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ABSTRACT Denoising-based techniques have recently been shown to be effective for accelerating path
tracing rendering methods. However, there remains a problem which is input images need the minimum
necessary samples number in order to ensure the quality of the output. In this paper, we propose a new
accelerated path tracing approachwith generative adversarial networks(GAN) andmatrix completion. Unlike
themethods based on denoisingwith neural network, we randomly render part of pixels of input image, which
are much less than other methods. Next, we utilize the trained GAN to pre-complete the initializing missing
pixels. Because of the accuracy and fast-convergence of GAN, our pre-completion results are more accurate
than other methods. Then, according to the results of pre-completion, we present the pre-completed images
as a low-rank matrix and make use of the matrix completion to recovers missing values accurately even in
high details. To improve the efficiency of solving matrix completion, we modified the original weighted
nuclear norm minimization with a parameter adjustment(PAWNNM) strategy. The result shows better visual
quality, texture details and convergence efficiency than the state-of-the-art acceleration methods, especially
the methods based on denoising with neural network.

INDEX TERMS Accelerated path tracing, modified GAN, matrix completion, improved PAWNNM.

I. INTRODUCTION
The last few years have seen a decisive move of the movies
making industry towards rendering utilizing physically-based
approaches, mostly implemented in terms of path tracing
algorithm [1]–[3]. Besides, because of their generality, fast
start-up, and progressive nature, path tracing has been an
important method in many applications in scientific visual-
ization, such as video, games et al. [4]–[5]. Unfortunately,
such method takes a prohibitive a lot of time to obtain the
images with better quality because of the large number of
samples required per pixel [6]. So, accelerating path tracing
rendering has been one of the most popular ways in the
research filed [7].

While Monte Carlo techniques [8] can accelerate the
integration process, images without noise remain expensive
computational cost. To address the shortcomings, the accel-
erated rending methods which reduce the samples per pixel
have been proposed [7], [9]–[11]. Although reducing sam-
ples number could accelerate rendering process, there lots of
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noises in images. To solve this problem, image-based denois-
ing techniques have matured quickly in recent years [12].
They take less processing time and are often easy to integrate
into existing rendering pipelines. Recently, machine learning-
based denoising approaches [6], [13]–[15] have been demon-
strated to providemore effectivemeans to denoise the images.
However, according the Nyquist sampling theorem, these
methods are limited by the minimum number of samples per
pixel [16]. That is to say, if the samples number is less than the
minimum value, they could not obtain the denoising images
with better images.

To overcome the limitation, other researchers proposed
the CS(compressive sensing)-based approaches, which called
CR(compressive rendering) [17]. They render only a fraction
of the pixels in the image then try to estimate the values
of the missing pixels to complete the rest of the images.
They have no requirement for minimum samples number.
However, the CR approaches rely on the samples distribu-
tion and the solution of CS equation with Newton iterative
method is not accuracy. Later, Liu et al. [18] improved the
CR algorithm with CNN(convolution neural network) and
low-rank matrix completion. But the quality of final results
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FIGURE 1. The framework of our major algorithm. As shown in Fig, there two major parts. The first one is Pre-completion based on GAN. And the other
one is Reconstruction based on matrix completion. Input is the incomplete images rendered by path tracing just including part pixels. We make use the
pre-trained modified GAN with hybrid loss function to pre-complete the input. At the same time, we construct a low-rank matrix according to the
pre-completed results. Then, we utilize the matrix completion theory and the constructed matrix to reconstruct the final images.

and algorithm efficiency are not good as the methods based
on denoising. Because utilizing CNN to pre-complete the
inputs is not accuracy and the convergent speed of CNN is
too slow. Besides they only took consider into the features
based on image space when solving the matrix completion
equation, which results in the approximate solution problem.
Therefore, we present a novel reconstruction method which
efficiently recovers missing data in incompletely rendered
images with the modified GAN andmatrix completion. Com-
pared with Liu’s method, we make use of GAN to replace
CNN to pre-complete the missing data and we improved
the original parameter adjustment strategy used to solve the
matrix completion equation with the additional features, such
as shading normal, visibility and so on. So, our results are
of better quality and faster speed. Compared with the state-
of-the-art accelerate path tracing algorithms, especially the
methods based on denoising framework, our approach could
get the images with same quality in less time. The whole
experiment results could be seen in Part IV. Generally, our
major framework is shown in FIGURE 1.
As shown in FIGURE 1, firstly we render an incomplete

scene image including part pixels. And then modified GAN
is used to pre-complete the missing samples. According to
the pre-completed results, we construct a matrix next. Finally,
we use matrix completion to estimate the missing samples.
In summary, our contributions are:
• We combine the GAN and matrix completion technique
to reconstruct the incomplete path tracing.

• We modify the GAN with multi-loss function and critic
net to improve the results of pre-completion. Our modi-
fied GAN contributes to reduce the reconstruction error
and spatial noise in images.

• In order to obtain the images with better results in
less time, we improve the original multi-weighted
nuclear norm minimization with a parameter adjust-
ment(PAWNNM) strategy, which includes not only
features in image space, but the features of shading
process.

• to improve the results of pre-completion and obtain the
better images with less time.

• Our method has been evaluated against state-of-the-art
methods and shows better results in terms of visual qual-
ity and statistics. In particular our method outperforms
with limited samples (≤35%).

