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ABSTRACT Charcoal rot is one of the most destructive fungal diseases of soybean, caused by the pathogen
called Macrophomina phaseolina. This disease thrives in warm and dry conditions, affecting the yield of
soybean and other important agronomic crops. Existing methods used to screen the disease suffer from
several drawbacks including, manual rating, low accuracy, high operating time, and high system complexity.
To circumvent these drawbacks, we developed a laser biospeckle based sensor to characterize the charcoal
rot in soybean crop. Applicability of the proposed sensor was tested to analyze three major aspects of plant
disease management, viz. characterization of disease progression, early identification of disease symptoms,
and analysis of genetic resistance of the given cultivar towards the disease. The experiments were conducted
during Kharif season for two consecutive years (2019 and 2020) on two cultivars of soybean, namely,
JS 90-41 and AMS-MB-5-18. The proposed sensor as well as standard rating protocol (i.e. measuring the
length of necrosis) were used to analyze the extent of disease. To characterize the disease progression and the
genetic resistance of different cultivars against M. phaseolina, two new metrics, charcoal rot severity index
and disease susceptibility indexwere introduced. Biospeckle activity was found to be strongly correlatedwith
the lesion length of infected plant stems (r = +0.96, p < .01, two-tailed (for JS 90-41) and (r = +0.95,
p < .01, two-tailed (for AMS-MB-5-18) for the year 2019; and r = +0.97, p < .01, two-tailed (for
JS 90-41) and r = +0.93, p < .01, two-tailed (for AMS-MB-5-18) for the year 2020). Experimental results
clearly indicate that the proposed sensor can be used as an efficient tool to detect the disease in its early stages
of pathogen development. This study provides insights into development and implementation of disease
control measures for increasing soybean crop production.

INDEX TERMS Agriculture, biospeckle activity (BA), charcoal rot, laser biospeckle, lesion length, soybean
crop.

I. INTRODUCTION
Soybean (Glycine max (L.) Merr.) is one of the most impor-
tant oilseed crops in the world, that contributes to nearly
two-thirds of the world’s protein and a quarter of the world’s
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edible oil [1]. Soybean is the primary source of protein and is
extensively used to produce soy foods, cooking oil, biofuel,
and regularly used for high-quality animal feed. Unfortu-
nately, there are different kinds of diseases that can drastically
affect soybean production [2], [3]. Among them, charcoal
rot [4] is believed to be the most threatening and econom-
ically critical disease that hampers the soybean production
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worldwide. Charcoal rot is caused by the pathogen
Macrophomina phaseolina (Tassi) Goid [4] and can reduce
the yield of multiple crop families (e.g. legume, cereal, fruit,
and vegetables) up to 50%. M. phaseolina is a soilborne
necrotrophic fungal plant pathogen that can be more severe
under dry, warm, and drought conditions. The disease is
so called due to gray-black discoloration resulting from
the formation of microsclerotia (small black fungal survival
structures) in epidermal, sub-epidermal, vascular tissues, pith
regions of lower stem and root of infected plants [5].

There are three major aspects of charcoal rot management
(namely, characterization of disease severity, early identifica-
tion of disease symptoms, and evaluation of genetic resistance
of different cultivars against the disease) that should be inves-
tigated to facilitate corrective measures for increasing crop
productivity. Characterization of charcoal rot symptoms are
critical due to the unavailability of appropriate fungicides that
can control the disease. Themost common symptoms of char-
coal rot include chlorosis, plant wilting, flagging of branches,
and premature senescence of plants [6]. The existing tech-
niques used to detect the pathogen and severity of charcoal
rot infection are predominantly based on visual inspection of
different symptoms caused by the disease [7]. Several studies
have been conducted to examine the devastating effect of
charcoal rot on soybean plants in the field and laboratory con-
ditions. The most commonly used methods to estimate infec-
tion are: Measurement of percentage chlorosis and necrosis
of canopy during the growing season [8], measurement of the
severity of root colonization by calculating colony forming
unit (CFU) index [8], and measurements of lesion length
in cut-stem inoculated plants [9]. However, these methods
based on visual inspection to detect the disease are sub-
jective and prone to error due to human perception [10].
These field screening methods to detect disease symptoms
are time-consuming and labor-intensive. Several image pro-
cessing software (like ASSESS 2.0) are also available to
characterize the plant diseases. However, these methods use
photographs of infected plant for characterizing the diseases.
These methods are based on digital image processing tech-
nique comprising of the three basic steps: image processing,
analysis and understanding [10]. These steps involve the pre-
processing of images of plant leaf obtained from the field and
perform operations including segmentation, color extraction,
diseases specific data extraction and filtration of images [10].
The main limitation of image processing-based strategy is
that it generally deals with the classification of diseases by
analyzing color feature of infected plants or samples having
visible symptoms of infection [11]. Since the visual software
based disease detection methods are based on texture analysis
(i.e. surface topography), both early identification of disease
and evaluation of genetic resistance of different cultivars will
not be possible using these techniques. Moreover, all the
above discussed methods are typically applied around the
physiological maturity of the plants and hence require an
entire growing season which increases overall experimental
tenure to a large extent.

