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ABSTRACT The popularity of video on-demand streaming services increased tremendously over the last
years. Most services use http-based adaptive video streaming methods. Today’s movies and TV shows are
typically recorded in UHD-1/4K and streamed using settings attuned to the end-device and current network
conditions. Video quality prediction models can be used to perform an extensive analysis of video codec
settings to ensure high quality. Hence, we present a framework for the development of pixel-based video
quality models.We instantiate four different model variants (hyfr, hyfu, fume and nofu) for short-term video
quality estimation targeting various use cases. Our models range from a no-reference video quality model to
a full-reference model including hybrid model extensions that incorporate client accessible meta-data. All
models share a similar architecture and the same core features, depending on their mode of operation. Besides
traditional mean opinion score prediction, we tackle quality estimation as a classification and multi-output
regression problem. Our performance evaluation is based on the publicly available AVT-VQDB-UHD-1
dataset. We further evaluate the introduced center-cropping approach to speed up calculations. Our analysis
shows that our hybrid full-referencemodel (hyfr) performs best, e.g. 0.92 PCC forMOS prediction, followed
by the hybrid no-reference model (hyfu), full-reference model (fume) and no-reference model (nofu).
We further show that our models outperform popular state-of-the-art models. The introduced features and
machine-learning pipeline are publicly available for use by the community for further research and extension.

INDEX TERMS Quality Assessment, quality of experience, video quality, full reference, no reference,
hybrid video quality models, UHD-1/4K, video streaming, machine learning.

I. INTRODUCTION
Considering the enormous increase of uploaded, watched and
shared videos, it is not a surprise that approximately 70%
of the overall internet bandwidth is spent for video stream-
ing [14], and this is projected to increase to about 80% to
90% by 2022 [13]. Today’s video streaming uses http-based
adaptive streaming (HAS) such as dynamic adaptive stream-
ing (DASH) [61] to distribute video contents to the end users.
The core idea of HAS is to automatically adapt the played
video quality to the used end device and in particular to the
available network bandwidth, to avoid stalling of video play
out due to buffer depletion, and continuously play out the
video at the highest possible quality even in low bandwidth
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situations. To enable such an adaption, it is required to store
several representations on the server. Each representation is
usually segmented into smaller portions of the video, with
a range of 2-10 seconds [61] each, so that the client can
smoothly switch to another representation during play out.
Technically it is further required to have meta-data stored
to assemble streams, usually done in a manifest file stored
on the server. Depending on the used approach, the mani-
fest file can also include representation headers. As another
application, DASH is further used for livestreaming of broad-
cast video content [18], which shows that this technology
is quite generic. Moreover, different adaptation strategies or
algorithms are investigated to improve quality of experience
of users during video streaming [84], especially because the
server back-end is based on http, and does not require addi-
tional intelligence for adaptation at server level. There are
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efforts to also increase the tasks of the back-end server, e.g.
using back channel data to specify different encoding parame-
ters, or to collect andmonitor quality-related factors, see [19],
to improve streaming efficiency and stability by enabling low
latency and faster adaptation to bandwidth fluctuations.

Currently, there has been an increase in the usage of 4K
TV screens by end customers, and in addition 8K screens
are also available [76]. Furthermore, popular video streaming
providers such as Netflix [56], Youtube or Amazon Prime
Video are supporting 4K or even higher streaming resolu-
tions. Even at the recommended viewing distance of 1.5 or
1.6 times the height of the display for 4K content (maybe
even closer for 8K) and thus with visual angle per pixel below
visual acuity of approximately 1′, see [30]–[32], [82], it can
still be quite challenging for users to perceive differences
between videos at such very high resolutions, for example
between FHD (1920 × 1080) and UHD-1/4K (3840 × 2160
or 4096×2160). For this reason, Kara et al. [42] analyzed the
effects of labels on the perception of 4K content, and showed
that most users will not be able to see a difference between
FHD and 4K content, with similar results being presented in
the study conducted by Berger et al. [10]. Moreover, in [27],
it is analyzed whether people see a difference between FHD
and UHD-1/4K for uncompressed videos without additional
labels. In their work, Göring et al. [27] show that there is
only a perceivable difference for about 50% of the consid-
ered videos. This is the result of both the characteristics of
the recorded scene and the camera system and production
settings used. Since a clear conclusion on the suitability
of the usage of 4K based on specific content features was
not directly possible, the authors trained a machine learning
system using several pixel-based features to classify videos
in terms of whether viewing in 4K resolution can be distin-
guished from the less resource-demanding FHD alternative.
Similar analyzes regarding video source resolution have been
performed by Katsavounidis et al. [44] to evaluate the native
video resolutions. In general, 4K or UHD-1 videos show ben-
efits if the scenes are slow and with a lot of details, however,
the content has a huge impact on the perceived video quality,
which is also the conclusion of VanWallendael et al. [86].
Thus, it follows that video quality models should also con-
sidermore content diversity, for example for higher resolution
videos.

Moreover, in streaming situations with newer video
codecs, e.g. AV1 [1] or VVC [34], it is required to have a
proper understanding of the video quality subjectively per-
ceived by viewers. It is especially important when taking
into account that today’s video streaming platforms use more
optimized encoding settings, and that viewing strategies and
also user’s expectations and hence quality perception have
changed. The automatic encoding optimization can be per-
formed per title or even per scene or shot of a given video. For
example, Netflix now uses a scene-optimized encoding [43].
The main goal of encoding optimization is to deliver high
quality video material to users having low internet band-
width or experiencing strong bandwidth fluctuations. For

such optimization, video quality models of high accuracy are
required. For example, Netflix uses its own video quality
metric VMAF [57] in its optimization pipeline. However,
VMAF does not include a dedicated handling of framerate
variation [69], and in case of 4K it is not clear for which
video codecs it has been trained [58]. Moreover, it also
does not include any long-term analysis of video quality
suitable for video streaming sessions longer than the 5 to
10 s typically used for video-quality development. Hence,
there is room for improved video quality models for the case
of 4K adaptive streaming. VMAF is a full reference (FR)
model, where the reference and distorted videos are required
as input. In practical use cases, e.g. livestreaming, it is not
possible to have a proper reference video stored, making
such FR models less appropriate for this type of applica-
tions. Recently, there has been work within ITU-T Study
Group 12 on standardizing a set of different short-term video
quality models as the new standards series Rec. P.1204 [37],
[67]. There, also a pixel-based, full/reduced reference model
and a hybrid no-reference model have been standardized as
Recs. P.1204.4 [38] and P.1204.5 [72], respectively. While
the mentioned models enable high-accuracy and -precision
quality predictions [67], they are not based on a common,
modular framework that enables video-quality predictions in
a scalable manner, adding features as they are available. This
is what is provided with the present paper, as well as an
open-source implementation of all model components, which
can be used as the basis for further research.

To summarize the open points for video quality models in
case of 4K streaming, the following research questions have
been identified, which will be addressed in the remainder of
the article.
• Can a common feature set and architecture be used to
estimate video quality for several application scopes?

• Is it possible to develop no-reference pixel-based video
quality models that have a comparable performance to
full-reference models?

• Can pixel-based video quality models be extended by
meta-data to improve performance?

• Can center cropping be used to speed up calculation with
similar overall prediction performance?

• Are such models able to predict more than only mean
opinion scores?

To answer the identified questions, we introduce
pixel-based video features and a general model frame-
work. We describe four instances of the framework, (1) a
no-reference video quality model (nofu), (2) a hybrid
no-reference video model (hyfu), (3) a full-reference model
(fume), and (4) a hybrid full-reference video quality model
(hyfr). Here, hybrid models use additional data such as
which video codec, framerate, resolution and bitrate of a
given distorted video. Such meta-data is typically available
in the delivered manifest file that is required to imple-
ment the DASH play out. The paper describes the models
in detail, as well as a number of evaluation experiments,
where we show that our models are able to outperform
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FIGURE 1. Video quality model types with their corresponding input data.

other state-of-the-art video quality models. All models follow
the same architecture, thus they share similar or the same
features, depending on the available input data, and use
a machine learning pipeline to predict video quality. The
used machine learning models consist of a feature selection
step with an additional applied random forest step, how-
ever it should be mentioned that the introduced approach
is not limited to the used machine learning algorithms. The
modularity of the provided framework enables changing the
employed machine learning algorithms. Furthermore, the
source code for the features, model architecture,1 pre-trained
models2 and evaluation datasets3 are publicly available to
enable extensions and usage for the research community. The
published framework can be used for various problems in the
context of video quality, e.g. genre classification [26] or other
classification problems [27]. The main idea of the proposed
models, is to evaluate whether such a modular framework can
be used for video quality prediction considering UHD-1/4K.
Moreover, we analyze to which extent meta-data can improve
prediction accuracy, and how center cropping of the videos
can be used to speeding up calculations. In contrast to state-
of-the-art models, we additionally investigate different pre-
diction targets than the usual mean opinion score.

The article is organized as follows. In the next Section II,
we describe the state-of-the-art video quality models and
outline limitations or open questions regarding modern video
streaming applications. Afterwards, in Section III we describe
our proposed models of different types, from no-reference
to full-reference hybrid model instances. All models have in
common that they use pixel-based data to estimate video qual-
ity perceived by end users. To develop more advanced video
quality models, it is required to have valid, highly reliable,
and carefully designed training and validation databases. For
this reason, in the subsequent Section IV we describe the

1https://github.com/Telecommunication-Telemedia-Assessment/quat
2https://github.com/Telecommunication-Telemedia-

Assessment/pixelmodels
3https://github.com/Telecommunication-Telemedia-Assessment/AVT-

VQDB-UHD-1

used datasets, detailing e.g. the video encoding conditions
and corresponding subjective tests. Furthermore, we evaluate
our developed models in several scenarios, e.g. prediction
targets (mean opinion score prediction, quality as a classi-
fication and a multi-instance regression approach) and the
used center cropping. In addition, we compare the model
performance with other state-of-the-art video quality models,
see Section V. Finally, we conclude the article with a review
of our modelling results and of open aspects that are planned
for future work.