II. RELATED WORK
A. ACCELERATED PATH TRACING WITHOUT DEEP
LEARNING
Path tracing was first proposed by Veach [19] expressed
as the rendering equation. But evaluating rendering equa-
tion took too much time and the images rendered were
over blurred. Therefore, several methods have been pro-
posed for improving the origin path tracing [7], [9]–[11].
However, although these methods improved the quality of
images, their efficiency were too slow to be used in real
time applications. So accelerating path tracing has been the
main research point. In recent years, many successful acceler-
ated techniques used for path tracing. In 2015, Zwicker et al.
[12] summarized non-deep learning approaches, and divided
them into two general categories: the priori methods and
the posteriori methods. The priori methods leverage infor-
mation obtained from the analysis of the rendering equa-
tion to enhance path tracing samples and then generate
adaptive reconstruction filters based on the information. For
example, Ramamoorthi et al. [20] applied derivative anal-
ysis to enhance adaptive sampling and conduct a more
comprehensive and thorough first-order analysis of light-
ing, shading, and shadows in direct illumination. Later,
Jarosz et al. [21] improved the Ramamoorthi’s work with
a second-order analysis of indirect illumination. The other
category of methods utilized a family of reconstruction filters
and develop error estimation to reconstruct images. These
methods mainly migrated from the algorithms of denoising
nature images and treated the renderer as a black box [22]. For
instance, Bauszat et al. [23] proposed the guided filter meth-
ods for denoising path tracing rendering. Rousselle et al. [24]
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leveraged non-local mean filter for denoising. Moon et al.
[25] leveraged a linearmodel to approximate the ground truth.
Bauszat et al. [26] proposed a robust error estimation method
for path tracing. Bitterli et al. [27] designed collaborative
non-linear regression to reconstruct noise-free images. Unfor-
tunately, these methods generally need to select the optimal
filter models and parameters manually, and the input noisy
images require the necessary samples.

B. ACCELERATED PATH TRACING BASED ON DENOISING
WITH NEURAL NETWORK
To improve the previous non-deep learning approaches,
the machine learning was introduced to accelerate path trac-
ing. In particular, most of the approaches based on denoising
path tracing presented the neural network. It is worth noting
that Kalantari et al. [13] firstly introduced a novel denoising
framework to denoise path tracing. Although it can avoid
limitations caused by manually selecting parameters, it still
inherits limits from a fixed filter. Recently, Bako et al. [14]
presented a kernel-predict convolutional network(KPCN),
which mainly utilizes deep convolutional network(CNN),
dividing noisy images into two components and leveraging
feature buffers as the input of networks, to predict filter
kernels for each pixel. Yang et al. [22] presented a deep CNN
for reconstructing path tracing rendering. They designed an
end-to-end network and feed feature buffers and noisy images
to the network directly. Chaitanya et al. [15] proposed a recur-
rent autoencoder to reconstruct path tracing image sequence.
Although these methods have obtained good performance in
the quality of images and efficiency of path tracing, if we
reduced the original samples number of input images, they
cannot generate satisfactory results. This is because there
are few features in the images with less samples. That is to
say, these methods are still limited by the necessary samples
number. Inspired by the compressive sensing theory [18],
we attempt to utilize the missing data images, whose samples
number is less than necessary one.

C. ACCELERATED PATH TRACING BASED ON
COMPRESSIVE RECONSTRUCTION
To overcome the shortcomings of previous work, compres-
sive sensing has been introduced in computer graphics for
reconstructing images with missing several pixels [28], [29].
CR(compressive rendering) methods evaluated a subset of
the pixel samples in the spatial domain and transformed the
image into thewavelet domain for reconstructingmissing val-
ues [18]. However, the CS approach required computations
in a transform domain and the transformed images should be
sparse in the transformed domain basis. Later, Miandji et al.
[30] proposed dictionary learning to provide an optimal basis
for specific visual input in compressed rendering. But the
computational cost of dictionary learning is too big.

Recently, to matrix completion and blind source separation
methods have been introduced in signal processing to
recover missing data in a low rank matrix [28], [29].
Although solving the rank minimization problem is NP

hard, it can be approximated, and exactly solved in
several cases, as a nuclear norm minimization(NNM)
problem. Cai et al. [31] provided a singular value thresh-
olding algorithm(SVT) for solving NNM. They demon-
strated that we could solve the low rank matrix with a
soft thresholding operation on the singular values of the
observed matrix. But, matrix completion and separation
schemes are seldom adopted in computer graphics [19].
Huo et al. [32] took advantage of the low rank property
of a many lights matrix for solving many lights rendering
problems with a matrix separation scheme. Li et al. [33]
adapted matrix completion for inpainting while exploring a
low rank matrix by grouping similar patches within an image.
Although they tested their inpainting scheme to recover miss-
ing pixels of rendered images, theymainly focused on recover
the missing pixels of photos, so their method were not useful
in recovering path tracing renderings. To address the prob-
lem, Liu et al. [19] improved Li’s work. They attempted to
combine CNN techniques and PAWNNM strategy used for
solving NNM problem. However, because of the inaccuracy
of CNN and the limited used features, their results were
not good as the ones of the methods based on denoising
with deep learning. Therefore, according to the limitations
of Liu’s method, we proposed a novel accelerated path trac-
ing framework with improved GAN and matrix completion
to recovery the incomplete path-tracing images. Especially,
when solving the matrix completion equation, we improve
the origin PAWNNM strategy.

III. ACCELERATED PATH TRACING BASED ON GAN AND
MATRIX COMPLETION
In order to make use of the theory of matrix completion
to estimate the missing pixels of images rendered by path
tracing, we need to provide a proper low rank matrix that con-
tains sparse random samples. In this paper, we form a pixel
patch using neighboring pixels, and then group similar pixel
patches from elsewhere in the image to form the low-rank
matrix [33]. However, identifying similar pixel patches across
an image has extra challenges due to missing pixel values.
Therefore, a sophisticated pre-completion step is required to
estimate missing pixel values in each patch [33]. To reduce
the estimated error, we use a pre-trained GAN to precompute
the missing values efficiently in a short time. Our low rank
reconstruction is shown in FIGURE 2.

A. PRE-COMPLETION BASED ON GAN
Of course, there are other pre-completion methods proposed.
Li et al. [19] proposed a pre-completion step that initial-
izes missing pixels. They address pre-completion for low
frequency and high frequency images differently. For a low
frequency image, matrix completion is directly applied for
pre-completion, and a total variation(TV) regularized recon-
struction [34] is used for high frequency images that do not
meet the low rank condition. Although it provides promising
initialization, the process requires long computation time
that is a clear limitation to adapting in the method for
previsualization.
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FIGURE 2. Low rank matrix construction for pixel patch. From the
pre-completed results, similar pixel patches(red squares) for a current
pixel patch(green square) are selected and stored into columns of the
matrix Mp.