Recently, Ahmadi et al. [12] reported the use of hyper-
spectral spectroscopy (HS) for identification of toxin effects
of charcoal rot in soybean seedlings. The results of study
indicated that HS can detect wilting in soybean leaves caused
by pathogen. Authors, specifically concluded that the effects
of disease can be prominently noticed at 1940 nm waveband.
Nagasubramanian et al. [13] also investigated the applica-
bility of hyperspectral imaging for identification of charcoal
rot. Combination of genetic algorithm (as an optimizer) and
support vector machine (as a classifier) was used for iden-
tification of maximally effective combination of wavebands
that can distinguish between healthy and diseased soybean
stems. However, primary disadvantage of these approaches
are prohibitive cost associated with the experimental arrange-
ments and high complexity of the processing algorithms. Fast
computers, sensitive detectors, and large data storage capabil-
ities are needed for acquiring and processing hyperspectral
data. Significant data storage capability is necessary since
hyperspectral cubes are large multidimensional data sets.
Hyperspectral image having huge numbers of narrow and
contiguous bands involves high computation complexity in
processing and examining the images. Hence, dimensionality
reduction becomes an essential preprocessing step for analyz-
ing the data acquired by using hyperspectral imaging. Dimen-
sionality reduction operation is performed by using complex
algorithms (principal component analysis (PCA), singular
value decomposition (SVD), multidimensional scaling (MS),
pooling, and non-negative matrix factorization (NMF)) fur-
ther increase the overall complexity and time required to
process the data obtained from the experiments [14].

Early identification of charcoal rot symptoms is vital for
sustainable management and prevention of the disease pro-
gression in host plants. Seedlings can be infected during
emergence (early vegetative stages (VE)), however symptoms
of the disease are not usually visible until R5 (beginning seed)
to R7 (beginning maturity) growth stages [5]. Once infected,
root and stem tissues are colonized within 1-3 weeks; how-
ever, there is a variation in this duration among different iso-
lates based on the growth rate and different colony types [8].
Both, the field inspection for disease detection and small
scale methods used to assess plant infection, rely on visual
symptoms of the disease and fail to detect infection in early
stage of pathogen developments.

Production of charcoal rot resistant cultivars is also one
of the extensively practiced and reliable ways to control the
plant diseases [15]. However, most of the available cultivars
are not completely resistant towards charcoal rot, and only
a few have been found to have certain level of resistance [5].
Identification of charcoal rot resistant cultivars from available
soybean lines is challenging due to unavailability of suit-
able methods. Hence, it is necessary to develop consistent,
reliable, and universal techniques for accurate assessment of
disease-resistant capabilities in different cultivars.

As discussed in the above-mentioned sections, current
methods used to detect diseases in plants have several draw-
backs and cannot address every aspect of plant disease
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phenotyping. Hence, development of an efficient and accu-
rate sensor to quantify charcoal rot symptoms is essential
to estimate or measure disease progression in soybean crop.
Information of the quantitative parameter of disease progres-
sion is particularly important for rapid supervision and deci-
sions, as disease management is closely related to yield loss.
An effective and reliablemethod to detect pathogen infections
in early stage of disease development is also important to
reduce spread of disease and facilitate effective management
practices. Moreover, there is no direct method to precisely
estimate and quantify disease resistance capability of differ-
ent cultivars. Therefore, development of a reliable method
to analyze resistance capability of different cultivars towards
M. phaseolina will save considerable time and is essential to
screen soybean germplasm accessions at large scale with high
accuracy [8].

Development and utilization of different optical techniques
for precision agriculture have gained enormous popular-
ity due to several advantages like high sensitivity, non-
invasiveness, wide dynamic range, reliable operation, and
capability of monitoring extensive range of chemical and
biological parameters. These technologies can provide useful
data that assist farmers to analyze and optimize crop produc-
tion and resources. Over the past few years, different smart
agricultural solutions have been developed using optics and
photonics-based sensing techniques [16]–[19]. Applicability
of these optical sensors as a diagnostic tool for identification
and quantification of disease symptoms in different crops is
challenging. In recent decades, an optical imaging technique,
laser biospeckle analysis [20] has gained researchers’ atten-
tion due to its different inherent advantages (e.g. fast and sim-
ple operations, low cost, non-invasive imaging). Fig. 1 shows
the schematic of the basic principle associated with the gener-
ation of biospeckle phenomena. Biospeckle [21] phenomena
is observed when an object having chemical or biological
activity is illuminated by a coherent light source. Wavefronts
of the scattered rays, reflected from the biological specimen
interfere with each other and generate a granular pattern
consisting of dark (for out-phase light waves) and bright
(for in-phase light waves) speckle patterns, visible in the
observation plane. These biological changes associated with
a sample are temporal and result in intensity fluctuations
in the time series biospeckle images. These intensity fluc-
tuations are observed as a result of various physiological
and biochemical processes, like microorganism interactions,
cell divisions, cytoplasmic streaming, biochemical reactions,
organelle movement, and Brownian motion occurring inside
the samples. Over the past few years, biospeckle analysis
has been extensively used in versatile applications in agricul-
ture [21], [22], engineering [23], biomedical imaging [24],
pomology [25], and biometrics [26]–[28].

