters
exhibited obvious spatial heterogeneity. This paper can supply scientific support for calibrating socio-
economic parameters in other regions.

INDEX TERMS Luojia1-01, NPP/VIIRS, socio-economic parameters, GWR, machine learning, multiple
scales, China.

I. INTRODUCTION
Socio-economic parameters are valuable data sources for
governments making decisions and scientific
researches [1], [2]. China, the world’s second-largest
economy, is undergoing massive infrastructure construc-
tion [3], [4]. Industrialization, urbanization [5] and human
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activities are causing severe disturbances to the land surface.
The traditional statistical datasets with the political division
scale are inadequate in describing socio-economic phenom-
ena because the frequency of updates for statistical data is
always yearly [6]. Also, the spatial heterogeneity of socio-
economic phenomena within the administrative division can
hardly be described for the data accuracy is restricted [7]–
[12]. Meanwhile, the classic investigation methods for sta-
tistical data are time and finance-consuming [13]. Hence,
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introducing new technologies and approaches to alter the tra-
ditional workflow in collecting socio-economic parameters is
still a huge challenge [8].

Artificial lights are prevalent in most urban agglomeration
areas due to urbanization and industrialization [14], [15].
Artificial lights can be detected by nighttime light (NTL)
remote sensing at night, and the NTL has been confirmed
to be a reliable data source for monitoring anthropic activ-
ities [16]. NTL data has been introduced in many fields
recently, such as the evaluation of war losses [17], [18],
the typhoon and flood disasters assessment [19], [20],
the light pollution monitoring [21], the built-up area detec-
tion [22]–[24], impervious surface extracting [25], the cul-
tural festival and protected area identifying [26], [27],
the tourism activities [28], [29], the infrastructure mon-
itoring [30], and the crime hot spots identifying [31].
Besides, the NTL data generally have a statistically signifi-
cant relationship with socio-economic parameters including
population [32], [33], gross domestic product [34], [35],
poverty [36], [37], house vacancy [38], [39], carbon dioxide
emissions [40], and electricity consumption [41], [42]. Pre-
vious studies revealed that the NTL remote sensing supplied
a speedy, economical, and effective method to retrieve socio-
economic activities in developed areas [43]–[46].

However, some deficiencies concerning spatial and radia-
tion resolution of the existing NTL datasets are unavoidable.
Specifically, although the Defense Meteorological Satel-
lite Program’s Operational Line scan System (DMSP-OLS)
nighttime light imagery has exhibited excellent capacity in
evaluating economic parameters, the over-saturation issues
in urban centers can be hardly eliminated due to lack
of onboard radiometric calibration and limited radiomet-
ric detection [47], [48], [49]. In October 2011, the Visi-
ble Infrared Imaging Radiometer Suite (VIIRS) sensor with
a national polar-orbiting satellite (Suomi-National Polar-
Orbiting Partnership, Suomi-NPP) was launched success-
fully [50]–[52]. Observational sensitivity and spatial resolu-
tion of NPP/VIIRS have been significantly promoted. The
effectiveness of NPP/VIIRS in reflecting social and economic
activities has been highly improved compared to DMSP/OLS
[10], [53]. Whereas, gas flares, fires, volcanoes, or aurora
have not been removed by the NPP-VIIRS images. The
background noise has also not been deducted [10]. Besides,
the capacity of NPP-VIIRS in capturing small cities was
severely restricted owing to its limited spatial resolution [54].

The Luojia1-01 satellite, the first designed to collect high-
resolution nighttime light images in the world, was launched
by Wuhan University, China, on June 2, 2018 [21], [55],
[56]. The spatial resolution of the Luojia1-01 nighttime light
images has been greatly promoted with on-board calibration
(TABLE 1). The brightness and details of Luojia1-01 images
have also been improved compared with DMSP-OLS and
NPP-VIIRS [57] (FIGURE 1). Meanwhile, the Luojia1-
01 nighttime light images have demonstrated huge potentials
in many fields. For example, Jiang et al. (2018) [21] detected
artificial light pollution via Luojia1-01 and NPP-VIIRS data

FIGURE 1. The nighttime imagery of Beijing, China extracted from
DMSP-OLS (a), NPP-VIIRS (b), and Luojia1-01(c). Note: The images of
DMSP-OLS, NPP-VIIRS, and Luojia1-01 were collected in 2013, December
2018, and November 2018, respectively. The DMSP-OLS image of Beijing
used in Figure 1(a) was a yearly product.

TABLE 1. The comparison of parameters for DMSP-OLS, NPP-VIIRS, and
Luojia1-01 [55].

and concluded that the former dataset revealed better perfor-
mance than the latter. Li et al. (2018) [23] found that Luojia1-
01 achieved a higher precision in extracting an urban extent
than NPP-VIIRS images. Chen et al. (2019) [25] reported that
the Luojia1-01 dataset could produce a more precise map of
impervious surfaces. Overall, Luojia1-01, with an improved
NTL-intensity detection performance, enables a detailed look
into artificial surface lighting distribution, which supplies a
novel perspective in detecting human activities’ dynamic on
a small scale.