We present a novel pre-completion scheme using a mod-
ified GAN. Our GAN is trained by pairs of a reference
image Ir , and an incomplete image Ii that contains randomly
removed pixel values in Ii. Then, the pre-trained GAN is used

to initialize missing values for pre-completion. Based on the
GAN presented by Ref [35], we modify the structure of their
network. Our GAN is seen in FIGURE 3.

1) LOSS FUNCTION
As described in existing works [36], [37], using pixel-wise
content loss like L1 or L2 loss tends to produce blurry
results, since most image reconstruction tasks are essentially
ill-posed problems. Selecting L2 as loss function will maxi-
mize PSNR(peak signal-to-noise ratio) value, but this is not
enough to guarantee perceptual quality. Hence, we utilize the
hybrid loss function L (2) to measure the difference between
the estimated values F (cout ;2) and the reference values
cgt [36]:

L(2) =
1
n

n∑
i=1

h
(
F
(
ciout ;2

)
, cgt

)
, (1)

where n is number of training samples, is the parameters
learned by network and h is the hybrid function which

FIGURE 3. The framework of our GAN. (a) Encoder Net; (b) Illustration of the conditioned feature modulation; (c) Illustration of the residual
block(ResBlock) for conditioned feature modulation; (d) Critic Net. Interpretation of network layer annotations: e.g., k3n128s1 indicates that kernel size
is 3, number of feature channels is 128 and step is 1.
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contains 4 terms, texture loss term(seen as Eq. 4), perceptual
loss term(seen as Eq. 5), sharpness loss term(seen as Eq. 6)
and similarity loss term (seen as Eq. 7) respectively. F(cout ) is
the result of pre-completion and it can be computed as follows
[37]:

Fl(cout ) = G
(
cin, bfeat

)
. (2)

Here cout is the corresponding output images of the incom-
plete input cin. bfeat is the additional features, including the
shading normal, depth, texture and visibility.We optimizeG’s
parameters 2 using generative adversarial training [37]:

min
2G

max
2D

D
(
G
(
cin, bfeat

)
, cgt

)
, (3)

where D is the critic network with parameters. G and D are
jointly trained to minimize the loss function.

Next, we would describe each term of our loss function:
The first sub-term of our hybrid loss function is the texture

loss and it can be described as follows [38]:

LTex(G,D) = −Ecin [D (cin)]+ Ecgt
[
D
(
G
(
cgt
))]

+ λEcout
[(∥∥∇coutD (cout)∥∥2 − 1

)2]
, (4)

where, the first two items represent the Wasserstein distance,
the final one represents the gradient vanish item used for
network normalization. G and D are the networks described
above. E is a set of data samples with specific distribution.
And λ is the penalty coefficient. Minimize texture loss can
keep more texture details [38].

The second term of our loss function is the perceptual loss.
It can be described as follows [39]:

LPer (G)=E(cin,cout )

[
1

whd
‖φ (G (cout))− φ (cin)‖2F

]
, (5)

where φ is the feature extractor and || · || is the Frobe-
nius norm. w, h, d represent the width, height and depth,
respectively.

The third one is the sharpness loss. It is described in
mathematical form as [40]:

LSharp (G) = E(cin,cout )
[
‖S (G (cout))− S (cin)‖2

]
, (6)

Here, || · ||2 is the L2 distance.
The final one is the similarity loss term. We set the loss

function with the SSIM(structural similarity index) as follows
[39]:

LSSIM (G) = 1− SSIM (cout , cin) . (7)

In summary, Eq. 1 can be rewritten as follows [40]:

L(2) =
1
n

n∑
i=1

[
αLTex + βLPer + γLSharp + ωLSSIM

]
. (8)

where α, β, γ , ω are weight coefficients of the above four
terms. During our experiments, we set them as α = 0.005,
β = 0.0095, γ = 0.95, ω = 0.095, λ = 10(in Eq. 4).
Our comment is based on Wasserstein [40] with a gradient

penalty, which enables stable training of a wide variety of

FIGURE 4. The training curves for L2 distance, L1 distance and
Wasserstein distance show the pre-completion GAN converges.

FIGURE 5. Example reference images rendered from 1000 indoor scenes.

GAN architectures with almost hyper-parameter tuning. Fur-
thermore, Wasserstein distance has less restriction on balanc-
ing the training process of the generator and the critic, making
it possible to pre-train the latter on large-scale datasets first,
and then, fine tuning it on the small render dataset. We com-
pared the Wasserstein distance, L1 distance and L2 distance
when training. The results can be seen in FIGURE 4.
From the FIGURE 4, we can find that the Wasser-

stein distance could be convergence faster and with less
up-and-down-motion.

2) TRAINING DATASET
Large-scale datasets are necessary to avoid over-fitting for
deep neural networks. In order to train our generating critic
network, we commercial render, including 900 for training
and 100 for validation. These scene frames were selected
from diverse room designs with abundant illumination con-
ditions as well as various materials and geometries [35],
which span different generating circumstances (see example
scenes inFIGURE5). The reference images for trainingwere
rendered with 16k spp(samples per pixel). Since the state-of-
the-art methods use public scenes as testing or part of training
data, we also download datasets released by Tungsten [27]
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FIGURE 6. Example reference images rendered by Tungsten. The whole
set includes approximately 200 images with modified environment maps,
camera parameters, and/or materials from each of 6 scenes.

for evaluation. Example scenes of this dataset are seen in
FIGURE 6.

B. CONSTRUCTION THE LOW-RANK MATRIX BASED ON
SIMILAR PIXEL PATCH
After pre-completion, we create a pixel patch Pp(i, j) in
pixel(i, j) having np × mp pixels (e.g. green square in
FIGURE 2), and the similar pixel patchesPps(e.g. red squares
in FIGURE 2) are computed by weighted L2 distance. In the
weighted scheme, we assignmore weights for rendered pixels
than initialized pixels from the pre-completion. The selected
similar patches are stored in each column of a low rankmatrix
Mp as in FIGURE 2, and the missing values in the matrix is
estimated by our low rank matrix recovery step(see Part III).
After completing missing values in patch Pp(i, j), the next
patch Pp(i + δp, j) will be iteratively processed where 1 ≤
δp < min(np,mp)/2.