In this article, we present a novel laser biospeckle based
sensor for automatic detection and quantification of charcoal
rot in soybean crop with high accuracy. Potential of the
proposed sensor was analyzed in three different domains of
plant diseasemanagement. Firstly, characterization of disease

FIGURE 1. Basic principle of biospeckle generation.

progression was performed at different time intervals, and
charcoal rot severity index (CSI) is proposed to analyze extent
of infection in the host plants. Next, applicability of the sensor
was tested to diagnose symptoms of disease in early stage of
infection. Finally, disease susceptibility index (DSI) is pro-
posed to differentiate multiple cultivars according to their dis-
ease resistance capability. The proposed indexes showed high
accuracy and sensitivity in discriminating different stages of
disease severity as well as analyzing resistivity of different
cultivars towards the disease.

Rest of the paper is organized as follows: Section II
describes materials and methods; covering sample prepa-
ration, experimental procedure, data processing algorithm,
and conventional disease rating protocol. Section III presents
detailed discussion of results obtained from the study. Finally,
Section IV summarizes the main contributions.

II. MATERIALS AND METHODS
A. SOYBEAN SEEDLING MATERIAL AND PLANTING
PROCEDURE
Two distinct soybean cultivars, namely AMS-MB-5-18 (sus-
ceptible), and JS 90-41 (moderately resistant) were selected
for this study. The experiment was conducted inside a
glasshouse under most favorable conditions (30 ± 2◦C
day/21 ± 2◦C night with a 12-hours photoperiod) to get the
best possible symptoms expression of the disease. All the
glasshouse experiments were conducted at Indian Institute
of Soybean Research (IISR), Indore (India). Healthy seeds
of each cultivar were selected and planted in 24-pot plastic
insert. Each pot insert, having six rows of four pots, was filled
with soil and sand, and recommended dose of fertilizer was
used [8]. Two weeks after the emergence (V2 growth stage),
plants were thinned down and only one most vigorous plant
per pot was allowed to grow.

B. PREPARATION AND CUT-STEM INOCULATION OF
PATHOGEN
To prepare the fungal toxin,M. phaseolina was isolated from
heavily infected stem samples collected from an experimen-
tal field of the plant pathology, Jawaharlal Nehru Krishi
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Vishwavidyalaya (JNKVV), Jabalpur (India). The infected
stem was washed thoroughly with distilled water and dried
for 1 hour. Washed infected stem was surface sterilized with
0.1% solution of NaCl for one minute. After surface steril-
ization stem samples were cut down into small pieces (nearly
0.5 cm) with the help of sterilized blade and washed thrice
in sterilized distilled water. Then small pieces of stem was
dried on sterilized blotter paper and inoculated on potato
dextrose agar media (HiMedia, India) in a laminar air flow
chamber and finally incubated at 27 ◦C in the BOD cham-
ber [29], [30]. The production of sclerotia and morphol-
ogy of the fungus colony were the main criteria used to
identify the M. phaseolina [31]. Moreover, M. phaseolina
was also identified with its microscopic characteristics such
as right angle branch of hyphae with constriction at origin
point and production of sclerotia [30]. The images of typ-
ical fungi culture and its microscopic structure are shown
in Fig. 2 (a) and (b) respectively. Finally, four days old culture
was used for inoculation on soybean plants.

We conducted the experiments duringKharif season of two
consecutive years 2019 and 2020 to characterize the effect
of charcoal rot with twenty replication of each sample by
using the cut stem inoculation technique [9]. Completely
randomized block design was used for the experiments.
400 uniformly grown plants were selected and randomly
separated into two groups; namely, healthy and diseased for
each cultivar. No inoculation was performed for the plants
of healthy group, whereas for diseased group M. phaseolina
was inoculated on plant stem.

For inoculation, stem apex of each plant was severed
25 mm above the unifoliate node after 15 days of plant-
ing by using a sharp razor blade. Sterile 200 µl pipette tip
(Fisher Scientific) was used to inoculate pathogen on plant
stems. Open end of pipette was inserted down into actively
growing M. phaseolina culture, and small circular disk of
fungal mycelium with agar was removed from the culture
plate. Pipette tip containing actively growing pathogen was
instantly used for the inoculation. Pipettes were directly
placed on the cut stems and pushed down as far as possible in
order to embed the fungal mycelia into the wounded cut stem
apex.