Socio-economic phenomena have a strong correlation with
night-time light, which can be well depicted by the regression
model [58]. Some previous studies used Luojia1-01 data to
calibrate the socio-economic parameters via the linear regres-
sion method [2]. Nevertheless, as a single global model, the
classical regression model requires the assumption of a prior
probability distribution and cannot properly capture complex
relationships [59]. So, the spatial autocorrelation feature of
socio-economic data should be taken into consideration, and
the previous methods need to be improved in precision. Some
novel methods such as deep learning and machine learn-
ing give a new perspective to simulate the socio-economic
parameters using nighttime light images. Although machine
learning such as random forest (RF) has been introduced
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to calibrate socio-economic parameters based on NTL data,
the findings of comparing the feasibility of different models,
the calibration precision at multiple scales, and the capacity
of a variety of NTL datasets in estimating socio-economic
parameters were scarce [54], [60], [61]. Therefore, evaluating
the capacity of estimating socio-economic parameters using
Luojia1-01 images via the classic regression model as well
as machine learning methods at multiple scales is strongly
desired.

The objectives of this study are: (i) to calibrate the
socio-economic parameters including gross domestic prod-
uct (GDP), population (POP), electricity consumption (EC),
and urban build-up area (B-A) based on linear regression
(LR), geographic weighted regression (GWR), Back Propa-
gation (BP) neural network, support vector machine (SVM),
and Random Forest (RF) using statistical, NPP-VIIRS, and
Luojia1-01 data of China in 2018, (ii) to validate and com-
pare the simulation results determined by different models
and multi-source data at multiple scales, (iii) to evaluate the
feasibility of calibration methods using NTL data to simulate
socio-economic parameters.

II. STUDY AREA AND DATA SOURCES
A. STUDY AREA
China, with a land area of 9.6 million square kilometers
accounting for about 1/15 of the total land area of the world,
has a vast territory. Social and economic development demon-
strated significant heterogeneity in China. The southeastern
region has the most developed economy with speedy devel-
opment. Whereas, the northwestern of China is undergo-
ing massive infrastructure construction with relatively slow
development. So, 45 cities, 352 districts (or counties) located
in different regions have been chosen as the study areas to
evaluate the robustness of the calibration model in a variety of
economical structures. The selected study areas with different
social and economic development statuses are distributed
in eastern, southern, western, northern, and central China,
respectively (TABLE 2, FIGURE 2). Meanwhile, we chose
these 45 cities, 352 districts (or counties) as study areas due to
the availability of NTL as well as socio-economic statistical
datasets.

B. DATA SOURCES
Two kinds of nighttime light remotely sensed images were
introduced to estimate socio-economic parameters including
Luojia1-01 and the NPP data. Besides, the traditional statistic
dataset on the counties’ scale was chosen for calibrating and
validating.

The Luojia1-01 NTL images can be downloaded free of
charge at the website (http://www.hbeos.org.cn/). The phe-
nomenon of datamissing is existed due to the inconsistency of
the shooting time of the Luojia1-01 images in various regions,
so in this paper, the Luojia1-01 NTL images in Decem-
ber 2018 were chosen for the data coverage was relatively
complete than other periods. Although the socio-economic

TABLE 2. The specific information of the study areas.

phenomena changed all the time, the variations during the
monthly scale were subtle that the influences for themodeling
could be neglected. So, the counterpart images in Novem-
ber 2018 and October 2018 were chosen as substitutions if
the data missing phenomenon existed in parts of the study
areas in December 2018, and we assumed that the differences
between the images in December 2018 and the images in
November 2018 and October 2018 could be ignored.

Additionally, NPP/VIIRS nighttime light data, under the
National Oceanic and Atmospheric Administration (NOAA)
(https://www.ngdc.noaa.gov/ngdc.html), were obtained from
the National Geophysical Data Center (NGDC). The images
of NPP/VIIRS in December 2018 were selected in line with
further comparisons with Luojia1-01.

The traditional statistic data in 2018 came from the
statistical yearbooks published by local governments
(Statistical Yearbook, 2019). The political boundaries orig-
inated from the Ministry of natural resources of China
(http://bzdt.ch.mnr.gov.cn/). The following table is a detailed
description of the data sources (TABLE 3).
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FIGURE 2. The distribution map of the study area of city scale, and the
topographic of China in 2018. Note: the number in Figure 2 denotes the
code of each city on the map, and the name of each city was presented
in Table 2.

C. DATA PREPROCESSING
First, the Luojia1-01 and NPP-VIIRS images of the study
areas were transformed into a CGCS2000 (China Geodetic
Coordinate System 2000) reference system with an Albers
projection after mosaicking and masking, then the Luojia1-
01 was resampled to 100m and NPP-VIIRS was resampled
to 500m, respectively.