C. LOW RANK MATRIX RECOVERY
1) PAWNNM STRATEGY
As described in Ref [31], missing values in the low rank
matrix can be recovered using the SVT algorithm. We mark
the incomplete low rank matrix as M and the original matrix
asX to be approximated. The recover problem can be defined
as a low rank matrix minimization [41]:

min
X
rank (X)

s.t. X ij = M ij (i, j) ∈ �, (9)

where the � is the collection containing the positions of the
observed samples. Although solving the rank minimization
is NP-hard, it is indicated that this problem had a convex
relaxation as a nuclear norm minimization(NNM) problem
[41]:

min
X
‖X‖∗

s.t. X ij = M ij (i, j) ∈ �, (10)

where the nuclear norm is defined as [42]:

‖X‖∗ =
n∑
j=1

∑
j
(X). (11)

Here the
∑

j (X) are singular values of matrix X. Next we
use the SVT algorithm to rewritten the Eq. 9 as follows [31]:

min
X

1
2
‖X −M‖2F + ξ ‖X‖∗

s.t. P� (X) = P� (M) , (12)

where the ‖‖2F is the Frobenius norm and P� is the orthog-
onal projector onto the span of matrix vanishing outside of
collection, so that the pixel(i, j) of P� (X) is equal to the one
of X and zero otherwise. ξ is a positive weight. We assume
the solution of the Eq. 12 is as follows [31]:

X = argmin
X

1
2
‖M − X‖2F + λ ‖X‖∗ . (13)

Based on matrix completion theory, the solution can be
obtained by [42]

X = USλ (6)VT , (14)

where U6VT is the SVD of matrix M , and Sλ( 6) is the
soft-thresholding function on the diagonal matrix with the
constant weight ξ . For each element 6ii in diagonal matrix
6, we set [18]

Sλ (6)ii = max (6ii − ξ, 0) . (15)

From the above, we can find that each singular value is
treated equally, and the soft thresholding operator shrinks
each singular value with a constant. In order to optimize high
frequency details efficiently, we modify the constant weight
ξ in Eq. 15 as multiple weights [42]:

ξi =
ωi
/(∑

ii (X)+ ε
)
. (16)

where 6ii(X) is the ith singular value of X , is the weight for
the ith singular value, and ε is a small regularizer to avoid
dividing by zero. But when implementing, there is improving
space for the strategy. Ref [42] showed that the recovery
quality can be increased with a reducing weight during every
optimization loop. In other words, we utilize a parameter
adjustment strategy. In math, the weight can be progressively
reduced as follows [42]:

ωi+1 = cωi. (17)

Here c is the constant.

2) RECOVERY BASED ON MATRIX COMPLETION
Algorithm 1 shows the whole recovery process, based on
utilized PAWNNM strategy. The inputs are the incomplete
rendered data M , and the corresponding sampling mask
8, that the renderer has used to determine which samples
to take.

Note that the first step in each iteration is to construct a low
rank matrix X, using the PAWNNM strategy to recover the
missing data and we iterate this process to generate a good,
reconstructed result.
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Algorithm 1 Recovery Based on Matrix Completion
Input: incomplete rendered dataM, sampling mask 8

1: Begin
2: Initialization: x

0
= M , set threshold: ω = ω0;

3: for i = 1: k do step 4-9:
4: Form a low rank matrix X i based on x

i
;

5: Singular value decomposition for each matrix X i:
[U i,6i,V i] = SVD(X i);

6: Utilize weighted singular value thresholding:
6i = Sλi (6i);

7: Obtain the results x
i+1

by computing
X i+1 = U i6iVT

i ;
8: Iterative updating: x

i+1
= 8M + x

i
−8x

i
;

9: Parameter shrinkage: ωi+1 = cωi
10: end
Output: The reconstructed result x

k

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
Our method has been tested on various scenes including
detailed scenes with high frequency content for which it is
challenging to recover missing information without intro-
ducing blurry artifacts. In order to create partially sampled
rendering images as well as the reference images, we imple-
ment our algorithm in C++ and integrated it into the open
source render PBRT2 [43]. The rendered static images are
1280×960 pixels. All of our experiments were performed on
a workstation with an Intel(R) Core(TM) i7-9700K 3.60GHz
CPU with 16G RAM and NVDIA GeForce RTX 2080 GPU
with 8GRAM.We set initial values by experiment. The initial
values in Eq.(17) are ω0 = 80.5, and c = 0.9. The number of
iterations in Algorithm 1 is set at k = 45.

B. RESULTS
Note that, we describe the advantages of our algorithm frame-
work in three ways: (1) compared with the widely used
denoising methods based on adaptive sampling and filtering;
(2) compared with the state-of-the-art denoising methods
based on convolutional neural network; (3) compared with
the widely used reconstruction methods, especially with the
similar method present by Liu et al. [18]. To describe the
quality of the image, we utilize the MSE [44], SSIM [45],
and PSNR [45].

1) COMPARED WITH THE PATH TRACING DENOISING
METHODS BASED ON ADAPTIVE SAMPLING AND FILTERING
FIGURE 7 shows the comparison between our method and
state-of-the-art path tracing denoising approaches based on
adaptive sampling and filtering, including RHF [46], SBF
[47] and RPF [48], on three scenes with different distributed
effects.

First, we examine the path traced Kitchen scene with
global illumination and many texture details [shown as
FIGURE 7(a)]. The samples number of all images are

8spp. The image rendered by RHF is more blur than others
and it does not preserve the essential details, like the texture
on the wall(red rectangle), the metallic luster on the chande-
lier(green rectangle). Although the result of SBF could pre-
serve more details than RHF, the image is seriously aliased,
like at the edge region of the chandelier(green rectangle). The
image rendered by RPF is as good as ours, but our result
is of better quality(indicated under the images as PSNR and
SSIM). The most important of our methods is the least time
cost(indicated under the images).