II. OVERVIEW OF VIDEO QUALITY MODELS
Image or video quality models are typically divided
into three main categories [7], [78]: no-reference (NR),
reduced-reference (RR) and full-reference (FR), depending
on the input data that is available for quality estimation.
In Figure 1 an overview of the different video quality
model types is shown, where each type has a different
input used to predict a video quality score. For example,
in case of a full-reference model, the distorted and ref-
erence video are fully accessible to the model. On the
other hand, for no-reference models, only the distorted
video or some meta-/bitstream data is used as input for
the model. No-reference models can further be classified
into pixel-based or bitstream-based models. In case of
bitstream-based models, a full decoding of the given video
is not required, consequently only statistics of the data stored
in the bitstream itself can be used. A typical example for a
bitstream-based video quality model is ITU-T P.1203 [36],
[66], [75], where in total four different modes of opera-
tion are distinguished. P.1203 is a bitstream based model
for adaptive streaming, thus it also requires typical input
data of an adaptive video streaming session, i. e., duration
of stalling events, quality switches and segment data. The
four different modes only change the way how segment
data is processed and how a video quality score is predicted
for each segment. In the lowest mode 0, only meta-data is
used (i.e. framerate, codec, bitrate, resolution). In mode 1,
also frame sizes are additionally included, while in mode 3
all bitstream data is available, and for example specifically
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selected QP (Quantization Parameter) values of single video
frames are used to predict segment quality. Mode 2 is similar
to mode 3 except that only a 2%-subset of all frame data is
accessible for prediction of quality. Finally, after applying the
mode-specific prediction of each transmitted video segment,
P.1203 uses these video quality scores in combination with
per-second audio scores, initial loading delay and stalling
event information to aggregate an overall audiovisual quality
score.

In general, two different aspects can be distinguished for
DASH/HAS based video quality estimation. First, how the
per segment video quality, which is usually referred to as
the short-term video quality, is estimated. And as second,
what is the overall audiovisual/video quality after a longer
time including stalling, audio quality and more, referred to
as long-term video quality. For example, ITU-T P.1203 [36]
handles both cases in an integrated framework, where overall
audiovisual quality can be estimated up to 5 minutes of video
duration.

Moreover, recently the ITU-T P.1204 [37] standard has
been approved. Models of this standard consider short-term
video quality including H.264, H.265, and VP9 encoded
videos up to UHD-1/4K resolution. Raake et al. [67] show
that the proposed models can also be used for unknown
datasets. The P.1204 models can be seen as an extension for
the short-term video component of P.1203. In the remainder
of the paper, we focus on the per-segment video quality
estimation aspect of DASH/HAS.

In general, combinations of several model types are possi-
ble, e.g. combining bitstream- and pixel-based models that
are usually referred to as hybrid models. In this article,
we focus on pixel-based models, in addition we also consider
hybrid models, where pixel-based data of a given video is
combined with meta-data. For our models we focus only on
mode 0 meta-data, where higher modes could be considered,
too.

Considering the variety of different DASH/HAS streaming
parameters, video quality depends on several factors, start-
ing from various used video codecs, differently optimized
encoding settings and corresponding bitrate-ladders, to a
large range of video contents that are streamed, in higher
resolutions and framerates. The existing set of models are far
from comprehensive as yet. For example, Barman et al. [7]
identified several open points, e.g. privacy, high model com-
plexity, multiple influence factors on video quality perception
and a limited handling of all of these, and even more. Thus,
it can be concluded that video quality prediction is still a
challenging task, based on a number of different influence
factors that need to be considered in video quality models and
their corresponding development process.

In the following sections, we briefly review some key NR,
RR and FR models. We consider models that are capable
of handling compression artifacts of modern video codecs
especially for higher resolutions (4K or UHD-1) and fram-
erates (up to 60 frames per second), even though not all of
these models were explicitly developed for these conditions.

We also describe some image quality models, which can be
extended or are being used for video quality prediction.

A. NO-REFERENCE MODELS
The first type, no-reference models, are suitable for numer-
ous practical use cases, due to the fact that they do not
require any additional input data other than the distorted
video. On the other hand, pixel-based no-reference models
are usually not able to reach the same prediction performance
as full-reference models, because they cannot compensate
the missing data of the reference video. This reason also
limits some possible applications of pixel-based no-reference
models. As a consequence, for example, no pixel-based
NR-model has so far been standardized by ITU-T SG12 or
the Video Quality Experts Group (VQEG4).

1) BITSTREAM BASED MODELS
As already introduced, ITU-T P.1203 [36], [66], [75], is a
bitstream based no-reference video quality model developed
especially for adaptive streaming use cases. The model is
trained on FHD videos of up to 5 minutes of video duration,
whereas the encoding was performed using several bitrate,
resolution and framerate settings using H.264. Considering
that current video streaming providers, e.g. Netflix, Youtube,
Amazon Prime video, use more recently developed video
codecs for their video streaming and encoding strategies,
P.1203 cannot directly be applied to such new codecs. For
this reason, Rao et al. [68] propose a method to extend P.1203
to modern codecs for mode 0, namely AV1, H.265 and VP9.
Besides inclusion of modern video codecs, the extension also
enables P.1203 to handle higher resolutions and framerates up
to 60 frames per second (fps). The extension only covers the
short-term video quality model of P.1203 that predicts video
segment scores and assumes that the overall audiovisual inte-
gration does not change. Considering that mode 0 models do
not have any knowledge about the underlying content, the
proposed extension can just be seen as a first starting point
for future extensions of the standardization work.

To cover more video codecs, higher resolutions and fram-
erates, the models from the newly standardized ITU-T
P.1204 [37], [67] series can be used, which were developed
for short-term video quality prediction. Here, ITU-T P.1204.3
is a bitstream based no-reference video quality model [39],
with full access to the video bitstream. P.1204.3 uses several
statistics that are extracted from the video bitstream [37],
[70]. For example, statistics about motion vectors, quantiza-
tion parameter, and frame sizes, covering H.264, H.265 and
VP9. The model itself consists of two parts, a parametric part
and a machine learning part. The parametric part is based
on degradation-based modeling, similar to P.1203.1 mode
3 [36], [66], whereas the machine learning part uses random
forest regression with feature selection to predict the resid-
ual not captured by the first, parametric part of the model.
Rao et al. [70] use the AVT-VQDB-UHD-1 dataset [69] to

4https://www.its.bldrdoc.gov/vqeg/vqeg-home.aspx
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perform an additional analysis of the model performance,
with an implementation of the model being made publicly
available.

2) NATURAL SCENE STATISTICS BASED MODELS
Beside bitstream-based no-reference models, pixel-based
models have been proposed in the literature. Two examples
are brisque and niqe, which both are part of scikit-video.5

In scikit-video, only the feature extraction of brisque and
niqe are included, the final model is usually a support vector
machine or regressor (SVM/SVR) [53], [54] which uses the
extracted features as input. Both methods are independent
of distortion-specific assumptions, and focus on measuring
differences in naturalness of the given input image. This is
realized using statistics of normalized luminance coefficients
to measure the differences to undistorted images using a
natural scene statistic model. niqe only extracts one value,
whereas brisque extracts 36 different feature values. Using
the extracted features, it is possible to train well perform-
ing image or video quality models, as it is shown in [22]
for images and [25] for 4K videos. Even for streaming
quality of gaming videos or sessions, these models can be
applied and show promising results [6], [8], [23]. However,
to apply them for such video quality prediction, a suitable
machine learningmodel needs to be trained, where in addition
ground truth values per video frame are required. At the
core, video-specific effects due to motion inside the video
or corresponding masking are not captured in these model.
In general, brisque and niqe can also be used as features
to develop new models, i.e. combined with motion related
measurements. A drawback of such the usage of brisque
and niqe or similar approaches is that a retrained machine
learning model requires a suitable ground truth. In addition,
the features were also not specifically developed to handle
high resolution images or videos. However, it was already
shown that both features in combination show promising
results even in case of 4K video quality prediction [25]. For
this reason we will include a brisque+niqe baseline model
as comparison in our evaluation, see Section V. Another
natural scene statistics based model is BIQI [55]. BIQI is
a no-reference distortion independent image quality metric,
which uses an SVM similar to brisque and niqe for final
score prediction. However, BIQI is only evaluated on low
resolution images based on the LIVE IQA [80] dataset.

3) DNN-BASED MODELS
Beside classical signal driven video quality models, mod-
els based on deep learning can also be used to estimate
video or image quality or encoding optimization [45],
[46], [51]. Most DNN-based quality assessment models
share similar approaches. For example, VeNICE [15], the
models of Bosse et al. [11], [12], Deviq/Deimeq [22], [25],
or Wiedemann et al. [90] all use some variant of local
patch quality estimation. In general, using transfer learning,

5http://www.scikit-video.org

a pre-trained DNN is applied to perform the quality evalua-
tion task on a per-frame basis. The usage of transfer learning
reflects the fact that the ground-truth data typically is too
sparse so as to develop a full DNN for image or video
quality prediction. For example, in case of VeNICE [15], the
VGG16 [81] network is used, similar to Bosse et al. [11],
[12], whose DNN-based quality model also operates with
the VGG network. The model Deviq/Deimeq [22], [25] uses
Xeption or Incpetion. Usually these pre-trained DNNs are
developed for image classification tasks, and are used in the
models as a feature extractor for image quality. In such cases
specific layers of the DNNs are used as features and are
combined or retrained to predict image quality. It was already
analyzed which DNNs are more suitable for image qual-
ity evaluation [22]. However, especially for high-resolution
videos or images, DNN-based processing is time-consuming,
and also retraining is not a straight-forward task, due to the
high amount of data that needs to be handled. Moreover,
it is not completely clear that for a patch-based training the
overall quality score of a frame can be assumed. This is shown
for example in [90], indicating that quality scores for local
patches can be used to estimate global image quality, how-
ever, for some other patch-based models, the opposite con-
clusion is reported. One no-reference model for video quality
is Deviq [25], which handles the mentioned high-resolution
problem using hierarchical sub-images to reduce the overall
number of patches. In contrast to other approaches, where the
last layer of the DNN is replaced by new layers, Deviq’s final
prediction is performed with an approach based on random
forests (RFs) including a feature selection step. The reason
for this is mostly due to the fact that RF models are faster
to train, and that the DNN is only used as feature extractor.
Moreover, a similar approach for no-reference image quality
is Deimeq [22], where the main focus is to analyze which
DNN is most suitable for image quality prediction. It can be
concluded, that the complexity of the DNN has an influence
on the ability to transfer the DNN to another image related
task, mainly because such models are specifically optimized
for the image classification task. Thus, e.g. faster models
like Mobilenetv2 [77] or VGG16 [81] are not fully suitable
for image quality, and on the other hand, complex models
like Xception and Inception are even able to have better
performance than signal based models [22]. Today, DNNs are
used for several image related tasks and are usually able to
outperform traditional methods. However, these DNN-based
models are slower for higher resolution images than usual
approaches, which is why for our models we focus on tradi-
tional signal-based features that perform fast even for higher
than 4K resolution videos.