Second, the positioning accuracy of Luojia1-01 NTL
images without geometric control points (GCPs) is less than
650 m, which is almost five times the resolution of the
image. Hence, the Luojia1-01 images have been geometri-
cally corrected via the Google Map images before analy-
sis. The intersection points of the road network have been
selected as the GCPs benefit from the high spatial resolution
of Luojia1-01 images. The geometric positioning error of
the target image has been reduced through geometric correc-
tion. The temporary light values such as volcanic eruption,
flare, exhaust gas combustion, and background noise were
not excluded in the original NPP-VIIRS night light radiation
data, which may result in negative and abnormal values in
the original radiation value, large or sudden value. So, in the
current study, outliers, and pixels with values larger than
zero were removed [62] FIGURE 3. Besides, the NPP/VIIRS
data had been corrected for absolute radiation before data
releasing. Therefore, absolute radiation correction was only
implemented for Luojia1-01 data in this study [63].

L = DN 3/2
× 10−10 (1)

where L is the radiance value after absolute radiation correc-
tion in w/m2

· sr · µm The DN value is the image gray value
for each pixel.

III. METHODS
A. WORKFLOW
The present study was conducted as follows (FIGURE 4).
First, data preprocessingwas performed on Luojia 1-01, NPP-
VIIRS, traditional statistic data, and political boundaries.

TABLE 3. Description of the datasets.

Then the zonal statistics tool from ArcGIS was used to
obtain the total NTL values of the two types of nighttime
light remotely sensed data at counties and cities scale. Fur-
thermore, the linear regression, the geographically weighted
regression (GWR), the random forest (RF), the backpropaga-
tion neural network (BPNN), and the support vector machine
(SVM)was implemented for calibrating and validating socio-
economic parameters including GDP, EC, POP, and B-A at
city and county scales. The performance of the above models
was evaluated at multiple scales. Finally, the optimal model
was selected for mapping the socio-economic parameters,
and the spatial distribution characteristics of the four socio-
economic parameters were analyzed.

B. CALIBRATION MODELS
a. LR models

SEP = a1 × TNL + b1 (2)
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FIGURE 3. The NPP-VIIRS nighttime light images before and after noise
eliminating of the examing area in 2018. Note: The above figures only
demonstrate parts of the entire study areas due to the space of the
article, and the processed methods of noise elimination for other areas
are the same. Two regions bounded by red circles were originated from
Shantou, Guangdong (a, b), and Wuhu, Anhui (c, d). The (a) and (c)
represent the original images of the sampling areas, (b) and (d) denote
the corrected images of the sampling areas. Two areas with noise are
pointed through red circles.

FIGURE 4. Research framework.

where SEP is the sum of socio-economic parameters in an
administrative unit; TNL is the total nighttime light (TNL)
in an administrative unit (i.e., the sum of all pixel values of
nighttime light data in the administrative unit); and a1 and b1
are the regression coefficients and intercept, respectively.

b. GWR models

SEPi = β1(uivi) + β2(uiv) · TNL + εi (3)

where the meanings of SEP and TNL are the same as
equation (2); β1 represents the intercepts at a specific location
(ui, vi); and β2 is the location-specific slope; The location (ui,
vi) denotes the central coordinates of the monitoring site, εi
is the error term for the county (city)i [64].
c. RF models
The Random forest (RF) algorithm [65] is a bagging

method based on regression tree (CART) analysis and classi-
fication. The benefits of RF are the significance of each fea-
ture can be assessed with unbiased estimation during the clas-
sification process, and the issues with numerous missing data
can be solved. Additionally, the efficiency of the RF model
in processing big data without any dimensionality reduction
outperforms traditional models. The classification trees were
used to decide on choosing optimal trees in predicting. The
number of classification trees in RF is large, and all variables
have to be inputted into each tree with an independent feature
for classing. Moreover, 99.9% of unrelated trees conduct
predictions that cover all conditions. The basic theory of RF
bagging is to choose the results of several weak classifiers
and form a strong classifier [66]. In this study, the simulation
result was optimal when one hundred trees (ntree= 100) were
used for conducting the RF model. The importance values
were not described because only the NTL data was selected
as the independent variable.
d. BPNN models
The back-propagation neural network (BPNN) is one of the

widely utilized artificial neural network methods. The BPNN
consists of an input layer, one or more hidden layers, and
an output layer and is relatively simple and easy-realized.
There are two basic processes of BPNN: firstly, a signal-
feed-forward process was conducted to input signals to the
input layer computing the predicted values and forward to
the output layer; secondly, an error-backward phase was
implemented to compare the predicted and observed values
and backward to the neurons in each layer, the weights,
and thresholds of the neurons are modified. Determining the
number of neurons in each layer, the maximum iterations, and
the learning rate is necessary for designing BPNN [67]. In this
study, epochs were 700, and the learning rate was 0.01.
e. SVM models
SVM, a supervised learning model and a prediction model

based on error-based learning, can be used for pattern recog-
nition and data analysis. So, SVM is widely utilized for clas-
sification and regression analysis. SVM is a binary classifier
with a perceptron function-based classification model. The
distances between the two groups can be measured by SVM
to calculate the center between the two datasets and to divide
the groups using the optimal discriminant boundary.