The Gold scene is a challenging, path-traced scene
containing one gold and a floor with texture [shown as
FIGURE 7(b)]. RHF method cannot preserve the geometry
and texture details in the scene. Moreover, the approaches do
not preserve the glossy details on the gold and their time cost
is too large. Our approach is not only the fastest, but it also
preserves the textures while having fewer artifacts than the
other techniques.

The Cabin scene is a path-traced scene that includes
global illumination and depth of field [shown as
FIGURE 7(c)]. RPF can smooth the image, but over blur
the geometry of the steps and texture in the water. The
result of SBF contain residual noise in the depth of field
regions. Although both our approach and RPF handle the
depth of field regions well, RPF produces visible artifacts in
the smooth regions due to the low sampling rate. Meanwhile,
we are able to generate a smooth result that is closer to ground
truth.

2) COMPARED WITH THE PATH TRACING DENOISING
METHODS BASED ON CONVOLUTIONAL NEURAL NETWORK
FIGURE 8 shows the comparison between our approach and
state-of-the-art denoising methods based on convolutional
neural network. For completeness, we perform the same
sampling rate to ensure fairness.

The Toasters scene [shown in FIGURE 8(a)] is a
path-traced one which includes soft shadow and depth of
the field. The RAE and KPCN remove the noise in shad-
ows, but over blurs the depth of field regions(green rect-
angle). Moreover, although both NFOR and our approach
can generate the images of better quality, our sampling rate
is the least of all methods. The Pool balls scene[shown
in FIGURE 8(b)] is a challenging, path-traced containing
five pool balls with motion blur and soft shadow. From the
statistics, the results of all methods are of better quality.
Despite having a lowest MSE and a highest SSIM, we pro-
duce a noise-free result with quarter samples compared with
other methods. The Dragon scene [shown in FIGURE 8(c)]
is a path-traced scene including a red dragon with global
illumination. Unfortunately, none of the other methods can
effectively avoid the edge aliasing(red rectangle) at low rate.
Note that, the reference image still has visible light leak at
the dragon claw region in red rectangle at 16K spp, while
we produce a relatively noise-free result. Seen from the
SSIM and MSE, our image is of better quality than the other
methods.
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FIGURE 7. We compare our reconstruction results with the accelerated path tracing method based on denoising with adaptive sampling and
filtering: RHF [46], RPF [48] and SBF [47] on a test set rendered scenes in 8spp or 4spp. Below the image, we calculate the value of PSNR and
SSIM for measuring image quality.

3) COMPARED WITH OTHER PATH TRACING
RECONSTRUCTION METHODS
Since the reconstruct technique based on compressive sensing
produced by Liu et al. [18] is computationally expensive,
we omit its comparison here.

And the reconstruction approach presented by Veach [19]
could not generate the images of as good quality as other
denoising methods, like KPCN [14], NFOR [27], RAE [49].
So, we improve its method. As can be seen in Figure 9, our
MSE consistently decreases even at the low sampling rates.
We choose three test scenes for the comparison between our
approach and the Liu’s method in the same low sampling rate.
The results are shown in FIGURE 9.

From the results, the Conference Room scene [shown in
FIGURE 9(a)] is a path-traced scene that includes direct
illumination and indirect illumination. From the details of the

chairs(yellow rectangle), the reconstruction image of Liu’s
approach is noisier and more aliasing than ours. The Villa
scene [shown in FIGURE 9(b)] is a path-traced scene that
contains global illumination, high light and glossy. Seen from
the details of the bookshelf(red rectangle), although Liu’s
approach can preserve the details, there is noise in their
image. Our result is smoother and clearer. Plants[shown in
FIGURE 9(c)] is a path-traced scene with depth of field
and much fog. The detail contrast among the Liu’s approach
and ours shows that their result is much over blurred and
lower quality than ours. Besides, we compute the aggregate
numerical performance of different input samples. Result can
be seen as TABLE 1. Since the sampling randomness of path
tracing and the influence of different effects, the MSE and
SSIM metric is fluctuated. We calculated the average metric.
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FIGURE 8. We compare our reconstruction results with the accelerated path tracing based on denoising methods with the
convolutional neural network: NFOR [27], RAE [49] and KPCN [14] on a test set rendered scenes in 16spp or 32spp(our sampling rate is
less than the others). Below the image, we calculate the values of MSE and SSIM to measure image quality.

From the result, perceptually and quantitatively, our method
outperforms Liu’s approach.

C. DISCUSSIONS AND ANALYSIS
In our method, we utilize the improved GAN to pre-complete
the incomplete images rendered by path tracing and accord-
ing to the results of pre-completed, construct the low rank
matrix. Finally, we use the matrix completion theory to

reconstruct the images. There are two differences between
ours and other methods. First, as discussed in Part III-A), the
pre-completion based on GAN, which can reduce the error
caused by noise and incomplete information and in some
cases, a small error might result in obvious noisy or blurred
pixels. Here we compared the reconstruction images with
pre-completion and without pre-completion. The results can
be seen in FIGURE 10.
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FIGURE 9. We compare our reconstruction results with the path tracing
reconstruction method presented by Liu et al. [19] on a test set rendered
scenes in 16spp or 32spp. Among these scenes, from left to right, scene a
is the Conference Room rendered in 16spp. Scene b is the Villa Room
rendered in 32spp and scene c is Plants with Fog rendered in 16spp. Our
sampling rate is the same as Liu’s method.

TABLE 1. Comparison of our results and LIU’s with different input
samples number.

FIGURE 10. The reconstruction results comparison of our method with
the pre-completion and without pre-completion. Take the San Miguel
scene as an example.

As shown in FIGURE 10, with the pre-completion, we can
obtain the better-quality images with enhanced texture.
Because of the low rank matrix completion, with incomplete
rendering information, we could not successfully construct
the matrix and hardly to reconstruct the final images. Besides,
our pre-completion process not only use the color informa-
tion of pixels, but the auxiliary features, which can help us
improve the accuracy of pre-completion and easily find the
pixels of similar structure.