One of the main problems for frame-based video quality
models is, that it is hard to obtain subjective video qual-
ity scores for individual frames in case of video stream-
ing. A common solution is that image quality models are
developed in a first step and later are applied in similarly
to video quality prediction. However, it is mostly not fully
covered how in such a case motion-related effects change
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video quality perception. On the other hand, subjective tests
and models based on continuously rated quality scores have
been proposed [4], using a slider for the continuous rating
of quality over time. It can be assumed that with this setup,
several influence factors can lead to different quality scores
over time, e.g. if participants are lazy to move the quality
rating slider, or if the current quality decision is too biased
of previously shown frames. Moreover, rating sliders also
cannot directly enable a per-frame quality scoring and hence
model-based estimation, because usual videos have several
frames per second and rating is performed with temporal
delay. For no-reference video quality models, there is another
possibility to get ground truth data on a per frame level. For
example, per frame scores can be estimated using a suitable
full-reference video quality metric, e.g. VMAF [6], [25]. A
drawback of this approach is that the scores are based on a
different model, and thus the overall performance of the new
model depends on the ability of the used full-reference score
to measure quality variation over time.

4) MODELS FOR OTHER USE CASES
Beside classical video streaming, there are other video con-
tents streamed using DASH or HAS, for example 360◦ video
or videos of gaming sessions. Due to the fact that such
scenarios include different properties of the given content,
it is required to develop or use content- or use-case-specific
models. In case of 360◦ video, it was already shown that exist-
ing models like VMAF are able to perform quite well [59],
if the equi-rectangular projection scheme is used, or that
even meta-data and hybrid models can be applied [20]. Simi-
larly for gaming sessions, VMAF has been reported to show
good performance [8]. However, especially in the context of
gaming, full reference models are hard to apply, due to the
specific live-encoding of the gaming content during the gam-
ing session. Thus even though full-reference models could
be used, in most application scenarios they are not feasible,
because users are not desired to use a lot of additional com-
puting resources, so fast no-reference models would be more
suitable.

For example, in [6], Barman et al. uses fifteen signal-based
no-reference features to build video quality models for gam-
ing video streams. The overall pipeline employs per-frame
estimated VMAF-scores as ground truth to train a per-frame
quality prediction component. The aggregation of the indi-
vidual features is performed using a Support Vector Regres-
sion (SVR) approach. Moreover, subjective scores are also
considered for overall video quality estimation. It is shown
that such application- and content-specific models are
able to outperform other no-reference models, and reach
results comparable with full-reference models. Similarly, the
NDNetGaming model [85] proposed by Utke et al. uses
image-based DNNs to predict image quality at a per-frame
level using several patches, where the ground truth for each
frame is based on VMAF-scores, combined using a final
aggregation to a video quality score.

With a similar goal, we adapted one of our mod-
els to the context of gaming QoE. In [23], we pro-
pose a gaming-specific version of our nofu model
(see Section III-D1), which uses a subset of the features
of the original nofu model to take into account the pecu-
liarities of gaming content, and predict video quality in
case of gaming streams. It is shown that nofu is able to
outperform a brisque+niqe retrained baseline model, and
that it achieves promising results in comparison with the
full-referenceVMAF.However, it needs to be noted that espe-
cially gaming videos share similar properties, e.g. computer
generated textures, different motion patterns, static head up
displays. Consequently, it is not clear if such models perform
similarly with general 2D video content.

In addition, bitstream based models can also be applied
to predict the quality of gaming videos. For example,
Rao et al. [71] evaluate the performance of the recently stan-
dardized ITU-T P.1204.3 model and a retrained variant
thereof for several gaming-specific video quality datasets.
In addition to GamingVideoSET and KUGVD, also a Cloud
Gaming Video Dataset (CGVDS) [97] and a dataset based on
Twitch are considered, showing promising results. Moreover,
it was shown that the ITU-T P.1203.1 model can be applied
to gaming videos [97].

All Gaming-QoE models use similar or even the
same underlying dataset, e.g. GamingVideoSET [9] or
KUGVD [6], where the used videos have a maximum reso-
lution of FHD with 30 frames per second. This is a limitation
due to the specific application use case of such models,
because recordings of gaming sessions require more hard-
ware resources, and even many games do not provide higher
resolution textures. However, it shows that no-reference
models in principle can reach good performance in case
of quality prediction for gaming sessions. Moreover, also
models have been proposed to bridge traditional videos and
gaming videos [96], with Zadtootaghaj et al. describing a
model consisting of several steps. Here, for example the
first step trains a convolutional neural network to estimate
blurriness and blockiness, and later it is trained with encoded
videos to fine tune the network. Afterwards, a random forest
model uses the predictions of the neural network to estimate
quality.

B. REDUCED-REFERENCE MODELS
A special case of video quality models are reduced-reference
models. They share properties with full-reference models,
e.g. that they require access to the source, i.e. reference video.
Source video properties are usually extracted before the dis-
torted video is processed. On the other side they are similar
to no-reference models, considering that they only have a
limited knowledge of the source video, thus a no-reference
model could be seen as a reduced reference model with-
out any knowledge of the source video. The approach of
a reduced-reference model is that in a first step the source
video is processed, and as an output, reduced data of the
source video is stored. Such reduced data is based on signal
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features, sampling or similar characterization of the source
video. Accordingly, all models that are based on features
extracted from the reference, and not on full pixel infor-
mation, can be referred to as reduced reference. In general,
reduced-reference models increase the prediction accuracy of
no-reference models, with their inclusion of side information
from the source video. Two examples for such models are
SpeedQA [3] and STRRED [83]. SpeedQA [3] is based on
spatial efficient entropic differencing for quality assessment
and STRRED [83] uses spatial and temporal entropic dif-
ferences. Another reduced-reference video quality model is
ITU-T P.1204.4 [38] that is based on edge statistics of the
distorted and reference video to estimate video quality.

Our focus in this article are no-reference, full-reference and
hybrid models, however some of our features and the model
pipeline can be also used to develop reduced-reference video
quality models.

C. FULL-REFERENCE MODELS
Compared to no-reference models, a full-reference model has
full access to both the distorted and source video sequence
pixel information. The simplest full-reference image qual-
ity model is Peak-Signal-To-Noise-Ratio (PSNR), where a
pure signal-based difference is estimated. It is well known
that PSNR does not match human perception and video
quality evaluation, both in general and especially in case
of higher resolution [25], [69], [87]. Beside the classical
PSNR, a measure that is also used as quality metric in
several applications is an extension of PSNR called the
PSNR-HVS [17]. PSNR-HVS takes properties of the Human
Visual System (HVS) into account. For this, PSNR-HVS is
based on a similar fundamental equation as PSNR, however
the calculations are done blockwise using DCT coefficients
with weighting and correction factors to include contrast per-
ception. With the mentioned extension, PSNR-HVS is able
to outperform PSNR and MS-SSIM in case of image quality
prediction for several distortion types [17]. However, using
PSNR-HVS in case of video does not include specific video
motion distortions, or high resolution related aspects. There
are other extensions of PSNR available, e.g. X-PSNR [29] or
for color CQM [93]. X-PSNR [29] is a low complexity exten-
sion of PSNR, that uses a block-wiseweighting approach, and
CQM [93] is variant of PSNR where the overall score is a
weighted sum of PSNR for luminance and chroma channels.

Most video quality models have their origin in
image quality estimation, such as Structural Similarity
Index Measure (SSIM) [88], [89] or Visual Information
Fidelity (VIF) [79]. In spite of their somewhat better repre-
sentation of the information the HVS extracts from images,
VIF and SSIM also show only low prediction performance in
case of high resolution videos, as reported in [21], [25], [69].

Netflix’s VMAF (Video Multimethod Assessment Fusion)
[50], [57] is a video quality model that is based on a combina-
tion of different image quality models. It is open source and
includes a trained model for 4K video quality prediction [56],
[58]. VMAF is based on two full-reference models, namely

VIF [79] (4 scales) and ADM2/DLM [49], In addition to
per-frame image-based quality features, it also includes a
simple motion estimation feature that is based on differ-
ences to a previously played video frame. VMAF can be
used to estimate 4K video quality, and it shows quite good
prediction accuracy even for newly conducted video quality
tests [25], [69].

As features, VMAF extracts several image quality scores
per frame, and in addition one motion feature. All per-frame
values are later aggregated with a Support Vector Regres-
sion (SVR) model. The SVR is trained to merge all features
into one quality score. The baseline non-4K enabled model
is trained on the publicly available Netflix public dataset,
including several videos up to FHD resolution with 30 frames
per second. In contrast, the 4K videos that are used for
training the 4K model version are not available. Based on
the per-frame video quality scores provided by VMAF, the
overall video quality can be calculated using several meth-
ods, from simple averaging to harmonic mean, or running
several models to further estimate a prediction confidence
interval. Such an approach is suitable for short-term video
quality prediction. In turn, for longer-term video quality esti-
mation, where besides a given set of segment quality levels
also stalling or quality switches can occur, other integration
approaches are required. In general VMAF does not include
such aspects and is therefore less suitable for long-term video
quality prediction.