ω · x − b = 0 (4)

where ω denotes the weight for the entity. b denotes the
intercept. SVM detects an entity occurring at + 1 and
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another occurring at − 1 based on the discriminant bound-
ary and determines classification. The margin is the sum of
the distances between the discriminant boundary and each
entity [68].

C. MODEL VALIDATION
The performances of the calibration models were evaluated
by the ten-folded cross-validation method [69], [70]. All
samples were divided into 10 folds of the same size. Nine
of the 10 folds were selected for model training and the
remaining fold was used for model validation. Then, this
process was repeated until all of the folds had been used once
as the validation sample. In this study, themean absolute error
(MAE), root mean square error (RMSE), and determinate
coefficients (R2) were used to indicate the model accuracies.

R2 =

∑n
i=1 (SEPe,i − SEP)

2∑n
i=1 (SEPt,i − SEP)2

(5)

MAE =
1
n

∑n

i=1

∣∣SEPt,i − SEPe, i∣∣ (6)

RMSE =

√
1
n

∑n

i=1
(SEPt,i − SEPe,i)2 (7)

where n is the number of administrative units, SEP represents
socio-economic parameters including GDP, POP, EC, and
B-A. SEPt,i denotes the real SEP of administrative unit i,
SEPt,i represents the estimated SEP of administrative unit i,
and SEP denotes the actual mean SEP of the administrative
unit.

D. MAPPING SOCIO-ECONOMIC PARAMETERS
The optimal calibration model with the highest accuracy was
selected to map the socio-economic parameters using 100 m
resolution gridded variables. The predicted values of socio-
economic parameters obtained from the optimal calibration
model at the grid-scale were overestimated or underesti-
mated. So, equation (8) was implemented for correcting the
biases.

SEP′i,j = SEPi,j × (
SEPi,census
SEPi,estimated

) (8)

where SEP’i,j, and SEPi,j are the corrected and estimated
values of socio-economic parameters of administrative unit
i at pixel j, respectively, SEPi,census is the socio-economic
values of administrative unit i from the Statistical Yearbook,
and SEPi,estimated is the estimated total socio-economic values
of administrative unit i calculated with zonal statistic tool
using ArcGIS.

IV. RESULTS
A. COMPARING THE CALIBRATED AND VALIDATED
RESULTS OF SOCIO-ECONOMIC PARAMETERS USING
LUOJIA1-01 AND NPP-VIIRS NTL DATASET BASED ON
DIFFERENT MODELS AT MULTIPLE SCALES.
The socio-economic parameters in terms of GDP, POP, EC,
and B-A were calibrated based on five different models

TABLE 4. The R2, RMSE, and MAE of optimal models for each
socio-economic parameter.

FIGURE 5. The R2(a), RMSE (b), and MAE (c) of calibrated results for each
socio-economic parameter including GDP, EC, POP, and B-A using
Luojia1-01 and NPP-VIIRS NTL dataset based on LR, GWR, RF, and BP
models at the county as well as city scales of China in 2018. Note: LRC
and LRv denote the correlation coefficient (R2) of calibration and
validation for the linear regression model, respectively. The meaning for
other abbreviations of the vertical axis is similar to LRC and LRv.
GDP-NPP-County represents that the GDP was calibrated using NPP-VIIRS
NTL dataset at the county scale, and GDP-LJ-City denotes that the GDP
was calibrated using Luojia1-01 NTL dataset at the city scale. The
definition for other abbreviations of the horizontal axis is similar to
GDP-NPP-County and GDP-LJ-City.

including LR, GWR, SVM, BPNN, and RF using multi-
ple NTL datasets on the city as well as county or district
scales. Meanwhile, the ten-folded cross-validation method
was implemented to evaluate the precision of the calibrated
models. The results were shown in FIGURE 5, TABLE 5,
and TABLE 6.

Clearly, no matter which socio-economic parameter, NTL
dataset, and model we exam, the results of the calibration at
the city-scale outperform the county or district scale. Also,
for the same socio-economic parameter, the accuracy of the
simulation is better at the city scale with relatively higher
correlation coefficients (R2) and lower RMSE as well as
MAE than the county or district scale based on the same
NTL dataset excluding some special situations. For example,
the result of simulation for POP using the RF model at the
county scale (R 2

= 0.83, RMSE = 2.25, MAE = 1.57)
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TABLE 5. The r2 of calibration and validation for evaluating the precision
of calibrated models using npp-viirs and luojia1-01 ntl dataset at county
and city scales of china in 2018. (×10−2).

surpasses the city scale (R 2
= 0.78, RMSE = 14.02, MAE

= 10.98).
The precision of the calibration based on the Luojia1-

01 NTL dataset with relatively higher correlation coefficients
(R2) and lower RMSE as well as MAE surpasses the NPP-
VIIRS NTL dataset at the same scale except for some specific
situations. For example, the accuracy of simulation for EC
using the NPP-VIIRS NTL dataset (R 2

= 0.65, RMSE =
3.25, MAE = 1.75) is better than the Luojia1-01 dataset (R
2
= 0.44, RMSE = 4.08, MAE = 2.37) at the county scale.
Overall, for each socio-economic parameter, no matter

which NTL dataset, scale, and model we selected, the pre-
cision of the simulation for GDP are the most higher than
others, followed by EC, B-A, and POP. No matter which
socio-economic parameter, NTL dataset, the scale we choose
to run the calibration model, the accuracy of the RF model is
the best, followed by GWR, SVM, LR, and BPNN.