Since artifacts in an intermediate image of path trac-
ing can be caused by insufficient samples, we claim that
matrix completion is an efficient choice as a screen space
reconstruction for previsualization because this process
has no limitation of necessary samples number. Seen as
FIGURE 8, our method provides an efficient image space
solution to previsualize early-stage intermediate results with
the lowest samples, which are minimal blurry artifacts in high

FIGURE 11. The reconstruction results comparison of our method with
the pre-completion and without pre-completion. Take the San Miguel
scene as an example.

TABLE 2. PSNR/SSIM results of comparison between the NLI, GSR,
Our1(with NNM), Ours2(with PAWNNM) (the scene shown in Figure 12).

FIGURE 12. The corresponding PSNR of our generation images on three
test scenes shown in Figure 9 with different patch size choices. Notice
that, the bigger the value of PSNR, the better the images.

frequency details and to reduce spatial noise. Furthermore,
our utilized PAWNNM strategy shows promising results for
inpainting providing better recovery. Here, we compared ours
with recent methods with NLI strategy [33] and GSR strategy
[50]. The results can be seen in FIGURE 11 and we calcu-
lated the values of PSNR and SSIM for each generated image,
whose results are shown in TABLE 2.

From the above experiments results, our strategy outper-
forms other strategy. Furthermore, the size of pixel patch also
results in the quality of the final images. The relationship
between the patch size and PSNR of images is shown as
FIGURE 12. So, after reconstructing values in a pixel patch,
we process the next pixel patch while overlapping the patches
by two pixels to avoid block artifacts. The size of pixel
patches are chosen by experiment to balance computation
time and quality.

Besides, to show the advantages of our methods at low
sampling rate and without the limitation of minimum sam-
ples number, we compared our approach with the Liu’s
method [19], RAE [49], KPCN [14] and NFOR [27] to recon-
struct the images in our dataset. We plot the convergence
curve of PSNR metric on our validation set at different sam-
pling rate. Particularly, the PSNR values and reconstruction
error values represent the average values on our datasets. The
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FIGURE 13. The average PSNR of our results compared with Liu’s method
[19], NFOR [27], KPCN [14] and original path tracing(PT) on our validation
datasets. Notice that, the bigger the value of PSNR, the better the images.
Seen from the figure, we can find that at low sampling, especially at 30%
sampling rate, our results outperform in images quality. And with
samples number increases, our images are better than other methods.

results are shown in FIGURE 13. With the comparison, it is
easy to tell that, at low sampling rate, our method outperforms
than other methods.

To show the advantages of our network, especially the
convergence speed and convergence efficiency, we applied
our network, the Liu’s network [19], the network of NFOR
[27] and RAE [49] to pre-complete our training datasets.
Because KPCN [14] utilize the CNN to predict the filter
kernel parameters instead of pixel results, we did not compare
our network with them. We evaluated the average normalized
mean squared error(MSE) values of our validation datasets
when the network was convergent and plot the convergence
curve of MSE metric during the training process. The results
are shown in FIGURE 14. Seen from the Figure, although
the RAE’s network converges faster a little than ours, our net-
work outperforms better than other networks in convergence
efficiency. And difference of convergence speed is little.

D. LIMITATION AND FUTURE WORK
Although we show promising results, our method has some
limitations. The performance of matrix completion relies
on the size and number of low-rank matrix. Over a few
experiments, we found the appropriate patch sizes and an
appropriate number of similar patches in an image, but careful
analysis of scene information may provide better optimal
choices. However, it is challenging to do this, because in
general, detailed scene information cannot be known before
a significant number of samples have been taken.

On the other hand, the current implementation of our
recovery is not efficient compared with the denoising meth-
ods based on convolutional neural network in terms of the
total time, although our samples number is less than other
methods. In the future, there are three major ways in which
we could feasibly improve our performance: (1) our current
implementation is based on Python without GPU parallel
optimization, (2) our code is without necessary code opti-
mization and (3) we can introduce the optimal patch size
chosen process.

FIGURE 14. The average Normalized MSE of our results compared with
Liu’s method [19], NFOR [27] and RAE [49] on our training datasets.
Notice that, the smaller the value of normalized MSE, the better the
images. Seen from the figure, we can find that when networks were
convergent, our MSE value is the smallest of all methods. Although RAE’s
network(indicated with blue lines and rectangle) converges faster than
ours, their MSE values are biggest of all methods. That is to say, their
images are of least quality. On the contrary, our images are of best quality
and the difference of convergence speed between ours and RAE is little.
On the whole, our network outperforms in convergence efficiency and
convergence speed.

V. CONCLUSION
To overcome the low efficiency shortcomings of original
path tracing and avoid the limitation of the minimum nec-
essary samples number, we present a novel accelerated path
tracing method with the GAN and the matrix completion.
First, we randomly render part of pixels of input images
with path tracing. Then a modified GAN provides fast pre-
completion for initializing missing values and represent the
pre-completed images as the low-rank matrix. Next, subse-
quent weighted nuclear normminimization with an improved
parameter adjustment strategy(PAWNNM) efficiently recov-
ers missing values even in high frequency details. From
the results, we can find that our method performs better
than the state-of-the-art accelerated methods in visual qual-
ity and image details. Our proposed approach offers a new
way of thinking about the path tracing acceleration prob-
lem and might provide fruitful avenues for exploration in
the future.

REFERENCES
[1] B. Burley, D. Adler,M. J.-Y. Chiang, H.Driskill, R. Habel, P. Kelly, P. Kutz,

Y. K. Li, and D. Teece, ‘‘The design and evolution of disney’s hyperion
renderer,’’ ACM Trans. Graph., vol. 37, no. 3, Jul. 2018, Art. no. 33.

[2] H. Dahlberg, D. Adler, and J. Newlin, ‘‘Machine-learning denoising in
feature film production,’’ in Proc. ACM SIGGRAPH Talks (SIGGRAPH),
Los Angeles, CA, USA, Jul. 2019, Art. no. 21.