D. HYBRID MODELS
Besides pure bitstream- or pixel-based video quality models,
combinations of models are possible, that are usually summa-
rized as hybrid models [5], [92]. For example, it is possible
to use a no-reference pixel-based video quality model and
extend the available input by using meta-data that pertains
to bitstream-based models. To describe the additional bit-
stream data, it is possible to use the modes that are defined
for bitstream based models in the series ITU-T P.1203 and
P.1204. For example, part of P.1204 is a hybrid no-reference
mode 0 model (P.1204.5 [72]), which uses meta-data, that
are accessible at the client side, and combines such features
with a pixel-based, no-reference video complexity feature.
The complexity feature uses a recorded version of the played
video and is based on the file-size of the re-encoded record-
ing. In a similar approach Yamagishi et al. [94] proposed a
model for IPTV, extending a meta-data based model by con-
tent complexity, using the Spatial and Temporal Information
(SI, TI) described in [41].

E. SUMMARY
We briefly described several no-, reduced- and full-reference
models.While most of the models were not developed explic-
itly for UHD-1/4K resolution, they can still be applied for
such higher resolutions. Accordingly, different studies have
found that some of these models also show a good prediction
performance. However, it is also clear that models specifi-
cally addressing the target of higher resolutions will perform
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FIGURE 2. General Video Quality Model structure consisting of feature extraction, temporal pooling and machine-learning-based model training or
prediction.

better in predicting subjective quality. In addition, only a
few models, such as VMAF, are capable to predict more
than a pure quality score. For example, VMAF can be used
to predict confidence intervals of several trained predictors
of the model, to further evaluate the prediction accuracy or
the underlying individual user ratings of the given video.
However, there are additional approaches possible, for exam-
ple the prediction of a rating distribution or only a quality
class. Both extensions are possible with our introduce model
framework and will be described later in detail. In addition,
it should be mentioned that our framework includes even
more features and approaches that are used and described
within this paper, to enable researchers to develop models for
various research problems in the context of video quality.

III. PROPOSED VIDEO QUALITY MODELS
To tackle the problem of video quality estimation with dif-
ferent types of available input data, we developed several
pixel-based video quality models. All models behave simi-
larly, moreover, they share specific features and conceptual
parts in a common framework. In Figure 2, the general
structure of the video quality models is illustrated. Usually
the distorted video and reference video have the same input
resolutions, pixel format and framerates, otherwise before
applying our model a conversion is performed to ensure this
condition. First, depending on the given input data that can
be accessed, features are calculated only from the distorted
video (no-reference), from distorted and reference (full-
reference), or including some additional meta-data. In gen-
eral, the features can be categorized into two groups, first,
motion-based features, and second, image-based features. All
implemented features and training code are part of quat6 and
the specific instances are part of pixelmodels.7 Both the gen-
eral framework and the instances are publicly available. Most
features are calculated on a per-frame basis, which leads to
the requirement of pooling to estimate a time-independent set

6https://github.com/Telecommunication-Telemedia-Assessment/quat
7https://github.com/Telecommunication-Telemedia-

Assessment/pixelmodels

of feature values. For this reason we select advanced temporal
pooling, a method that includes several statistical pooling
approaches, and that we already used to solve different video
quality research problems [23], [27].

As a last general step, all pooled features are used to
train a machine learning algorithm. In our case we use a
random forest model (120 trees for a no-reference and 240 for
a full-reference model) with a previously applied feature
selection step using the ExtraTreesRegressor algorithm. The
number of trees for all models has been evaluated using
10-fold-cross validation in several additional training runs.
Our implementation is based on Python 3 and uses scikit-
video8 for video processing and scikit-learn [62] for all
machine learning parts. However, it should be mentioned
that our introduced models are not restricted to the used
machine learning algorithms. We further analyzed different
algorithms, e.g. SVR, Gradient Boosting Regression (GBR),
. . . , and all lead to a similar performance. Here, RF mod-
els showed stable performance for all four model instances.
After training the machine learning model using the subjec-
tive scores included in the database, we are able to analyze
the prediction accuracy of our model. To this aim, we use
several commonly evaluation performance metrics, e.g. for
the MOS prediction scenario, i.e. Pearson Correlation Coef-
ficient (P or PCC), Spearman’s Rank Correlation Coeffi-
cient (S), Kendall Rank Correlation coefficient (K) and root
mean square error (RMSE).

In the following subsection, we describe the individual
parts of our model structure in more detail. We start with
the pixel-based features, describe further details regarding
speedup of calculations, temporal pooling, and finally con-
clude with different instances of our general model pipeline.

A. FEATURES AND MOTIVATION
Considering that video distortions introduced in the video
signal are heavily dependent on specific encoding settings
and the used codec, it is required to also have several features

8http://www.scikit-video.org/stable/
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handling such effects. In addition, also masking effects can
have a strong influence on perceived video quality [73]. To
describe the effects that are the reasons for the final quality
rating of a user, we group our features into two general sets,
namely motion-based (mov) and image-based no-reference
features (img). Further, we include several other features, e.g.
image full-reference features (img-fr). To enable our models
to use bitstream or meta-data, we include bitstream specific
features (bs). Table 1 summarizes all features of our model
pipeline, moreover also references to the source of the given
features are provided. Features marked with own are features
we have developed ourselves. It is noted that each feature
produces either per-sequence values (e.g. in case of bitstream
features) or per-frame values. Further, we added brisque as
additional features in our table, it will only be used for one
specific model.

Some of our own implemented features were already used
in different video quality related research directions, for
example for gaming video quality [23] or automatic estima-
tion of the perceivable differences of UHD and HD [27].

1) PER-FRAME NO-REFERENCE FEATURES
We developed or re-implemented several features that are cal-
culated on a per-frame basis. For example, colorfulness [28],
tone [2], and saturation [2] are features that are already
used in image aesthetics prediction, which we reimplemented
based on the published work. The rationale behind including
aesthetics features is that usual video content is getting more
and more diverse, so especially liking aspects are also influ-
encing user’s perception. Moreover, a similar argumentation
follows for our contrast feature, that we estimate using his-
togram equalization. We use the normalized average differ-
ence before and after correction of the histogram based on the
cumulative distribution function (CDF). Furthermore, spatial
and temporal information are additional factors influencing
video quality, for example comparing UHDwith HD, usually
spatial information is increased. For this, we use our imple-
mentation9 of the SI and TI measure, in the following referred
to as si and ti, that is based on ITU-T Recommendation
P.910 [41].

Beside si or ti, videos are rescaled during encoding to
lower resolutions to save bandwidth, such rescaling intro-
duces degradations in sharpness, or adds additional blurri-
ness. Usually users rate lower, if the images or videos lack
sharpness. For this reason, we implemented a blurriness fea-
ture blur that is based on Laplacian variance. Each frame
is converted to a grayscale image and afterwards a bilateral
filter is applied to remove some noise. As the last step,
a convolution with a 2D Laplacian filter kernel is performed.
Based on the result, we estimate our blurriness score. As
another way to recover some information about rescaling,
we re-implemented an fft feature, that is based on [44]. With
a similar motivation, especially for models that have no
access to the native distorted video resolution, wemeasure the

9https://github.com/Telecommunication-Telemedia-Assessment/SITI

TABLE 1. Overview of all included Features; # of values are either per
frame (/F) or per video sequence (/S); a * marks features that are
re-implemented.

similarity to the rescaled HD frame as uhdhdsim, using PSNR
as criterion. Here, for example a UHD-1/4K frame is rescaled
to HD resolution (half of the input resolution) and upscaled to
4K (to the origin resolution), afterwards PSNR is calculated
for the rescaled and non-rescaled frame. In addition to typical
blurriness degradations, also blockiness can be observed in
case of a badly selected encoding setting or a ‘‘fast’’ preset
of the used encoder, for example in case of livestreaming. To
measure block artifacts introduced due to high or suboptimal
compression as in a live context, we developed a measure for
blockiness. There are already features to measure blockiness
reported in the literature [63], [65], however these features
usually assume a fixed block size and are developed for JPEG
compression. To overcome these limitations, we decided to
develop an own feature, that shares some of the general ideas
of the aforementioned blockiness estimation approaches. In
general our feature checks commonly used block sizes and
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for a given blocksize b it estimated edges of the current frame.
Based on the edges it measuresmean differences in horizontal
and vertical orientation, assuming that if there are blocks
in a frame, that each b-th row/column has a different edge
distribution compared to the overall frame. A more detailed
description is presented in [23].

Video shots or scenes are mostly characterized by includ-
ing some kind of motion, for example a moving object,
or resulting from a moving camera. Hence, we also include
motion-related features in our model pipeline. As a first fea-
ture, we use a motion estimation approach that calculates the
RMSE to the previously played frame. This feature is referred
to as temporal. It shows a similar behavior as ti, however
still some differences can be observed. Moreover, to handle
foreground and background motion, we use a foreground
background segmentation algorithm of OpenCV (see [99],
[100]). Focusing on the foreground object, the percentage of
the moving area is used as motion indicator in our movement
feature. Similar to a video codec, we also use a blockmotion
estimation algorithm – blockmotion, that is part of scikit-
video. In our implementation, we use the SE3SS search
method, and use 10% of the video height as blocksize to
speedup calculations. Moreover, after extraction of moving
blocks, we count, for all directions, how often a moving block
was identified [23], [27].

Similar to what is described in [52], we further developed
motion features with a more global view. To this aim, we use
a sliding window of 60 frames, that usually corresponds to
about 1 second of the given video. This window is then later
handled as a cuboid, where we slide several planes to estimate
motion aspects. For example, the cubrow features handle row
slices of the cuboid, where cubrow.p refers to the used single
pixel p percent height of the cuboid. Accordingly, cubcol is
defined in an analogue way for columns.