C. HARDWARE SETUP AND DATA ACQUISITION PROCESS
Hardware setup used for the experiment is shown in Fig. 3.
He-Ne diode laser (15 mW, λ = 632.8 nm) was uti-
lized to illuminate the treated plant stem. The intensity of
the laser beam was controlled by using variable attenua-
tor. Spatial filtering arrangement, consisting of microscopic
objective (MO) of total magnification 40X and an aper-
ture of 10 micrometer, was used to filter and expand the
beam. Filtering arrangement reduces the non-uniformity gen-
erated due to noise in the laser profile to a considerable
extent and produces a uniformly illuminated laser beam.
The biospeckle imaging of the healthy and diseased plants
was performed destructively at different time points after
inoculation. All leaves were removed from plant stem and

FIGURE 2. (a) Culture of M. phaseolina isolated from charcoal rot of
soybean stem on PDA plate at 4 days after incubation, and (b) mycelium
and sclerotia of M. phaseolina under light microscope at 20×.

FIGURE 3. Experimental setup used for biospeckle analysis: CCD camera,
lens assembly, laser source, spatial filtering arrangement, mount, sample
space, laser power supply and vibration isolation table top.

the stem was detached from the soil surface immediately
prior to biospeckle analysis. Stems were placed on a vibra-
tion isolation table top, and illuminated with filtered and
expanded laser beam for biospeckle imaging. Plant stems
were imaged at different time intervals after inoculation.
Successive biospeckle images corresponding to each sample
were recorded by a CCD camera (Basler Corp., frame rate:
30 fps, resolution: 1024 × 967). To study the biospeckle
behavior of plant stems in early stages and at later time
instants, biospeckle images of both the groups were recorded
every day after inoculation (DAI) of pathogen. Data col-
lection associated with the disease progression was com-
pleted within 10 DAI. Stack of time frame sequence of these
encoded images were created and processed in MATLAB.

D. DATA PROCESSING
In order to extract biological activity present in a healthy
and diseased stem cells, n-speckle frames of size M × N are
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captured at a sampling rate of f= n/t, where t is the time dura-
tion for recording all the speckle frames. Activity associated
with the healthy and the diseased group was calculated by
considering only active data points from the speckle images.
The overall processing strategy used to analyze BA of the
samples is given below:

1) Time series of speckle patterns of both groups (healthy
and diseased) for different time intervals are recorded
and a stack is created using MATLAB for further pro-
cessing.

2) An image mask is generated to automatically select
region of interest (ROI) from the speckle images cap-
tured for both the groups. To generate ROImask, image
segmentation is performed [32]. The purpose of image
segmentation is to partition an image into number
of segments. Each segment contains some pixels that
belong to one of the specific groups; and the number
of groups are often predetermined in practice. Simplest
strategy for image segmentation is thresholding, as it
usually needs information embedded in the pixel levels
of an image. In this work, we have utilized the strat-
egy based on Otsu’s binarization [32] for automatic
selection of ROI from speckle images. This method
calculates the optimum binarization threshold using
a probabilistic approach. Algorithm returns a sin-
gle intensity threshold that can separate image pixels
into two classes, namely foreground and background.
To generate a mask, single image from particular image
stack is chosen and binarized using Otsu’s thresh-
olding. In this method, an image is partitioned into
two classes C1 and C2 having gray levels [0− L]
such that C1 = {0, 1, 2, . . . ,T } and C2 = {T +
1,T + 2,T + 3, . . . ,L − 1} by using threshold at
level T. Value of threshold T is determined by mini-
mizing within-class variance, equivalently maximizing
the between-class variance to separate foreground and
background. To calculate optimum threshold, mean of
two classes is calculated as:

µC1 =

T∑
n=0

npn
PC1

(1)

µC2 =

T∑
n=0

npn
PC2

(2)

where pn is defined as the probability of occurrence
of the nth gray level. PC1 and PC2 are the probabilities
associated with the occurrence of two classes.
Finally associated variance for both the classes (C1 and
C2) is described as [27]:

σ 2(T ) = PC2 × PC2 (
(
µC1 − µC2

)
)2 (3)

From the above equations, optimum threshold T ∗ for
given image can be computed as:

T ∗ = argmax
0<T<L−1

σ 2(T ) (4)

FIGURE 4. (a) Speckle image for soybean stem, (b) generated image
mask, and (c) masked speckle image.

This threshold value (T ∗) is used to generate an image
mask with zero gray level for background and one for
active data points. Finally, only active pixels corre-
sponding to object under study is selected from speckle
image by multiplying each speckle frame with the gen-
erated mask. Speckle image of a plant stem is shown
in Fig. 4 (a), and its corresponding image mask is given
in Fig 4 (b). Resultant masked overlaid image for given
speckle frame is shown in Fig. 4 (c).

3) Masked images generated by using Otsu’s binarization
in step (ii) were used for biospeckle analysis. Once the
ROI is selected, BA associated with different groups
is analyzed using a methodology based on random
time history of speckle pattern (RTHSP) followed by
co-occurrence matrix (COM) [33]. Activity recorded in
multiple speckle frames is encoded into a single matrix
by generating its RTHSP. This method can quantify
the BA with higher accuracy by considering the optical
inhomogeneity present in the samples.Moreover, as the
inhomogeneity present in BA map increases, the effi-
ciency of the proposed method also increases [33].
To generate RTHSP, multiple random points (say R) are
selected from the recorded speckle pattern and placed
next to each other. The locations of these points are
fixed for all the successive time frame images. When
a sample presents low biospeckle activity, time varia-
tion of successive speckle patterns is slow and results
in elongated shape of the RTHSP. However, phenom-
ena showing high biospeckle activity possesses greater
change in successive speckle sequences, and generate
RTHSP which resembles an ordinary speckle pattern.