B. CHOOSING THE OPTIMAL MODELS FOR EACH
SOCIOECONOMIC PARAMETER BASED ON COMPARISON
RESULTS
The optimum models for each socio-economic parameter
were selected based on section 4.1 comparison results. For
all socio-economic parameters, the optimal models have been

TABLE 6. The rmse and mae of calibration and validation for evaluating
the precision of calibrated models using npp-viirs and luojia1-01 ntl
dataset at county and city scales of china in 2018.

found when the Luojia1-01 was inputted as the NTL dataset
and the calibration models were conducted at the city scale.
Besides, the optimum model varied according to the socio-
economic parameters. Specifically, for GDP, the optimal
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FIGURE 6. Scatter plots of observed and predicted values for GDP (a, e),
EC (b, f), POP (c, g), and B-A (d, h) via GWR and RF models using the
Luojia1-01 NTL dataset at the city scale of China in 2018. Note: the
optimal calibration models for GDP, EC, POP, and B-A are GWR, RF, GWR,
and RF, respectively.

model (R2
= 0.926, RMSE = 16.51, MAE = 10.12) was

detected as we fitted the GWR model using the Luojia1-
01 NTL dataset at the city scale. For EC, the best result
(R2
=0.91, RMSE = 10.42, MAE = 5.48) was found when

we ran the RF model using the Luojia1-01NTL dataset at
the city scale. For POP, the optimum method (R2

=0.68,
RMSE = 17.37, MAE = 12.91) was determined as we
run the GWR model using the Luojia1-01NTL dataset at
the city scale. For B-A, the optimal method (R2

=0.907,
RMSE=9.87, MAE=6.33) was obtained when we conducted
the RF model using the Luojia1-01 NTL dataset at the city
scale ( FIGURE 6).

C. MAPPING THE SOCIO-ECONOMIC PARAMETERS WITH
100M RESOLUTION BASED ON THE OPTIMAL MODELS
Each socio-economic parameter wasmapped according to the
optimum models determined by the R2, RMSE, and MAE
using the raster calculator tool from ArcGIS. The socio-
economic parameters of typical cities located in different
regions of China were illustrated due to the length of the arti-
cle, and the maps of the remaining cities were demonstrated
in the supplementary materials FIGURE 7 and Figure 9).

The distribution of GDP for Beijing exhibited obvious
spatial heterogeneity, that is, the hotspots of GDP are mainly
distributed inside the Sixth Ring Road and present a decreas-
ing trend from inner to outside. There are about two regions
distributed outside the Sixth Ring Road with a relatively
higher GDP value than the neighborhood. One is the Yudu
Mountain situated in Yanqing County, northwest of Beijing
that is a famous tourism site, the other is the Miyun County,
northeast of Beijing. Also, the distribution of GDP for Xi’an,
Shaanxi Province demonstrated significant spatial features,
that is, the concentrated GDP areas are mainly located inside
the Third Ring Road and reveal a descending trend from
inner to outside. The densest areas of GDP are situated
inside the City Wall built in Ming Dynasty, in Xiaozhai
commercial areas, Qujiang New District, and High Technol-
ogy District. For the distribution of GDP in Shenzhen city,
it represents a typical pattern that the most concentrated GDP
areas except for the Pengshan, Yantian, and Dapeng District
are mainly distributed along the South China Sea, and the

FIGURE 7. The maps with 100m resolution of four socio-economic
parameters including GDP, POP, EC, and B-A for typical cities of China
in 2018. Note: the maps of socio-economic parameters for other cities of
China were presented in the Appendix section FIGURE 9 due to the
limited space.

GDP of Longhua New District and Longgang District are
also higher than adjacent regions.Meanwhile, the distribution
characteristic of GDP for Guangzhou, Guangdong Province
is that the concentrated GDP areas are mainly located in Old
Seven District including the Yuexiu, Haizhu, Liwan, Tianhe,
Baiyun, Huangpu, and Nansha District.