We considered videos that include motion. However, some
videos are quite static, and to handle such cases, we include a
staticness measure staticness. For this reason, we calculate a
mean frame based on all currently played frames. If the video
is mostly static, the estimated mean frame includes a lot of
spatial information. That is whywe use, as final feature value,
the SI measure of the current mean frame.

In addition to staticness of the video, we further calculate
the amount of noise within a given video frame as noise. This
feature uses a wavelet-based estimator for noise [16].

To further analyze a given video, we check how many
scene cuts a video shot has. Our feature scene_cuts uses
resized 360p views of the given video frames and performs
a threshold-based detection for scene cuts, similar to the
method implemented in scikit-video, see [60], [95].

All features that we described so far are classical
no-reference features, thus a reference video is not required
to perform the calculation. In case of a full-reference model,
such features can be applied on the distorted and reference
video.Moreover, also differences of feature values comparing
distorted and reference video are considered in our model
pipeline.

2) FULL-REFERENCE FEATURES
To include typical full-reference aspects, we further use
some traditional full-reference image metrics, namely PSNR,
SSIM [88], [89] and VIF [79]. In the development stage,
we used a higher number of full-reference metrics, how-
ever there was no noticeable increase in performance. In
a pure full-reference scenario, where the distorted video is
e.g. recorded with a fixed framerate the model does not
know which framerate the transmitted distorted video has. To
handle this missing information, we developed a framerate
estimation feature fps_est. It compares frames of the distorted
and reference video in a sliding window of w = 60 frames,
assuming that in case of a distorted lower fps, there are
duplicated frames stored. Using RMSE of two consecutive
processed frames for the distorted and references video as
indicator, we check for the given window how many dupli-
cated frames are presented. The final estimated number of
frames is calculated using Equation 1, with ref0 and dis0
corresponding to the vector of RMSE values that are zero. In
the beginning, the window size w is not fixed, and as overall
feature we later pool several statistics so that the feature
fps_est becomes quite robust.

fps(w) = |w| − |dis0| + |ref0| (1)

3) BITSTREAM FEATURES
To handle hybrid mode 0 models, additional bitstream
or meta-data-based features are required. For this reason,
we extract meta-data of a given video file using ffprobe.
Most important meta-data are framerate, bitrate, video height
and width (resolution) and the video codec used. Including
these features, we calculate some additional values, starting
with resolution as height times width, logarithm of resolution,
bits-per-pixel (bpp), see Equation 2, logarithm of bitrate and
framerate, normalized values for framerate, see Equation 3,
and resolution, see Equation 4. Here, the normalization is
based on the maximum values for framerate and resolution.

Most of these additional feature values are inspired by
P.1203, whereas similar calculations are performed in the
mode 0 parametric model part [36], [66].

bpp =
bitrate

framerate · resolution
(2)

framerate_norm =
framerate

60
(3)

resolution_norm =
resolution
2160 · 3840

(4)

B. TEMPORAL POOLING OF FEATURE VALUES
In our machine learning pipeline, we train several models for
video quality prediction. Due to the fact that some of our
features are time-dependent, e.g. having per-frame values,
it is required to transform such features to time-independent
values, using temporal pooling of feature values. In con-
trast to other models, we include more than mean values
as statistics in our pooling strategy, since this enables a
better reflection of the temporal change of feature values.
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The approach taken is similar to the method used in [23],
[27], [70]. For example, let us assume that f is such a per-
frame-estimated feature vector for a given video and a single
feature. In case a feature includes several values per frame,
we convert it to individual vectors and perform for each of the
vectors the following calculations. For f we calculate: mean
value, standard deviation, skewness, kurtosis, inter-quartile
range, quantiles ([0, 1] with 0.1 stepsize), and the last and
first value of f . Here, the last and first values are used to
frame the feature values. In addition, we split the values of
f into 3 equidistant temporal groups, and for each group we
calculate mean and standard deviation. With this method, for
each feature we extract 25 statistical values in total that are
time-independent and are later fed into our machine learning
pipeline.

C. SPEEDUP AND ERROR COMPENSATION
There are several ways to speed up calculation of software
in general. Besides vectorization, parallelization that better
utilizes modern hardware and approximations could be used.
Considering the amount of data for uncompressed 4K video,
it is clear that processing will require cpu-time. For exam-
ple, in case of 4:2:2-10bit 4K uncompressed video, a frame
has a size of ≈ 20 MByte, with usually 60 frames played
in a second. Moreover, classical pixel-based video quality
models are not specifically tuned to be fast. Two possible
types of sampling-based reduction can be performed, e.g.
sub-sampling of frames, and per frame sub-sampling. In this
paper, we consider only the reduction of per-frame informa-
tion, to not interfere with temporal/motion related properties
of the video. Our general idea is based on the approach
presented in [21], where a center crop of the video is used
to estimate video quality.

It is clear that such an approach has a stronger content
dependency than the full-frame calculated model version.
However, for example it was shown [21] that a center crop
of 360p introduces only a rather small error compared to
full-frame estimatedVMAF-scores. The introduced error was
below the error that occurs while repeating a same subjective
test at different labs [64]. Moreover, the models instances
from our framework are able to compensate some center
cropped errors due to the used machine learning model, and
using some more features than would be required.

D. MODEL INSTANCES
Using the introduced general model framework, that includes
various features, it is possible to create several model
instances. Each specific example model instance has a differ-
ent application scope, which we will also highlight in the fol-
lowing description. Our model instances focus on pixel-based
and hybrid models. For all models, as the default we use a
360p center crop. In addition, we evaluate larger crops and
uncropped model variants (see Section V-D).

1) nofu –NO-REFERENCE
The first model instance is a no-reference model, referred to
as nofu. It uses all img,mov and img-nofu features shown in

Table 1. In total 64 feature values per frame are estimated.
The brisque feature that is part of img-nofu is only used
in this model, because here it showed an improvement in
performance, while for the other models no improvement was
found. All other parts of our introduced model pipeline are
the same, such as the temporal pooling method. No-reference
pixel-based video quality models are required in case a ref-
erence video is not accessible, and also additional meta-data
cannot be extracted, for example for a given client session.
Thus, the typical application for no-reference models is qual-
ity estimation for screen recordings of third-party services,
or in case such a model is fast enough for real time quality
monitoring [74]. Example applications include quality mon-
itoring in case of live-streaming of broadcasting channels,
or streaming of gaming sessions. We already successfully
applied a reduced variant of nofu to estimate gaming video
quality [23]. In our evaluation experiments it outperformed
the unmodified VMAF model. For the considered case of
gaming-video streaming prediction, we used a reduced fea-
ture set and a lightweight temporal pooling method, because
gaming videos have different properties compared to the
wider range of common videos.

2) hyfu –HYBRID NO-REFERENCE
As another model instance based on our features, a hybrid
model is proposed, referred to as hyfu. hyfu uses all img,
mov and bitstream bs features listed in Table 1. Thus, hyfu
is an extension of nofu with meta-data-based bitstream fea-
tures, and removing the brisque feature. The main application
of hyfu is client-side video quality estimation if meta-data
can be accessed, using screen recording, while the reference
video is unknown. For example, in case of YouTube, Net-
flix and Amazon Prime Video, it is possible to estimate the
required meta-data based on the DASH manifest file.

3) fume –FULL-REFERENCE
Especially in encoding optimization approaches, the source
video is accessible, and enables the application of
full-reference video quality models. We introduce a model
called fume that is based on all img,mov, img-fr andmov-fr
features described in Table 1. fume is a combination of pure
no-reference pixel-based features with full-reference fea-
tures, similar for example to the combination of full-reference
features with motion features in case of Netflix’s VMAF.
The no-reference features are calculated for the distorted
and source videos, whereas also differences of both fea-
ture values are stored as additional values. It is noted that
the application scope of full-reference models is not lim-
ited to encoding optimization, since also at the production
side the reference video often is available. In addition,
it is also possible to use a high-quality encoded version
of a given video as reference, considering that the result-
ing error for the final prediction is much smaller than the
quality-impact introduced due to lower-bitrate encoding and
processing.
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4) hyfr–HYBRID FULL-REFERENCE
As last model instance, we developed a hybrid full-reference
model called hyfr. It includes all features (img,mov, img-fr,
mov-fr and bs) that are listed in Table 1. hyfr can be applied
to monitoring or encoding optimization tasks, especially in
cases where also knowledge of the underlying bitstream is
accessible, in our case usingmeta-data. Especially to not fully
focus the model on the used encoding schemes, we decided to
only include some basicmeta-data based features as bitstream
features.

5) EXTENSIONS
We described four baseline models, that use our introduced
modelling and feature approach. However, further video qual-
ity models can be developed using the features. For example,
a reduced reference model could perform no-reference fea-
ture extraction on the reference video and use these features
similar to fume, except the full-reference features, here with
differences regarding these no-reference features used for
estimation. Also, other prediction targets or analyses can
be performed. For example, for gaming videos we already
evaluated a nofu variant [23] or an algorithm for classification
of gaming genres [26]. Accordingly, also video encoding
estimation as a classification task can be performed [24].
Moreover, additional bitstream-based features could be used
to enable higher modes of hybrid model variants, for example
mode 3, according to ITU-T P.1203.1 [36] using QP val-
ues, or in addition using motion statistics similar to ITU-T
P.1204.3 [39].

E. PREDICTION TARGETS
For developing video quality prediction models, usually a
set of subjective video quality tests is performed. In such
tests, a number of videos with different levels of distortion
are shown, and after each video, the test user (‘‘subject’’) is
asked to rate the video quality based on a given rating scheme.
In most cases, a single-stimulus test paradigm is used with
subsequent individual videos being shown. Here, in many
tests a 5-point absolute category rating (ACR) scale [35],
[40] is used, where 1 means bad quality and 5 excellent,
however also different other schemes are possible. In total
at least 24 participants are required to yield statistically reli-
able quality scores from such a video quality test, accord-
ing to ITU-R BT.500-13 [35]. In general, mean opinion
scores (MOS) are calculated averaging the individual ratings
for each stimulus v over the subjects. Those MOS values can
be directly used as prediction target in our introduced video
quality pipeline, in the following named asVQmos(v) 7→ float
reflecting a continuous value, so that the resulting model can
be conceived as regression-based. Providing predictions on a
MOS-type scale in a form VQmos(v) is the most common case
for video quality models.