4) After generation of RTHSP, COM [34] is created by
calculating number of successive occurrences of every
pixel pair in each row of the RTHSP, and is given by:

MCOM =
[
Ni,j

]
(5)

where, N is the occurrence of certain pixel value index
i, instantly followed by pixel value index j. For low
BA, pixel values of COM does not change much, and
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FIGURE 5. Healthy and diseased region present in soybean plant stem
after inoculation.

most of non-zero pixel values are confined towards
the principal diagonal. Resultant matrix is sparse in
nature and most of its elements are zero. In case of high
BA, COM resembles a cloud like pattern around the
principal diagonal. In the next step, normalization of
the COM is performed as given below:

Mi,j =
Ni,j∑
i,j(Ni,j)

(6)

5) Finally, numerical quantification of BA is performed
by calculating the spread of normalized COM val-
ues around the principal diagonal by using first
order moment called absolute value of difference
(AVD) [33]. The method calculates sum of the differ-
ence between normalized COM values, multiplied by
its distance from the principal diagonal, and is given
by:

AVD =
∑
i,j

Mi,j |i− j| (7)

E. CHARCOAL ROT RATING PROTOCOL
In addition to biospeckle analysis, disease progression was
manually rated by measuring linear necrosis or lesion length
(in centimetre) caused by M. phaseolina. The pipette tips
were removed from each plant stem just three DAI and
discarded to measure necrosis produced by the pathogen.
Severity of the disease was measured by a ruler/scale and
recorded every day until end of the experiment. Fig. 5 shows
the different regions (healthy and diseased) present in the
plant stem.

F. STATISTICAL ANALYSIS
The obtained data was statistically analyzed by using IBM
SPSS statistics software (version 16.0). Twenty measure-
ments from each seedling were averaged for an experimental
unit. ANOVA was used to compare the mean values of the
data acquired for both the groups (healthy and diseased)
and to find the statistical significance (p ≤ 0.05) between
these mean values [34]. The main hypothesis for this analysis
was to analyze the possible effect of pathogen infection on

biospeckle activity recorded at different time intervals for two
cultivars (AMS-MB-5-18 and JS 90-41). We analyzed the
measurement events separately by considering the biospeckle
activity as a dependent variable and the time duration of the
treatments and cultivars as an independent variable. ANOVA
was used for testing cultivars× time interaction and its effect
on biospeckle activity. Differences among the means for all
the measurement events were tested for significance by using
Tukey’s honest significant difference test (Tukey’s HSD).
Additionally, relationship between BA and lesion length was
analyzed using Pearson’s correlation coefficients (R).

III. RESULTS AND DISCUSSION
A. CHARACTERIZATION OF DISEASE PROGRESSION
Cultivars with susceptible and moderately resistant response
towards charcoal rot were used for this study. Measurements
were carried out for two consecutive years (2019 and 2020 in
Kharif season) on both the cultivars (AMS-MB-5-18 and
JS 90-41), containing healthy and diseased groups. Visual
images of both the soybean cultivars, infected withM. phase-
olina for different time intervals are presented in Fig. 6 and 7.
Biospeckle data corresponding to different time intervals for
each group was also recorded for different time duration
and analyzed using the strategy discussed in Section II.
Fig. 8 (a) and (b) show RTHSP corresponding to healthy
group for JS 90-41 cultivar. Resultant COM generated from
the biospeckle data are shown in Fig. 8 (c) and (d) respec-
tively. Elements of COM for healthy plants do not showmuch
variations and are confined around the principal diagonal
for all the time duration. BA results corresponding to dis-
eased group are shown in Fig. 9. For diseased plants, on the
0th day, the shape of COM was observed to be similar as
healthy group. However, as the exposure time of the pathogen
increases, higher BA was observed, and resultant COM cre-
ates a distributed cloud of high values around the principal
diagonal.

BA for all the acquired data was calculated by using
AVD method and plotted against time. BA of JS 90-41
and AMS-MB-5-18 cultivars corresponding to different
time intervals for the year of 2019 and 2020 are shown
in Fig. 10 (a) and (b) respectively. BA of both the cultivars
for healthy plants at all the measurement stages was almost
constant. However, distinct change in BA of diseased group
as compared to healthy one was observed. For the diseased
group, BA increased continuously with time for both the
cultivars as shown in Fig. 10. This change in BA of diseased
group was observed due to toxin and enzymatic effects of the
pathogen that degrade [5] stem tissues as time progresses.
This degradation occurred due to the infection which colo-
nized within a few days and ultimately resulted in death of
the plants. In the diseased group, pathogen enhances the rate
of respiration, and activity of enzymes associated with the
respiration process, which in turn increases the metabolism
of infected region [35]. Moreover, biospeckle activity is also
strongly affected by several phenomena related to differ-
ent vital metabolic processes namely reserve mobilization,

VOLUME 9, 2021 31567



P. Singh et al.: Biospeckle-Based Sensor for Characterization of Charcoal Rot Disease

TABLE 1. Biospeckle activity and lesion length associated with healthy and diseased groups for Kharif season of year 2019.