The distribution of EC for Handan, Hebei Province exhib-
ited an obvious pattern that the most concentrated EC areas
were mainly distributed in urban areas and the towns of
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FIGURE 8. Scatter plots of observed and predicted values for GDP (a), EC
(b), POP (c), and B-A (d) via GWR and RF models using the Luojia1-01 NTL
dataset at the city scale of China in 2018. Note: The precision evaluation
for each map of the socio-economic parameter is based on the actual
statistical yearbook and predicted value obtained from the calibration
models.

local governments. Also, the distribution of EC for Deyang,
Sichuan Province demonstrated significant spatial features,
that is, the concentrated EC areas are mainly located in
Guanghan City and Jingyang District. The hotspots areas of
EC for Taizhou City, Zhejiang Province are along the East
China Sea. The hotspots areas of EC for Shaoxing City,
Zhejiang Province are mainly distributed in the Heqiao and
Yuexiu District and the towns of local governments.

The distribution feature of POP for Beijing was similar to
GDP and the detailed description will not be stated in this
section. The concentrated POP areas for Ningbo, Zhejiang
Province are mainly located in the main urban areas, Cixi
City, Ninghai County, and Yutao City. The hotspots areas
of POP for Suzhou City, Jiangsu Province are located in
Xiangcheng District, Kunshan District. The hotspots areas
of POP for Jieyang City, Guangdong Province are mainly
distributed in Puning City, Jiedong City, and Rongcheng City.

The B-A for Anyang, Henan Province is mainly located
in the main urban areas, Linzhou City, Tangyin County, Nei-
huang City, and Hua County. The B-A for Quanzhou City,
Fujian Province exhibits a decreasing trend from the south-
east to the northwest because the main urban area is close
to the South China Sea. The B-A for Yangzhou City, Jiangsu
Province is mainly located in HanjiangDistrict, Yizheng City,
and the majority area of Guangling District. The B-A for
Lianyungang City, Jiangsu Province is mainly distributed in
the Lianyun District, Xinpu District, and Haizhou District.

V. DISCUSSION
A. EVALUATING THE PRECISION OF THE MAPS FOR
SOCIO-ECONOMIC PARAMETERS USING
CROSS-VALIDATION METHOD BASED ON THE ACTUAL
STATISTICAL DATASET AT THE CITY SCALE.
The precision of the 100m resolution maps for socio-
economic parameters including GDP, POP, EC, and B-A was
assessed based on the actual statistical dataset from local
authorities at the city scale (TABLE 4 and FIGURE 8).

Although the precision of the GDP map was acceptable
(R2
=0.772, RMSE = 40.28, MAE = 22.28), the majority

of cities’ GDP except for Deyang City, Sichuan Province

FIGURE 9. The maps with 100m resolution of four socio-economic
parameters including GDP, POP, EC, and B-A for typical cities of China
in 2018. Note: the number in Figure 9 denotes the code of each city on the
map, and the name of each city was presented in Table 2. Figure 9 was
presented here due to the limited space in the section results.

was underestimated (Figure 8(a)). The NTL has been proved
that can be used to estimate socio-economic parameters in
many previous studies. Whereas, there are still some existing
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economic activities that have been neglected by NTL such as
agriculture in rural areas, the industrial production without
any lights at night. The capability of NTL for detecting
primary industry and secondary industry was relatively weak.
So, the predicted GDP from the current study was relatively
lower than the actual statistical value.

Overall, the precision of the EC map was relatively reli-
able (R2

=0.7, RMSE= 16.34, MAE = 9.29). However,
Figure 8(b) demonstrated that thirteen cities’ predicted EC
was higher than the real value from the local government,
and predicted EC for thirty-two cities was underestimated.
For the overestimated situation, we speculated that some
possible noise such as moonshine, the cloud may increase
the unnecessary brightness of NTL images that may lead to
overestimating the EC [54]. The most serious overestimated
areas for EC are mainly distributed in the southeast of China
close to the Sea such as Jiangmen that is adjacent to the South
China Sea, Jinhua, Quanzhou. Contrarily, the EC was under-
estimated because some electric consumption can hardly be
detected by nighttime light remotely sensed methods such as
the secondary industry.

Meanwhile, the majority of cities’ POP except for Bei-
jing, Hengyang, Jieyang, Jining, Ningbo, Quanzhou, Suzhou,
Taian, Xi’an, Zhuhai, and Zhuzhou were underestimated
because the related dots were under the 1:1 line in Figure 8(c).
The population data of the current study were obtained from
the Statistical Yearbook of the local governments. As we
know, the real population distribution exhibits spatial flow
characteristics, that is, people may work or live in another
place that the addresses are not the registered ones in the
household register [72]. So the predicted POP of the present
study showed some unavoidable errors. Lots of people from
the current study areas entered into metropolitan such as
Beijing, Suzhou, Xi’an for work. So, the actual population
for places of outputting labors such as Deyang, Lianyungang,
Putian, and Rizhao were lower than the number of population
in the Statistical Yearbook, and the population for places of
inputting labors was higher than the number of population in
the Statistical Yearbook.