[3] L. Fascione, J. Hanika,M. Fajardo, P. Christensen, B. Burley, and B. Green,
‘‘Path tracing in production—Part 1: Production renderers,’’ in Proc. ACM
SIGGRAPH Courses (SIGGRAPH), Los Angeles, CA, USA, Jul. 2017,
Art. no. 13.

[4] S. McAuley, S. Hill, N. Hoffman, Y. Gotanda, B. Smits, B. Burley, and
A. Martinez, ‘‘Practical physically-based shading in film and game pro-
duction,’’ in Proc. ACM SIGGRAPH Courses (SIGGRAPH), Los Angeles,
CA, USA, Aug. 2012, Art. no. 10.

[5] P. H. Christensen, G. Harker, J. Shade, B. Schubert, and D. Batali, ‘‘Mul-
tiresolution radiosity caching for global illumination in movies,’’ in Proc.
ACMSIGGRAPHTalks (SIGGRAPH), Los Angeles, CA, USA, Aug. 2012,
Art. no. 47.

[6] T. Vogels, F. Rousselle, B. Mcwilliams, G. Röthlin, A. Harvill, D. Adler,
M. Meyer, and J. Novák, ‘‘Denoising with kernel prediction and asym-
metric loss functions,’’ ACM Trans. Graph., vol. 37, no. 4, Aug. 2018,
Art. no. 124.

VOLUME 9, 2021 39065



Q. Xing et al.: Accelerated Path Tracing With GAN and Matrix Completion

[7] M. Kettunen, M. Manzi, M. Aittala, J. Lehtinen, F. Durand, and
M. Zwicker, ‘‘Gradient-domain path tracing,’’ ACMTrans. Graph., vol. 34,
no. 4, Jul. 2015, Art. no. 123.

[8] A. Pilleboue, G. Singh, D. Coeurjolly, M. Kazhdan, and V. Ostromoukhov,
‘‘Variance analysis for Monte Carlo integration,’’ ACM Trans. Graph.,
vol. 34, no. 4, Jul. 2015, Art. no. 124.

[9] W. Jakob and S. Marschner, ‘‘Manifold exploration: A Markov chain
Monte Carlo technique for rendering scenes with difficult specular trans-
port,’’ ACM Trans. Graph., vol. 31, no. 4, Aug. 2012, Art. no. 58.

[10] A. S. Kaplanyan, J. Hanika, and C. Dachsbacher, ‘‘The natural-constraint
representation of the path space for efficient light transport simulation,’’
ACM Trans. Graph., vol. 33, no. 4, Jul. 2014, Art. no. 102.

[11] J. Lehtinen, T. Karras, S. Laine, M. Aittala, F. Durand, and T. Aila,
‘‘Gradient-domain metropolis light transport,’’ ACM Trans. Graph.,
vol. 32, no. 4, Jul. 2013, Art. no. 95.

[12] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi,
F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon, ‘‘Recent advances in adap-
tive sampling and reconstruction for Monte Carlo rendering,’’ Comput.
Graph. Forum, vol. 34, no. 2, pp. 667–681, May 2015.

[13] N. K. Kalantari, S. Bako, and P. Sen, ‘‘A machine learning approach for
filtering Monte Carlo noise,’’ ACM Trans. Graph., vol. 34, no. 4, Jul. 2015,
Art. no. 122.

[14] S. Bako, T. Vogels, B. Mcwilliams, M. Meyer, J. Novák, A. Harvill, P. Sen,
T. Derose, and F. Rousselle, ‘‘Kernel-predicting convolutional networks for
denoising Monte Carlo renderings,’’ ACM Trans. Graph., vol. 36, no. 4,
Jul. 2017, Art. no. 97.

[15] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,
D. Nowrouzezahrai, and T. Aila, ‘‘Interactive reconstruction of
Monte Carlo image sequences using a recurrent denoising autoencoder,’’
ACM Trans. Graph., vol. 36, no. 4, Jul. 2017, Art. no. 98.

[16] Q. Xing and C. Chen, ‘‘Path tracing denoising based on SURE adaptive
sampling and neural network,’’ IEEE Access, vol. 8, pp. 116336–116349,
May 2020.

[17] P. Sen and S. Darabi, ‘‘Compressive rendering: A rendering application of
compressed sensing,’’ IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 4,
pp. 487–499, Apr. 2011.

[18] P. Liu, J. Lewis, and T. Rhee, ‘‘Low-rank matrix completion to recon-
struct incomplete rendering images,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 24, no. 8, pp. 2353–2365, Aug. 2018.

[19] E. Veach, ‘‘Robust Monte Carlo methods for light transport simulation,’’
Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Palo Alto, CA, USA,
1997.

[20] R. Ramamoorthi, D. Mahajan, and P. Belhumeur, ‘‘A first-order analysis of
lighting, shading, and shadows,’’ ACM Trans. Graph., vol. 26, no. 1, p. 2,
Jan. 2007.

[21] W. Jarosz, V. Schönefeld, L. Kobbelt, and H. W. Jensen, ‘‘Theory, analysis
and applications of 2D global illumination,’’ ACM Trans. Graph., vol. 31,
no. 5, pp. 1–21, Aug. 2012.

[22] X. Yang, D. Wang, W. Hu, L.-J. Zhao, B.-C. Yin, Q. Zhang, X.-P. Wei,
and H. Fu, ‘‘DEMC: A deep dual-encoder network for denoising Monte
Carlo rendering,’’ J. Comput. Sci. Technol., vol. 34, no. 5, pp. 1123–1135,
Sep. 2019.

[23] P. Bauszat, M. Eisemann, and M. Magnor, ‘‘Guided image filtering for
interactive high-quality global illumination,’’ Comput. Graph. Forum,
vol. 30, no. 4, pp. 1361–1368, Jun. 2011.

[24] F. Rousselle, M. Manzi, and M. Zwicker, ‘‘Robust denoising using fea-
ture and color information,’’ Comput. Graph. Forum, vol. 32, no. 7,
pp. 121–130, Oct. 2013.

[25] B. Moon, N. Carr, and S.-E. Yoon, ‘‘Adaptive rendering based on
weighted local regression,’’ ACM Trans. Graph., vol. 33, no. 5, Sep. 2014,
Art. no. 170.