TABLE 2. Biospeckle activity and lesion length associated with healthy and diseased groups for Kharif season of year 2020.

glyoxylate cycle, phytohormonal regulation, and respiration
process in biological tissues [36]. These physiological
changes result in variation in the biospeckle index of the
recorded biospeckle data.

Descriptive statistics of BA associated with both the cul-
tivars (healthy and diseased groups) for 2019 Kharif sea-
son is given in Table 1. Similarly, all the data acquired in
the year 2020 is provided in Table 2. For healthy group,
no significant difference (p < 0.05) was observed among
the biospeckle readings taken at different time intervals for
both the years. ANOVA for biospeckle measurement corre-
sponding to disease group indicated no significant difference
(p < 0.05) for t = 0th day and its biospeckle behavior was
similar to healthy group. However, progression of disease
symptoms can be clearly traced by BA for diseased group.
There was a significant difference (p < 0.05) in BA related
to the diseased group for different time intervals during both
the years. BA corresponding to diseased plants increased

continuously with time as duration of the pathogen interac-
tion increased.

Ability of the proposed sensor to identify disease symp-
toms with high accuracy was tested and compared with
commonly used method based on lesion length measure-
ment. Disease progression was manually rated by calculating
lesion length in every stage of plant growth. Table 1 and
2 show lesion length (in cm) associated with both the cultivars
obtained in the years 2019 and 2020 respectively. Visible
appearance of healthy plants was similar at all the mea-
surement stages. However, the diseased plants had signs of
increased lesion length, which was visible after few DAI
(Fig. 6 and 7). Identification of disease length progression is
very important for analyzing severity of disease and resistiv-
ity of different cultivars towards pathogen. This is the most
commonly used method for manual rating of disease symp-
toms. Lesion length measurements corresponding to diseased
group were undertaken just 3 DAI at different time intervals

31568 VOLUME 9, 2021



P. Singh et al.: Biospeckle-Based Sensor for Characterization of Charcoal Rot Disease

FIGURE 6. Visual images for diseased group of JS 90-41 cultivar at
(a) t = 0th day, (b) t = 2nd day, (c) t = 5th day, and (d) t = 9th day.

FIGURE 7. Visual images for diseased group of AMS-MB-5-18 cultivar at
(a) t = 0th day, (b) t = 2nd day, (c) t = 5th day, and (d) t = 9th day.

and compared with the corresponding BA. Correlation of BA
with lesion length of diseased group at every stage of disease
progression was performed. BA presented significant high
positive correlation ((r = +0.96, p < .01, two-tailed (for
JS 90-41 cultivar) and r = +0.95, p < .01, two-tailed (for
AMS-MB-5-18 cultivar) for year 2019 and (r = +0.97,
p < .01, two-tailed (for JS 90-41 cultivar) and r =
+0.93, p < .01, two-tailed (for AMS-MB-5-18 cultivar))
for year 2020) with lesion length. Obtained data indicate
that the proposed sensor can be used as an alternative
non-destructive method to detect symptoms of charcoal rot in
soybean.

To quantify the progression of disease symptoms and to
evaluate severity of the pathogen infection automatically by
using BA of diseased group, CSI is introduced. This index is
given as the ratio of the mean difference of BA associated
with diseased and healthy groups for a given day, to the
average of BA associated with healthy group for all the
measurement events. It is mathematically expressed as:

(CSI)i =
di − hi∑D−1
i=0 (hi)/D

(8)

where, D is the number of days of observation, di and hi are
the BA corresponding to different time intervals for diseased
and healthy groups respectively.

Fig. 11 (a) and (b) show the disease progression for CSI
corresponding to diseased group at different time intervals
during the years 2019 and 2020, respectively. CSI is a mea-
sure of disease progression and hence can provide informa-
tion related to different stages of disease severity. The value of

FIGURE 8. RTHSP for healthy group of JS 90-41 cultivar (a) t = 0th day,
(b) t = 9th day; COM for healthy group (c) t = 0th day, (d) t = 9th day.