However, even other prediction targets are possible
and will enable a more detailed understanding of the
underlying individual ratings of participants. Preference
could be another prediction target. In this case, pairwise

ratings and a corresponding overall MOS score can be
transformed with high correlations, depending on the
video content, where some additional influences can be
observed [47], [48], [91], [98].

In addition, based on majority or rounded mean or on
median ratings per stimulus v, the given video quality predic-
tion problem can be modeled as a classification task, in the
following noted as VQclass(v) 7→ int . The VQclass variant
of video quality prediction is a different version of VQmos
considering only discrete values. It still can be applied in
cases where users’ acceptance is required or a less granular
quality monitoring is appropriate. For example, if a faster
model with lower accuracy is used, the classification view can
be a first indicator whether quality drops or other technical
problems occurred in a streaming provider scenario. More-
over our classification scenario for quality just represents
any kind of video classification problem using the described
features within our proposed framework.

Another possibility is to model the video quality predic-
tion task as multi-output regression problem. In such a case,
for each video, a distribution of ratings based on individ-
ual subjects’ scores is predicted. To this aim, the following
assumptions are made her, which can be extended depending
on the scope and available subjective data. In a subjective
video quality test with the typical within-subject design, n
participants were asked to rate the quality of the presented
videos using the 5 point ACR scheme. It is noted that this
approach can be extended to other rating schemes as well.
Thus, it follows that for each video in the subjective test, n
ratings are available. We define all ratings for a given video
v as ratings(v), see Equation 5.

ratings(v) = [rating(v, u1), . . . , rating(v, un)], (5)

where rating(v, ui) ∈ [1..5] represents the categorical rating
of user ui for the video v. Using the individual ratings, a dis-
tribution can be calculated counting the frequency of each
possible rating and normalizing it by n, see Equation 6.

prob(v)= [(r, |rating(v, ui) = r|/n); ∀i ∈ 1..n ∧ r ∈ [1..5]]

(6)

If only a specific rating should be analyzed, the notation in
Equation 7 is used.

prob=r (v) = |rating(v, ui) = r|/n; ∀i ∈ 1..n (7)

prob=r (v) is the probability that a given user will rate the
video v with the rating r .
Here, we focus on predicting the value of prob=r (v)

for a given video and all possible ratings r . For exam-
ple, a video v was rated by 3 participants, with the rat-
ings ratings(v) = [2, 5, 3]. In addition, it can be calculated
that prob(v) = [(2, 1/3), (3, 1/3), (5, 1/3)], and respectively
prob=1(v) = prob=4(v) = 0, prob=2(v) = prob=3(v) =
prob=5(v) = 1/3.
We can use these probability values as video qual-

ity prediction targets, in the following referred to as
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VQprop(v) 7→ [prob=1(v), prob=2(v), prob=3(v), prob=4(v),
prob=5(v)]. Our general idea is that for each possible rating
r a separate regression algorithm is trained to predict the
corresponding prob=r (v) values for all possible ratings r =
1..5, meaning the video quality prediction task is modeled
as a multi-output regression problem. It is not required to
always train the same type of regression algorithm, thoughwe
consider the same machine learning method for all possible
ratings r .

IV. SUBJECTIVE VIDEO QUALITY DATASETS
To train the proposed and presented video quality models,
we use the four subjective tests that we conducted as part of
the P.NATS Phase 2 competition that resulted in the ITU-T
Rec. P.1204 series of standards [37], [67]. These will be
referred to as the AVT-PNATS-UHD-1 dataset in the remain-
der of the paper. These models are further validated and
evaluated using the superset of our publicly available dataset
AVT-VQDB-UHD-1 [69]. This superset comprises additional
source videos employed in the tests that cannot be shared.
All tests used the ACR methodology. The test session was
preceded by a visual acuity test conducted for each participant
using Snellen charts, as recommended in ITU-T P.910 [40]
and ITU-R BT.500-13 [35]. A viewing distance of 1.5 × H
was used in all tests, with H being the height of the screen.
The test was conducted in a controlled lab environment fol-
lowing distances, lighting and other conditions according to
ITU-T P.910 [40] and ITU-R BT.500-13 [35], more details
are presented in [69]. The ratings were performed using the
AVRateNG10 software. The suitability of the test participants
was checked by performing outlier detection. A participant
was categorized as an outlier if that participant’s individual
ratings had a Pearson Correlation Coefficient (PCC) lower
than 0.75 with the mean ratings across all participants. This
method has been widely used in literature, most notably for
developing ITU-T Recs. P.1203 and P.1204 [36], [37], [67].
We will briefly describe the conducted tests underlying the
AVT-VQDB-UHD-1 dataset, and also provide an overview
of the AVT-PNATS-UHD-1 dataset that is used to train our
models instances.

A. TRAINING DATASET: AVT-PNATS-UHD-1
Four subjective tests that were designed and con-
ducted within the P.NATS Phase 2 competition form the
AVT-PNATS-UHD-1 dataset and are used to train the pro-
posedmodels. Each of the four tests usedmore than 50 source
contents of 7–9 s duration with 3 sources being common
across all databases. These sources were used in combination
with 5 common encoding conditions also referred to as the
hypothetical reference circuits (HRCs) to form the anchor
conditions across the 4 tests. The rationale behind using such
a high number of sources is to have content variation across
tests so that the models submitted as part of the P.NATS Phase

10https://github.com/Telecommunication-Telemedia-
Assessment/avrateNG

2 competition were capable of handling contents of differ-
ent genres and complexities. The framerates of the source
contents between 24 fps to 60 fps. All tests used HRCs with
framerates in the range from 15 fps to 60 fps with a condition
that the framerate of the encoded video was never higher than
the source framerate. For each HRC, one encoding bitrate
selected from the range 100 kbps to 50000 kbps and one
resolution between 360p and 2160p was selected and several
such HRs are used in all the tests to cover the full range of
possible distortions.

Three different codecs, namely, H.264, H.265 and VP9
were used in all the 4 tests. In addition to the offline encoding
of videos, segments from services such as YouTube and Bit-
movin were used to include real-world encoding settings in
the tests. Due to the high number of sources used in the tests,
a full-factorial test design was infeasible, and hence every
source was repeated only between 3 and 5 times with different
HRCs. All the four tests used a 55’’ LG OLED screen to
present the videos.

The first test in this dataset used 52 sources in combina-
tion with different HRCs, resulting in a total of 187 video
stimuli or processed video sequences (PVSs) being rated
by 27 participants. 2 outliers were detected using the defined
criterion. In the second test, 53 different sources were used
with 187 PVSs being rated by 36 participants, with 2 detected
outliers. For the third test, 52 different sources were encoded
with various HRCs, resulting in 185 different PVSs rated
by 30 participants, with 5 outliers being detected. The fourth
and final test used 53 sources with a total of 191 PVSs that
were rated by 28 participants. Following the defined outlier
criterion, 3 outliers were detected for this test.

FIGURE 3. MOS distribution of all video quality tests used for training.

The quality rating distribution of all the tests is as shown
in Figure 3. Here, it can be observed that mostly high-quality
conditions are included within the test, e.g. the majority
of ratings are between 3.5 and 5.0. Only a few conditions
are rated as bad quality, e.g. with MOS values below 2.0.
To further inspect the individual test subject ratings for
the AVT-PNATS-UHD-1 dataset, we created boxplots for
each possible rating as depicted in Figure 4. The mentioned
probability refers to the VQprop problem formulation, see
Section III-E. Similar to the MOS distribution it can be
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FIGURE 4. Boxplots of individual user ratings and the corresponding
distribution for training.

concluded that high quality ratings are the majority within
this dataset.

B. VALIDATION DATASET: AVT-VQDB-UHD-1
The publicly available AVT-VQDB-UHD-1 [69] dataset
including the sources that could not be shared as part of the
original publication is used to validate and evaluate the pro-
posedmodel. This dataset consists of four different subjective
tests with each test following a full-factorial test design unlike
the training dataset. A total of 17 different sources of 8–10 s
duration were used in the four conducted subjective tests.
It is noted that in our evaluation, due to processing issues,
we excluded stimuli using the 10 s water_netflix sequence
(this holds only for test_1). All the sources have a framerate
of 60 fps. A wide range of encoding conditions have been
used in the tests, with resolutions ranging from 360p to
2160p, framerates between 15 fps and 60 fps and the encoding
bitrates between 200 kbps and 40000 kbps. In the following,
we will briefly present each of the four subjective tests that
make up the AVT-VQDB-UHD-1 dataset. A more detailed
description is presented in [69]. Like in case of the training
dataset, a PCC of 0.75 was used to detect outliers. Test_1, 2
and 3 were tests with different codecs and encoding settings
as in case of the training dataset AVT-PNATS-UHD-1, while
test_4 was conducted to analyze the effect of different fram-
erates on the perceived video quality.

FIGURE 5. MOS distribution of all video quality tests used for validation.

The quality rating distribution is as shown in Figure 5
for all four tests within the AVT-VQDB-UHD-1 dataset. In
contrast to the training database (AVT-PNATS-UHD-1), the

FIGURE 6. Boxplots of individual user ratings and the corresponding
distribution for the dataset used for model validation.

distribution shows that there are more low-quality conditions
included, however the majority of the stimuli are still of high
quality. In Figure 6, boxplots of per-user ratings are shown for
the AVT-VQDB-UHD-1 dataset. The overall dataset is more
balanced considering the different rating groups.

1) TEST_1
In this test, the HRCs were based on varying bitrates across
different resolutions. A total of six different source contents
were used, each of them being encoded at four different res-
olutions, namely, 360p, 720p, 1080p and 2160p. The videos
were encoded using two different bitrates for resolutions from
360p and 720p resolutions and three different bitrates for
resolutions of 1080p and 2160p. In total all videos were
encoded with three different codecs, namely, H.264, H.265
and VP9. All source videos have a framerate of 60 fps and
no framerate variation was included in the test. This resulted
in a total of 180 PVSs, which were rated by 29 participants.
A 65’’ Panasonic screen was used for video play out. There
were no outliers detected for this test.