[26] P. Bauszat, M. Eisemann, E. Eisemann, and M. Magnor, ‘‘Gen-
eral and robust error estimation and reconstruction for Monte Carlo
rendering,’’ Comput. Graph. Forum, vol. 34, no. 2, pp. 597–608,
May 2015.

[27] B. Bitterli, F. Rousselle, B. Moon, J. A. Iglesias-Guitián, D. Adler,
K. Mitchell, W. Jarosz, and J. Novák, ‘‘Nonlinearly weighted first-order
regression for denoisingMonte Carlo renderings,’’Comput. Graph. Forum,
vol. 35, no. 4, pp. 107–117, Jul. 2016.

[28] P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik,
R. Ramamoorthi, and P. Debevec, ‘‘Compressive light transport sensing,’’
ACM Trans. Graph., vol. 28, no. 1, Jan. 2009, Art. no. 3.

[29] J. Gu, S. K. Nayar, E. Grinspun, P. N. Belhumeur, and R. Ramamoorthi,
‘‘Compressive structured light for recovering inhomogeneous participating
media,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 3, p. 1,
Mar. 2013.

[30] E. Miandji, J. Kronander, and J. Unger, ‘‘Compressive image reconstruc-
tion in reduced union of subspaces,’’Comput. Graph. Forum, vol. 34, no. 2,
pp. 33–44, May 2015.

[31] J.-F. Cai, E. J. Candès, and Z. Shen, ‘‘A singular value threshold-
ing algorithm for matrix completion,’’ SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, Mar. 2010.

[32] Y. Huo, R. Wang, S. Jin, X. Liu, and H. Bao, ‘‘A matrix sampling-
and-recovery approach for many-lights rendering,’’ ACM Trans. Graph.,
vol. 34, no. 6, Nov. 2015, Art. no. 210.

[33] W. Li, L. Zhao, Z. Lin, D. Xu, and D. Lu, ‘‘Non-local image inpainting
using low-rank matrix completion,’’Comput. Graph. Forum, vol. 34, no. 6,
pp. 111–122, Sep. 2015.

[34] Y. Wang, J. Yang, W. Yin, and Y. Zhang, ‘‘A new alternating minimization
algorithm for total variation image reconstruction,’’ SIAM J. Imag. Sci.,
vol. 1, no. 3, pp. 248–272, Jan. 2008.

[35] B. Xu, J. Zhang, R. Wang, K. Xu, Y.-L. Yang, C. Li, and R. Tang,
‘‘Adversarial Monte Carlo denoising with conditioned auxiliary feature
modulation,’’ ACM Trans. Graph., vol. 38, no. 6, Nov. 2019, Art. no. 224.

[36] I. Goodfellow, ‘‘NIPS 2016 tutorial: Generative adversarial
networks,’’ 2017, arXiv:1701.00160. [Online]. Available: https://arxiv.
org/abs/1701.00160

[37] W. Lotter, G. Kreiman, and D. Cox, ‘‘Unsupervised learning of visual
structure using predictive generative networks,’’ 2015, arXiv:1511.06380.
[Online]. Available: http://arxiv.org/abs/1511.06380

[38] Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang,
L. Sun, and G. Wang, ‘‘Low-dose CT image denoising using a generative
adversarial network with Wasserstein distance and perceptual loss,’’ IEEE
Trans. Med. Imag., vol. 37, no. 6, pp. 1348–1357, Jun. 2018.

[39] Z. Shi, J. Li, Q. Cao, H. Li, and Q. Hu, ‘‘Low-dose spectral CT denoising
method via a generative adversarial network,’’ J. Jilin Univ., Eng. Technol.
Ed., vol. 49, no. 5, pp. 1–10. Sep. 2019.

[40] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein GAN,’’ 2017,
arXiv:1701.07875. [Online]. Available: https://arxiv.org/abs/1701.07875

[41] E. J. Candès and B. Recht, ‘‘Exact matrix completion via convex optimiza-
tion,’’ Found. Comput. Math., vol. 9, no. 6, pp. 717–772, Apr. 2009.

[42] S. Gu, Q. Xie, D.Meng,W. Zuo, X. Feng, and L. Zhang, ‘‘Weighted nuclear
normminimization and its applications to low level vision,’’ Int. J. Comput.
Vis., vol. 121, no. 2, pp. 183–208, Jul. 2016.

[43] M. Pharr and G. Humphreys, Physically Based Rendering: From Theory
to Implementation. San Mateo, CA, USA: Morgan Kaufmann, 2010.

[44] F. Rousselle, C. Knaus, and M. Zwicker, ‘‘Adaptive sampling and recon-
struction using greedy error minimization,’’ ACM Trans. Graph., vol. 30,
no. 6, pp. 1–12, Dec. 2011.

[45] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[46] M. Delbracio, P.Musé, A. Buades, J. Chauvier, N. Phelps, and J.-M.Morel,
‘‘Boosting Monte Carlo rendering by ray histogram fusion,’’ ACM Trans.
Graph., vol. 33, no. 1, Jan. 2014, Art. no. 8.

[47] T.-M. Li, Y.-T. Wu, and Y.-Y. Chuang, ‘‘SURE-based optimization for
adaptive sampling and reconstruction,’’ ACM Trans. Graph., vol. 31, no. 6,
Nov. 2012, Art. no. 194.

[48] P. Sen and S. Darabi, ‘‘On filtering the noise from the random parameters
in Monte Carlo rendering,’’ ACM Trans. Graph., vol. 31, no. 3, May 2012,
Art. no. 18.

[49] N. Divakar and R. V. Babu, ‘‘Image denoising via CNNs: An adversarial
approach,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Honolulu, HI, USA, Jul. 2017, pp. 1076–1083.

[50] J. Zhang, D. Zhao, and W. Gao, ‘‘Group-based sparse representation
for image restoration,’’ IEEE Trans. Image Process., vol. 23, no. 8,
pp. 3336–3351, Aug. 2014.

39066 VOLUME 9, 2021