FIGURE 9. RTHSP for diseased group of JS 90-41 cultivar (a) t = 0th day,
(b) t = 9th day; COM for diseased (c) t = 0th day, (d) t = 9th day.

this ratio close to zero indicated no infection. The higher the
ratio, the greater the severity of disease on soybean plants.
Continuous increase in CSI values was observed for both
the cultivars as time of the pathogen interaction with plants
increased as shown in Fig. 11 (a) and (b). Similar to the
diseased plants lesion length, CSI also presented the highest
change for the 9th day measurement. CSI presented high
positive correlation with lesion length (r = +0.96, p < .01,
two-tailed (for JS 90-41) and r = +0.95, p < .01, two-tailed
(for AMS-MB-5-18)) for the year 2019 and (r = +0.97,
p < .01, two-tailed (for JS 90-41) and r = +0.91, p < .01,
two-tailed (for AMS-MB-5-18)) for the year 2020), which
show that the sensor can accurately analyze progression of
the disease in plants. Hence, we propose this ratio for relative
comparison of different stages of disease progression. CSI
showed a promising performance to analyse the extent of
charcoal rot severity in diseased plants and can be used in
different studies as a new metric to improve the disease
detection capability.

B. EARLY IDENTIFICATION OF CHARCOAL ROT SYMPTOMS
Ability of a sensor to detect pathogen in early stages is
very important for mitigation of disease by incorporating
corrective measures. M. phaseolina can infect soybean at
all growth stages. Infection at early stages can result in
seedling death or the disease can progress in the form of
latent infection and aggravates during maturity when plant
starts senescing. Therefore, early detection of latent infection
for timely control measures is of economic significance [38]
in soybean crop. Data obtained from the proposed sensor
clearly indicates that the BA for both the cultivars are respon-
sive towards the disease symptoms even at early stages of
infection. Non-inoculated plants remained healthy for entire
experimental duration and presented almost constant BA
(Table 1 and 2). Plant stems inoculated with M. phaseolina
were initially colonized without symptoms. These symptoms
became visible on the stem cells after a certain latency period,
before that plant appeared to be healthy [39]. As shown in
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FIGURE 10. BA of JS 90-41 and AMS-MB-5-18 associated with healthy
and diseased plant stems at different time intervals for (a) year 2019, and
(b) year 2020.

Fig. 10 (a) and (b), progression of the disease in early stages
of plant can be clearly distinguished by analysing BA of the
samples acquired using the sensor, which was not observable
by manual inspection. Initially, just after the inoculation,
BA of healthy and diseased plants was similar, and there
was no significant difference (p < 0.05) in the acquired
data. However, just two DAI, BA of diseased group increased
significantly, whereas change in BA of healthy group was
insignificant (p < 0.05). Moreover, during this stage lesion
length of charcoal narcosis produced due to disease was
not even observable. Usually, charcoal narcosis is visible in
four to five DAI; before that we cannot measure disease
severity by using routine manual methods. As shown in
Fig. 10 (a) and (b), BA of diseased group increased promi-
nently just twoDAI. This increase in the BA index is occurred
due to metabolic changes associated with the progression
of disease through stem cells. Moreover, CSI also increased
significantly (p < 0.05) for both the cultivars just two DAI

FIGURE 11. Charcoal rot severity index (CSI) associated with both the
cultivars at different time intervals for (a) year 2019, and (b) year 2020.

which imply that by using the proposed method the disease
symptoms can be identified even in early stage of infection
(Fig. 11).

C. ANALYSIS OF DIFFERENCES IN GENETIC RESISTANCE
AGAINST THE DISEASE
Generation of charcoal rot resistant cultivars is one of the
most common and reliable ways tomanage the disease in soy-
bean crop. Development of an automatic and accurate sensor
to characterize the resistivity of different cultivar towardsM.
phaseolina is an important and much needed step for plant
breeding programs. One of the objectives of this investigation
is to analyze the capability of developed sensor to identify
resistivity of different cultivars towards the disease. To inves-
tigate this, two distinct cultivars of soybean with known
differences in disease resistance were used. We have tested
applicability of the proposed sensor to categorize soybean
cultivars in terms of their capability to resist the disease in
a given environmental conditions. There is no direct method
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that can precisely quantify the susceptibility of the soybean
cultivars towards charcoal rot, hence a new metric called DSI
was introduced. This is mathematically expressed as:

(DSI)i =

∑D−1
i=0 (di − hi)

D
(9)

As shown in Fig. 11, severity of the disease was also higher
for susceptible cultivar at every time point of disease progres-
sion. To compare the ability of DSI to identify susceptible and
resistant soybean cultivars towards the disease, conventional
method based on the calculation of area under the disease
progress curve (AUDPC) was also utilized [40]. AUDPC
provides useful quantitative measure of disease intensity over
time. AUDPC for the given disease progress curve (Fig. 11)
is calculated as:

AUDPC =
D−1∑
i=0

yi + yi+1
2

× (ti − ti+1) (10)

where yi is intensity of disease at the ith day of observation,
ti is time (in days) at the ith observation, and D is the total
number of days of observations.