2) TEST_2
This test follows a bits-per-pixel (bpp) approach for HRC
design with four different bpp values used for the four differ-
ent resolutions employed in the test. As in test_1, four differ-
ent resolutions, namely, 360p, 720p, 1080p and 2160p were
considered and the framerate was kept constant at 60 fps,
which reflects the framerate of the applied source contents. In
total six different source contents were used in this test, out of
which three were repeated from test_1. Owing to the higher
number of HRCs and the usage of four bpp values for each
resolution, only two codecs, namely, H.264 and H.265 were
considered for encoding videos in this test. A total 192 PVSs
were played out on a 55’’ LG OLED screen for each subject.
They were rated by 24 participants, with no outliers being
detected.

3) TEST_3
Test_2 and test_3 together form a subset within the
AVT-VQDB-UHD-1 dataset which follow a bpp approach
to HRC design. Same bpp and resolutions were used as in
test_2 but with H.265 and VP9 codecs to encode the video
with the source contents being the same as in test_2. The
H.265 encoded videos act as the anchor conditions between
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test_2 and test_3 thus enabling the comparison of all three
codecs across the two tests. As in test_2, there were a total
of 192 PVSs in this test. 26 participates took part in the test
and there were no outliers. As in test_2, a 55’’ LG OLED
screen was used to play out the videos.

4) TEST_4
Since test_4 is a test to compare the effect of different fram-
erates on the perceived video quality, the HRC design was
based on a variety of framerates, and hence only one codec,
namely H.264 was used for video encoding. In total eight
different source contents with no repetition from the previous
tests were used in this test. The source contents were encoded
in four different framerates, namely, 15 fps, 24 fps, 30 fps
and 60 fps, along with six different resolutions between 360p
and 2160p. This resulted in a total of 192 PVSs being rated
by 25 participants. In this test, the videos were played out on
the 55’’ OLED screen also used in test_2 and test_3. In test_4,
two outliers were detected using the criterion of 0.75 PCC.

V. EVALUATION
In the following section, we will present the results of the
presented four models, namely nofu, hyfu, fume, and hyfr,
considering different prediction targets.

Moreover, we will perform an in-depth analysis of how
the proposed center cropping approach will affect the model
performance. Our training and validation does not have over-
lapping source videos. This enables a critical view on the per-
formance of our models, because the model will be evaluated
with unknown data.

For training we use all 764 stimuli included in the
AVT-PNATS-UHD-1 dataset. Whereas the validation is
based on the videos of our publicly available database
AVT-VQDB-UHD-1, with a total number of 756 stimuli. The
trained models are part of the open source software to enable
reproducibility of our evaluation.

In the following we will evaluate the performance, for all
models, first for the classification problem, then the regres-
sion problem (classical video quality evaluation), and finally
the distribution prediction (multi-output regression problem).
All three different prediction targets have different applica-
tions. For all models, we use 360p center cropping to speed
up the feature extraction. A more detailed evaluation of the
center crop used will also be performed in this section, even
considering the computation time.

A. CLASSIFICATION PROBLEM: VQclass
In contrast to the regression problem formulation, VQclass
uses rounded MOS values as target. Thus, this problem
formulation is a classification problem and different per-
formance metrics are required, e.g., we consider accuracy,
precision, recall, f1-score (f1) andMatthews correlation coef-
ficient (mcc) to evaluate the final classification models.

In Figures 7, normalized confusion matrices for all mod-
els considering the full validation data are shown. The best
model clearly is hyfr, followed by hyfu, fume. The worst

performing model is nofu, here it is visible that many cases
are wrongly classified. In general, all models have in common
that the quality classes with class = 5 and class = 1 are
hard to predict, which is visible in the shift in the confusion
matrix from the optimal diagonal line. The reason for this is
that in the training dataset such ratings are rare, whereas in
the validation dataset such cases occur more often.

TABLE 2. Performance values for VQclass for all models; sorted by tests
and mcc, rounded to 3 decimal places.

A detailed view of performance values per subjective test
that are included in the AVT-VQDB-UHD-1 dataset is pre-
sented in Table 2. The lowest performing test is test_4, here
models reach amaximummcc of≈ 0.35. In contrast to test_1,
with the best mcc of ≈ 0.52 in case of the hyfr model. The
general problem formulation asVQclass seem to bemore. This
can also be argued by the fact that the underlying video qual-
ity tests were targeted to cover video quality as mean opinion
score and not as classification. Here a specifically designed
test with a reduced number of classes (e.g. only high, medium
and low quality) would lead to a better performance of the
models.

B. REGRESSION PROBLEM: VQmos

As second prediction target, we introduced the quality pre-
diction task as a regression problem VQmos.

In Figure 8, scatter plots for all four models are shown
and in Table 3 a detailed view. For both the scatter plots
and Table 3, a linear fit of the predicted and ground truth
ratings was performed, according to ITU-T P.1401 [33]. The
best model for this task is hyfr, followed by hyfu and fume.
The performance of nofu is the worst, reflecting that the
no-reference video quality prediction task is also the hardest.
An important factor to bementioned here is that the validation
data and encoding is completely unknown to the models, and
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FIGURE 7. Confusion matrices for all models for VQclass.

nofu will perform better if it is specifically trained on the
encoding and content type that is used for prediction. Such
training specific to the application scope can improve the
performance of nofu.We already evaluated such a specialized
model in case of nofu for gaming videos [23], where the
performance of nofu was comparable to the performance of
VMAF. Furthermore, it can be seen that the included mode 0
knowledge (bitrate, framerate, resolution) of the distorted
video is a benefit for developedmodels, increasing the perfor-
mance from e.g. ≈ 0.84 pearson correlation in case of fume
to ≈ 0.92 in case of hyfr, where the only difference between
these two models is the inclusion of such meta-data. Similar
performance boosts can be observed for the models hyfu and
nofu, even though nofu includes one additional no-reference
feature (the inclusion of this specific feature to hyfu showed
no performance improvement).

In addition to the evaluation of our models and because
the usual video quality problem is handled as VQprob, it is
possible to compare our results with different state-of-the-art
models.

In Table 4, performance metrics for the
AVT-VQDB-UHD-1 dataset for VMAF, ADM2, MSSSIM,

SSIM and PSNR are shown. We only considered
full-reference state-of-the-art models, because they are
included in the public implementation of Netflix’s VMAF
and they have already been evaluated for UHD-1/4K content
showing good results. Moreover, even though it is pos-
sible to re-train, for example VMAF, using our training
databases, we only consider unmodified versions of the mod-
els, to enable reproducibility. Further, we used the objective
model values that are included in the AVT-VQDB-UHD-1
dataset, here a similar linear fit was performed to ensure
comparability. The best models for all tests included in the
validation database are VMAF followed by ADM2. VMAF
reaches a pearson correlation of ≈ 0.81 across all tests, and
a maximum value of ≈ 0.94 in case of test_1. In comparison
to VMAF, our best performing model hyfr has a pearson
correlation of ≈ 0.92 for all tests and as best ≈ 0.94 for
test_1. SoVMAF and hyfr have similar performance, except
that VMAF has a higher error in case of test_4, where more
framerate variations are included, which the model was not
specifically developed for. In general, test_4 seems to be
the hardest for all models, and it should be mentioned that
the training data does not cover a similar range of framerate
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FIGURE 8. Scatter plots for all models for VQmos. For each subjective test a linear fit was performed.

variations. It can further be observed that the hybrid models
predict the video quality for test_4 more precisely. However,
comparing all of our models to VMAF, it can be stated that
hyfr, hyfu and fume outperform VMAF considering all four
tests. fume has a pearson correlation of ≈ 0.84 for all tests
compared to VMAF with ≈ 0.81. Comparing fume and
VMAF they are both full-reference models using several
atom features for the overall quality estimation, however
fume includes more temporal specific features, that cover
motion related aspects, where on the contrary VMAF just
includes a basic motion feature similar to ti. The model hyfu
also outperforms VMAF for all tests, without having access
to the source video. Our worst performing model nofu has
a similar performance as PSNR all tests, and also shows
better results for e.g. test_4 compared to other models. The
performance of nofu can even be improved if larger center
crops are used, as it is shown in Figure 10. However, PSNR
is a full-reference metric compared to nofu that just uses the
distorted video for prediction. Thus, the overall performance
of nofu can be considered as relatively good.

C. MULTI-OUTPUT REGRESSION PROBLEM: VQprob
Besides the prediction problems formulated as classifica-
tion VQclass and regression problems VQmos, respectively,
we further introduced the multi-output regression problem
VQprob. Here, for a given video sequence, the prediction con-
sists of several values, one for each possible rating category
(r ∈ [1, 2, 3, 4, 5]). For each rating category, that one value
represents the probability of users selecting that rating.

In Figure 9, for all models the prediction performance
in terms of pearson correlation is shown for each possi-
ble rating r , considering all tests of the validation dataset
AVT-VQDB-UHD-1. Similar to the VQmos problem, the best
model is hyfr, followed by hyfu, fume and nofu. The lowest
performance for prediction for all models is in case of the
rating r = 3. Here, a possible reason may be that the training
database mainly consists of high quality ratings above 3.5 in
terms of MOS.

Additional performance measures are summarized in
Table 5. For each rating target r , we include Pearson, Kendall
and Spearman correlation values with regard to the ground
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TABLE 3. Performance values for VQmos for all models; sorted by test
and pearson, rounded to 3 decimal places.all refers to the linear fit for
each database and calculating the metrics after this normalization thus is
not an average of the individual test performance values.