For the calibrated results of B-A, the R2, RMSE, andMAE
values for evaluating the simulation were 0.687, 23.49, and
15.07, respectively. The simulated B-A value for the majority
of regionswas overestimated except for nine places especially
Guangzhou, Shenzhen, Wuhu, and Xi’an that the B-A was
severely underestimated. The metropolitan area is always
surrounded by suburbs in China. Although the suburban
areas look like the urban areas at night through NTL images
because the night light remotely sensed can hardly differen-
tiate the suburb from the urban areas just depending on the
night light. The most difference between suburban and urban
is not only the building and roads but also the basic infrastruc-
ture such as water supply and drainage, natural gas supply.
So, the suburban areas may be wrongly recognized as B-A
by NTL in the current study. The overestimated areas for B-A
are mainly located in Beijing, Hengshui, Ningbo, Quanzhou,
Suzhou, Taian, Yangzhou, Zaozhuang, and Zhuzhou.

Obviously, the distribution of the socio-economic parame-
ters demonstrated spatial heterogeneity owing to the different
development levels. On the one hand, the POP, GDP, EC,
and B-A exhibited higher values in the eastern and southern
regions of China than in other areas because the majority of
industries and population of China were accumulated in the
eastern and southern regions of China. Besides, the regional
advantage of eastern and southern China outperforms other
regions due to the superior physical condition and adjacent
to the ocean. On the other hand, as we know, the reform and
opening-up policy of China was originally carried out in the
eastern and southern regions of China in 1978. The policy had
let the uneven distribution of socio-economic development.

B. ASSESSING THE CAPABILITY FOR LUOJIA1-01 AND
NPP-VIIRS NTL DATASET IN SIMULATING
SOCIO-ECONOMIC PARAMETERS
Obviously, the results from the precision evaluation demon-
strated that the Luojia1-01 outperformed the NPP-VIIRS
images in calibrating socio-economic parameters (Figure 5,
Table 5, and Table 6). The possible reasons were analyzed
below. First, the calibrated precision may be influenced by
the resolution of the NTL images, and the spatial resolution
of LuoJia1-01 images is better than the VIIRS images. Iden-
tifying the spatial heterogeneity of anthropic activities may
benefit from the detailed resolution of NTL images due to
a smaller overflow. Meanwhile, the actual area that may be
detected accurately for the landscape patches can be easily
identified by the higher-resolutionNTL images. Furthermore,
higher spatial resolution NTL images can help people to
identify anthropic activities at a smaller scale and to detect
more specific information about human activities. Second,
as we know, human activities always occurred during 19:00 -
24:00 of the local time. Whereas, the overpass time of the
NPP-VIIRS is about at 1:30 local time. So, some human
activities such as the night market, shopping at night, and the
igniting lights in tourism sites may be missed by the NPP-
VIIRS, which may result in the precision of simulating socio-
economic parameters are lower than the Luojia1-01 because
the overpass time of Luojia1-01 is about at 22:30 local time
that is in line with the local time of human activities. The light
in the city tends to be brighter during 19:00 - 24:00 of local
time than other times. Although the brightness of the light
can be a benefit for extracting useful information from NTL,
an unnecessary overflow generated some unuseful noise that
increased bias errors for identifying socio-economic param-
eters. Furthermore, sunshine may not completely disappear
at the overpass time of the Luojia1-01 in some western
regions of China in summer such as Xinjiang Autonomous
Region. So, some unavoidable noise from the Sun may
produce negative effects for extracting socio-economic
parameters.

Overall, though there are still some bias errors existing
in extracting socio-economic parameters by Luojia1-01, the
performance of Luojia1-01 is better than NPP-VIIRS.
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C. COMPARING THE ROBUSTNESS FOR DIFFERENT
MODELS IN FIXING SOCIO-ECONOMIC PARAMETERS
Clearly, the optimum model for calibrating GDP and POP
based on the NTL dataset is the GWR (Figure 5, Table 5,
and Table 6). The possible reason was analyzed below. The
distribution of GDP and POP exhibits obvious spatial het-
erogeneity across China that the areas for dense population
and economic activities of China are mainly accumulated
in the southeast of China. The GDP and POP demonstrated
significant spatial autocorrelation. The GWR model not only
can determine the relations between dependent and explana-
tory variables but also can consider spatial heterogeneity of
variables. So, it is no doubt that the performance of GWR
outperforms other models in calibrating GDP and POP in
the present study. For the EC and B-A, the optimal cali-
bration model is RF. Random forest (RF) has been widely
used in dealing with nonlinear relationships owing to its less
sensitivity to noise and overfitting [65]. Also, RF does not
need assumptions of a prior probability distribution, which
is very suitable for complex simulations. The current study
evaluated the outcome of the traditional regression model
and RF model and found that the RF model was better
than the others in simulating EC and B-A. This may be
attributed to the multicollinearity of independent variables
and the diversity of towns in study areas. The possible reasons
were discussed below. The relationship between EC as well
as B-A and NTL was very complicated, which can hardly
be efficiently handled by the traditional regression model.
Contrarily, the RF model is good at tackling multicollinear
issues. So, the robustness of RF is more reliable than the
regression model in simulating complex issues.