To analyze level of resistance of both the cultivars
(JS 90-41 and AMS-MB-5-18) againstM. phaseolina, a com-
parison of obtained DSI and AUDPC was performed. The
higher the value of DSI and AUDPC, the lower the resis-
tivity of the given cultivar. Comparison of DSI and AUDPC
values was performed for both the cultivars by using the
data acquired in both the years 2019 and 2020, and is
given in Fig 12 (a) and (b) respectively. Significantly higher
values of DSI (1308.25 and 1634.47) was obtained for
AMS-MB-5-18 as compared to JS 90-41 (936.73 and
1053.57). AUDPC calculated for the disease curve also
showed higher values (110.17 and 124.43) for AMS-MB-5-
18 as compared to JS 90-41 (73.43 and 81.69) cultivar. This
suggests that the resistivity of AMS-MB-5-18 is lower as
compared to the JS 90-41 cultivars. The values of charcoal
necrosis length (given in Table 1 and 2) also presented similar
behavior. For AMS-MB-5-18, lesion length is increased at
higher rate as compared to JS 90-41 and pathogen colonized
early in AMS-MB-5-18 cultivar. The responses of resistant
cultivars towards virus infection are generally characterized
by marked metabolic changes associated with the occurrence
of defense reactions. These reactions are related to the secre-
tion of several enzymes which inhibits the development of
pathogens inside the plants [35] and results in decrease in BA
associated with the given plant sample.

Moreover, visual perception basedmethod require intrinsic
skills and more time to trace the symptoms of disease as well
as speed of infection development to analyze the resistivity of
different cultivars towards the disease. It is evident from the
visual images shown in Fig. 6 and 7 that perception based
analysis require at least five to seven DAI to analyze the
susceptibility of given cultivars towards charcoal rot. On the
other hand, by analyzing the BA of diseased groups charcoal
rot susceptibility of the cultivars can be traced by only two

FIGURE 12. Comparison of (a) disease susceptibility index (DSI), and
(b) area under disease progress curve (AUDPC) associated with both the
cultivars for different years.

to three DAI, since BA for susceptible cultivar increases
rapidly as compared to the resistant one. Data acquired from
the experiments indicated that the sensor provides accurate
and rapid identification of disease resistance capability of
given cultivars. It is also evident from the results that newly
developed index can be used for precise determination of
disease resistance ability of different cultivars and can be
used as a performance metric for automatic identification of
cultivars resistant towards a disease.

As discussed, the advantages of the proposed sensor as
compared with the existing strategies include its extreme
simplicity, minimal-cost, high-operating speed, non-invasive
identification, user-friendliness, and high performance effi-
ciency. In this experiment, low-cost components (diode laser,
beam expander, and CCD camera) are utilized for biospeckle
analysis setup. Hence, the overall system cost is approx-
imately USD 1500. Moreover, due to enormous advance-
ment in imaging and fabrication technology, cost-effective
biospeckle sensors have also been developed using android
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phone or webcam in the recent years [25], [39]. This can fur-
ther reduce the system cost by using off the self-commodity
hardware costing about USD 100. Moreover, measure-
ment of speed of the sensor includes its data acquisition
speed and data processing speed. Speed of operation to
assess the overall dynamicity associated with the biospeckle
data depends upon the type of data processing technique.
Numerical indexing and visual analysis based method have
been widely utilized in the literature for analyzing the
biospeckle data, [40]. In this work, overall acquisition time
is 3.4 seconds (as photographs are captured with a camera
of frame rate = 30fps), and processing time (tp) is approx-
imately 4.2 seconds (for RTHSP based numerical method).
However, for full-field analysis based visual methods possess
relatively high processing time as compared to the method
used in the present study. The value of tp was observed to be
15.8 seconds for single summation based Fujii’s method [40],
and 305.46 seconds for double summation based generalized
difference (GD) [39] method. For calculating the code exe-
cution time, ‘tic toc’ profiler in MATLAB 2016a (core i5,
5th generation, 16 GB RAM, 64 bit OS, Windows 10 con-
figuration) was used. Further investigations are underway
to develop a compact assembly by using time-synchronized
low-cost USB camera (with a miniaturized auto-focusing
lens) to produce a complete module that can be technology
transferred for characterizing the disease with minimal time
and cost in the field conditions as well.

IV. CONCLUSION
By early control in charcoal rot, severe losses in soybean crop
can be mitigated and hence crop yield can be enhanced sig-
nificantly. Therefore, in this work, we developed a biospeckle
based sensor for real-time characterization of charcoal rot
in soybean crop. The results of this study indicated that the
BA maps the progression of pathogen infection accurately
for different time intervals and is highly responsive towards
the disease symptoms even at early stage of infection. Fur-
thermore, ability of the sensor to detect resistivity of differ-
ent cultivars towardsM.phaseolinawas analyzed. Significant
correlation between BA and data obtained from field trials
showed that the proposed sensor has the potential to be
used as a diagnostic tool for charcoal rot. Two new indexes
(CSI and DSI) were proposed to estimate and quantify the
intensity of infection and analyze susceptibility of each cul-
tivar towards charcoal rot. The advantages of the proposed
sensor as compared with the existing strategies include its
high accuracy, extreme simplicity, automatic operation, high
operating speed, minimal-cost, high performance efficiency,
non-invasive identification, and user-friendliness. As part of
the future work, we intend to develop a compact commercial
product using laser biospeckle to characterize the effect of
charcoal rot in soybean crop.
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