TABLE 4. Performance values for VQmos for state-of-the-art models;
sorted by test and pearson, rounded to 3 decimal places. all refers to the
linear fit for each database and calculating the metrics after this
normalization thus is not an average of the individual test performance
values.

truth data. The best prediction is clearly the case where
r = 5. This is due to the mainly high quality ratings that
are part of the training and validation datasets. Further, for
such high-quality cases with MOS ≈ 5, almost all subjects

FIGURE 9. Performance across all tests in case of VQprob considering all
four models, with 95% confidence intervals.

must have rated r = 5, to achieve such a high mean rat-
ing. As can be seen from Figure 9, the values for Kendall
and Spearman correlation behave similarly as the Pearson
Correlation does, thus the worst performing prediction tar-
get is r = 3. Here, it should be mentioned that the used
multi-output regression approach trains separate models for
each rating r ∈ [1, 2, 3, 4, 5], for this reason there is no
connection between the individual prediction targets given.
A different machine learning pipeline or algorithm that takes
into account such hidden connections could improve the pre-
diction performance.

TABLE 5. Mean performance values for VQprob for all tests; sorted by
rating and Pearson, rounded to 3 decimal places.

D. CENTER CROP EVALUATION
As mentioned in Section III-C and III-D our model instances
use a center cropped version of the input videos to calculate
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features. This approach is similar to the cencro approach
proposed in [21]. However, in that previous work, several
full-reference models were applied on full-frames, and an
additional evaluation using center cropped frames was per-
formed. In the present paper, we want to further evaluate the
proposed center cropping approach and its impact on the per-
formance and feature calculation speed. In total, we selected
five different center cropping settings namely 240p, 360p,
720p, 1080p and 2160p, where the last setting refers to the
full-frame, thus no center cropping being used. For each of
the center cropping settings, we trained all four models with
the training dataset described in Section IV. In Figure 10, the
performance values for all models and cropping settings are
shown, considering 10-fold-cross validation of the employed
training data. We performed 32 training repetitions. In this
part, we only focus on the evaluation of the VQmos problem
formulation. Similar results can be observed with the other
variants and also using the validation dataset.

FIGURE 10. Prediction performance evaluation of different center
cropping values, based on 32 training runs for each model and each
center cropping value.

First, it is notable that there is only a small improvement
for the models hyfu, fume and hyfr in case of different center
crop values. In contrast to nofu, here the performance can be
slightly improved using a larger center crop. A 360p center
crop for nofu results in a pearson correlation value of around
0.73, whereas the center crop setting of 720p improves it to
0.75, 1080p ≈ 0.76 and 2160p results in 0.76. The worst
performance of around 0.70 is in case of a 240p center
cropping setting. All the other models have nearly the same
rounded performance considering the introduced center crop
variations. However, to have a uniform structure of all models
we decided to also use a 360p center crop for nofu, even if
the performance is slightly lower than a for 720p center crop,
pearson correlation of 0.75 vs. 0.73.

The processing time is an important factor in addition to
the overall performance of all models considering the used
center cropping parameter. For this reason, we measured the
overall model prediction time, including the conversion of
the distorted video to the center cropped variant, the time

required for feature extraction and model prediction time.
Especially the feature extraction time is the major part of the
overall processing time for our introduced model instances.

We selected one video sequence (american footbal, 360p
resolution target encoding resolution, bitrate = 200 kbit/s,
video codec vp9) as test sequence, and measured the overall
processing time of all center crop variants for 32 repetitions,
where each run removes all cached files of the previously
performed run. Different videos will end up with slightly
different processing time that is required because the features
are content dependent. However, the overall connection of
different center crops will be similar, as it has been already
shown in [21]. Here, it should be mentioned that all of our
steps are single core optimized (except the conversion of the
distorted video, here several cores are used). The introduced
and published framework allows for parallel processing con-
sidering different videos in a data parallelization manner. All
measurements were performed on the same computer, with
a Intel Core i7-9700 CPU (3.00 GHz) with 64 GB of main
memory and local file access (SSD).

FIGURE 11. Overall processing time for quality prediction considering
different center cropping values. Shown are mean values and 95%
confidence intervals across 32 repetitions each.

In Figure 11 mean values with 95% confidence inter-
vals for each center cropping parameter and each model are
shown respectively. The fastest two models are clearly the
no-reference models (nofu and hyfr), with the hybrid model
being slightly faster, due to the fact that it does not include
the img-nofu feature. In addition, it clearly can be seen
that there is an exponential relationship between processing
time and used center crop setting, compare also Table 6. For
example, the hyfu model requires about 70 s for 240p and
≈ 2466 s for 2160p, thus 9 times the center cropping height
results in about ≈ 35 times the processing time. The other
models behave similarly across several center crop values. In
general the full-reference models need about four 3-4 times
the processing time, e.g. for hyfr in case of 720p it takes
around 1216 s, compared to ≈ 282 s for hyfu.
Considering the speedup that we can achieve using a cen-

ter crop and the negligible performance reduction for most
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TABLE 6. Mean processing time [s] for each model for different center
crop settings; values are rounded to integers.

of our models (except nofu), we selected a center crop of
360p as the best trade-off between speed and prediction
performance. This conclusion is along with our results of
other full-reference models [21], where a 360p center crop
was able to speedup calculation time significantly, while still
preserving high prediction accuracy of the models.

VI. DISCUSSION
We introduced our proposed framework for video quality
prediction and furthermore instantiated four different models
for three prediction targets.

The first prediction target handles video quality as a clas-
sification task VQclass. Here it is notable, that especially for
this formulation of the quality prediction problem seems to
be hard for our models. A main reason for this is that for such
a formulation a more uniformly distributed training dataset is
required. A more suitable training dataset should also target
classification for video quality, e.g. including only three main
classes, low, medium and high quality. From the analysis of
the used databases it can be seen that the lowest and highest
quality classes are not well predicted and also not represented
frequently enough in the training dataset.

Furthermore, our model nofu has a low performance com-
pared to the other model variants. An example reason for this
is the diversity of the underlying video content, and it was
reported that a more constrained nofu-based model variant
already shows better performance for gaming content [23].
Here the general challenge of pixel-based no-reference video
quality estimation is still an open and hard task, especially
when unknown video content is considered. As second pre-
diction target, we focus on the commonly used problem
formulation, namely video quality as a single continuous
score VQmos, thus our approach considers it as a regression
problem. Here, we show that three of our models (fume,
hyfu and hyfr) are able to outperform state-of-the-art mod-
els, e.g. Netflix’s VMAF, considering the used evaluation
metrics. Even though the model nofu shows a lower overall
performance compared to VMAF, it still shows a comparable
performance to PSNR and SSIM, which are also commonly
used video quality models. The evaluation shows in addition,
that the defined features are capable for the prediction tasks.

As last prediction target, we handle the video quality task
as a multi-output regression problem VQprob, where several
models are trained and predict a distribution of ratings. All
models show similar performance compared to the VQmos
formulation. However, the prediction of individual ratings r

could benefit of knowledge of the other ratings, thus further
analysis is required.

In addition to the three different video quality prediction
variants, we evaluate the used center cropping approach,
enabling us to speed up our feature calculation significantly,
with only a minor increase in prediction error in comparison
to the ground truth subjective scores. It is shown that the
introduced error is comparable to the error that would occur
when a subjective video quality test is repeated in a different
lab, according to [21], [64]. Only the model nofu could
benefit from a larger used center crop, however we decided to
even use for this model a 360p center crop to have a unified
model architecture. Beside the model performance, we also
evaluated the required processing time, and it can be seen that
there is a huge cpu-time saving when center-cropping is used,
this confirms and extends our observations in [21].

VII. CONCLUSION AND FUTURE WORK
We started with the observation that there are only a few
video quality models available and specifically trained for
UHD-1/4K video contents. Moreover generally there is a
wide range of features and subsequent integration approaches
described in the literature, without these being available in a
collection of tools suitable for developing own models. To
overcome these limitations, the paper introduces a general
video quality modelling pipeline, which is made available as
open source. Our model pipeline includes a set of features
that are image- or motion-based, and a temporal feature
pooling method. This allows for the evaluation of several
machine learning algorithms for the generic task of video
quality prediction. Besides the traditional modeling of video
quality using mean opinion scores in a regression scenario,
we described two further approaches, namely a classification
and a multi-output regression variant. Both new variants can
be used to further extend the application of video quality
models, for example considering different applications such
as prediction of uncertainties in user’s ratings or other video
classification applications beyond quality prediction.

Based on the model architecture, we instantiate four dif-
ferent video quality models that are publicly available. Two
out of the four models are pure pixel-based models (a
no-reference and a full-reference model – fume and nofu). In
addition, for each of these we describe a hybrid model exten-
sion, hyfu and hyfr, incorporating additional video metadata
about the codec used, resolution, bitrate and framerate. Such
meta-data is typical accessible during play out of a given
video, while other bitstream related data requires specifically
designed extractors.

To properly train and validate the models, we describe a
set of subjective quality tests conducted by our group that
we used for training and validation, where the validation
database is publicly available. As we further publish the
code of our models and their trained instances, it ensures
that our validation experiments are reproducible. In our eval-
uation, we show that our models have a similar or even
better performance than state-of-the-art models, whereas the
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hybrid models outperform the non-hybrid models. Moreover,
we evaluated three different prediction targets for the underly-
ing video quality estimation problem. For each of the problem
formulations we evaluated four model instances, whereas the
hybrid (hyfr and hyfu) and full-referencemodel (fume) show
the best results. Furthermore, we evaluated the introduced
center cropping approach regarding the prediction error, it is
shown that there is only a small negligible error introduced,
for this reason we used a 360p center crop for all instantiated
models.

Our introduced pipeline can even be used for different
video analyses, as we already showed in several of our
previously conducted work, e.g. video classification [27],
genre classification for games [26], estimation of encoding
parameters [24] or using the center cropping approach for
360◦ video quality [20]. Promising extensions of our models
could include further knowledge of the bitstream itself, sim-
ilar to the P.1204.3 model, where e.g. QP values and motion
statistics are extracted from the bitstream [67], [70]. In addi-
tion, the video quality problem formulations as classification
and multi-output regression tasks need to be further inves-
tigated, e.g. including specifically designed video quality
tests.
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