D. VERIFYING THE FEASIBILITY FOR DIFFERENT MODELS
IN FIXING SOCIO-ECONOMIC PARAMETERS AT DIFFERENT
SCALES
The results demonstrated that the precision of estimating
the socio-economic parameters at the city scale was better
than the county scale. The possible reasons were analyzed
below. The structure of the industry was relatively complete
and diverse at the city scale than the county scale, and
the NTL dataset was suitable for retrieving socio-economic
phenomena at the city scale. For example, some counties
may have higher GDP owing to agriculture production, not
service industries. The NTL remote sensing technology is
different to detect agriculture production at night. However,
the distribution of economic activities is relatively complete
at the city scale. So, the accuracy for estimating GDP at the
county scale is likely less than the city scale. Furthermore,
it is a universal phenomenon that people born in the small
county always entered into megacity for living in China dur-
ing the rapid urbanization and industrialization process. The
mobility of the population may much more significant at the
county scale than the city scale because the population at the
city scale is always larger than the county scale. Moreover,
if the population flow occurred inner a city such as from
a developed county to a developing county. The number of

the population did not change at the city scale but varied
dramatically at the county scale. Additionally, the brightness
and extent of the NTL were always brighter and larger at
the city scale than the county scale. There may exist plenty
of feeble lights at night in a county but these lights were
different to be detected through nightlight sensors. So, the cal-
ibration accuracy was influenced significantly at the county
scale. On the contrary, feeble lights can be neglected for the
impacts are relatively less at the city scale. So, the simulation
precision of the population based on the NTL dataset at the
city scale outperformed the county scale.

E. THE LIMITATION AND PLAN OF THE CURRENT STUDY
Though the current paper proved that Luojia1-01 can be
implemented to retrieve the socio-economic parameters, there
still exist some problems that need to be further addressed.
Firstly, ‘‘white’’ LEDs that generate lots of radiation ranged
from 450 nm to 480 nm are widely selected for igniting
the street lights in China [71]. Whereas, parts of the radia-
tion from the LEDs were not detected through the Luojia1-
01 because the range of spectral for Luojia1-01 only from
480µm to 800µm [21]. This issue is still a challenge and will
be tackled if the sensors of Luojia1-01 can be adjusted in the
future. Secondly, the above results revealed that the accuracy
of estimating socio-economic parameters by the NTL dataset
was influenced by clouds and moonshine. Thirdly, although
the synthetic Luojia1-01 NTL dataset of 2018 across China
have been released in June 2019 byWuhan University, China,
the span of Luojia1-01 was scarce at spatial as well as the
time scale. So, the Luojia1-01 dataset with larger spatial and
longer time cover is strongly desired. Moreover, the avail-
ability of the Luojia1-01 seriously hampered the feasibility
of calibrating socio-economic parameters on a large scale
and long time series for the Luojia1-01 images that were
missing during some periods in parts location of China.
Fourthly, the population dataset used in the present study
was the statistical data from the local government that was
hard to illustrate the actual distribution of the population.
Also, the electric consumption of the secondary industry was
not be deleted which led to the outcome of the simulated
EC was underestimated. Meanwhile, the GDP account for
agriculture and industries was not be eliminated that the
results of the calibrated GDP were also underestimated. Last
but not the least, the present research was a local study, not
a global finding. So, further data preprocessing concerning
noise elimination including the deduction of the clouds and
moonshine needs to be addressed. Additionally, the related
studies on calibrating socio-economic parameters through the
NTL dataset should be conducted on a global scale and in
long time series. The novel dataset described actual human
activities such as POI, Weibo sign-in data, and hotspots data
from social media should be introduced to future study.

VI. CONCLUSION
This study estimated the socio-economic parameters based
on multiple models using statistical data, NPP-VIIRS, and,
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Luojia1-01 NTL data in 45 cities of China in 2018. Mean-
while, the ten-folded cross-validation was introduced to exam
the precision of the LR, GWR, RF, BPNN, and SVM models
on multiple scales. Moreover, the distribution of the socio-
economic parameters was mapped using the optimum model
in 2018. Finally, the evaluation of different models, scales,
and NTL datasets was carried out for determining the poten-
tial feasibility of the present study. Some interesting results
were achieved. The NTL remotely sensed images can be used
to estimate the socio-economic parameters. The present study
demonstrated that the accuracy at the city-scale was better
than the county or district scale across China in 2018. The
capability of NTL remotely sensed images in detecting pri-
mary industry, secondary industry, population flow, detailed
urban features such as infrastructure was relatively weak.
Overall, except for some special situations, the Luojia1-
01 NTL dataset outperformed NPP-VIIRS NTL dataset in
calibrating socio-economic parameters at the same scale
because of high spatial and spectral resolution and the suit-
able overpass time. The GWR is good at simulating parame-
ters with spatiotemporal features such as GDP and POP. The
current study showed that the RF model was better than the
others in simulating EC and B-A due to the efficiency of
the RF in tackling multicollinear issues. This paper supplies
a novel perspective on detecting socio-economic parameters
with speedy and economic nighttime light remotely sensed
images.

APPENDIX
See Fig. 9 and Tables 5 and 6.
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