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ABSTRACT We propose a codec for the lossless compression of plenoptic camera sensor images. The
proposed encoder starts by splitting the input lenslet image into rectangular patches, with each patch
corresponding to a microlens image. The encoder and decoder exploit the correlation between the pixels
in neighbor patches using a patch-by-patch prediction mechanism where each pixel of a patch has its own
dedicated sparse predictor designed to utilize the most relevant pixels from the neighbor patch to the left.
An intra-patch prediction mask together with the pixels from the neighbor left patch form the final prediction
template. The encoder performs the design of sparse predictors by first finding the relevant regressors
in the final template. The patches are classified into M classes according to two possible mechanisms
(either based on depth information or based on Bayer mask colors), and the sparse predictor design is
performed for each pair (class label; patch pixel index). A relevant context selection mirrors the selection
of relevant regressors, thereby providing the arithmetic coding with skewed coding distributions at each
context. We show examples of the application of the proposed methods on sensor images from the JPEG
Pleno database, thus demonstrating the improved performance of the proposed methods compared to the
existing predictive methods for encoding camera sensor images.

INDEX TERMS Plenoptic camera, sensor image lossless compression, Bayer sensor lossless compression.

I. INTRODUCTION
Light field (LF) compression is a mature research area that
has been extensively discussed in the engineering literature,
see e.g., [1] including more than 250 references. Several
techniques are already in the process of standardization under
the JPEG Pleno standards [2], [3] and under immersive video
coding MPEG-I standards [4].

The subfield of lossless compression for plenoptic camera
images has also been explored in more than dozen of pub-
lications in recent years, see [5]–[19]. The grand challenges
that were organized on light field compression at ICME 2016
[23] and at ICIP 2017 (jointly with the JPEG Pleno Light
Field Call for Proposals [24]) had a strong contribution in pro-
moting a unified test material, containing mainly plenoptic
camera datasets extracted from the EPFLLight Field database
[25], and in promoting a unified evaluation procedure, par-
ticularly for lossy compression [26]. The submissions to
ICIP 2017 grand challenge and JPEG Pleno CfP [24] were
also requested to provide lossless or near-lossless results.
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A different approach to plenoptic camera image compres-
sion was pursued in [5], [8], where the plenoptic sensor
image was selected to be encoded and decoded, leaving to
the decoder the additional task of running the entire plenoptic
processing pipeline from the sensor image up to the LF
array of views. We follow herein the same approach as that
in [5], [8] and present an efficient codec for the plenoptic
camera sensor image, called the sparse relevant regressors
and contexts (SRRC) codec. We emphasize the connection
of this approach with the lossless compression of Bayer
pattern images (or color filter array (CFA) images) and to the
compress-first workflows [30]. Our proposal generalizes the
important field of traditional camera sensor image compres-
sion to the field of plenoptic camera sensor image lossless
compression.

A. THE SRRC CODEC AND RELATED WORK ON LOSSLESS
COMPRESSION OF BAYER PATTERN IMAGES
The SRRC encoder presented in Section II is related to a
long line of research studies on lossless compression of Color
Filter Array (CFA) images, also called Bayer pattern images.
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We note that the plenoptic camera records data on an image
sensor that has in front of it a Bayer patternmask, also called a
color filter array, which has in its turn an array of microlenses
in front of it.

The techniques for the lossless compression of CFA images
were developed during the last two decades and this research
topic is still actively pursued, see the recent papers [31]–[34]
and the references therein.

In a summary of the major contributions of the area, [33]
cites four methods as important techniques from the point
of view of lossless compression performance: lossless com-
pression of mosaic images (LCMI) based on a Mallat packet
decomposition [35], lossless compression of real CFA data
[36], hierarchical prediction and context modeling (referred
to by us here as HPCM) [37], and context matching based
prediction (CMBP) [38], grouped into two main families of
methods. Although the family of methods based on the sub-
band or wavelet coding methods produced efficient lossless
codecs [33], [35], the best reported results are achieved by
the second family of methods that are based on predictive
encoding, [36], [37], and [38], where the predictor of a pixel,
and its context (possibly taking into account the gradients
around the pixel to be predicted) are specified differently for
the pixels with different Bayer mask color labels.

Compression of CFA images was recently of interest also
in the standardization field. The compression of Bayer pattern
images was considered in [39] that proposed a simple solution
for enhancing the efficiency of JPEG-XS applied directly on
Bayer pattern images.

As a motivation of the lossless compression of CFA
images, most of the cited papers stressed the advantage of
first encoding the CFA image in a lossless manner and
then having it available for applying various debayering or
post-processing algorithms with different settings. Thus, the
scene-dependent information is stored in a lossless manner
which is an important requirement when archiving valu-
able images in either professional imaging applications or
in medical applications. For example, such an application
was recently addressed in [40] that proposes fast versions of
lossless compression of CFA images for endoscopy images.

In this paper, we consider plenoptic camera sensor images
and introduce predictive techniques for exploiting the corre-
lations in the recorded image due to the array of microlenses
(that were also exploited, in some different forms in [5]
and [8]). Additionally, we also consider the regularities and
types of redundancies specific to Bayer pattern images in
a first encoding scheme dubbed SRRC-PHASE, where we
take into account the Bayer mask color labels as follows: our
predictors are specific for each Bayer mask color label, but
additionally, they depend on the alignment with respect to
the Bayer mask between the current patch and its neighbor
patch (which is used for predicting the current pixel). Thus,
in SRRC-PHASE, the specific design of the predictors is
intended to utilize both the redundancy due the microlens
structure and the redundancy due to the Bayer mask structure
of the recorded image.

The second proposed method, named SRRC-DEPTH, uses
the same patch-by-patch prediction approach, but with a spe-
cific set of sparse predictors designed for the set of pixels
situated at each depth level in the scene, capturing different
dependencies between the pixels in neighboring microlenses,
specific to each depth level.

B. ORGANIZATION OF THE PAPER
In Section II, we present a detailed description of the SRRC
codec for the plenoptic camera sensor image, introducing the
patch-by-patch coding based on a predictive approach, where
both the prediction and the context selection make use of
the relevant pixels found in an overall prediction template.
Section III exemplifies experimental results and compares
them with the results obtained by predictive methods for the
lossless compression of CFA images.

II. THE LOSSLESS CODEC SPARSE RELEVANT
REGRESSORS AND CONTEXTS (SRRC) FOR PLENOPTIC
CAMERA SENSOR IMAGES
In this section, we introduce the encoding algorithm for a
sensor image that is dubbed here Sparse Relevant Regressors
and Contexts (SRRC).

The sensor image is formed at the Nr × Nc rectangular
grid of pixels, by recording the light passing through the
Mr ×Mc array of microlenses with each microlens centered
at a point of a hexagonal lattice. The lattice has one of its axes
roughly aligned with the horizontal direction of the pixels in
the sensor. At the same time, the sensor image is a Bayer
pattern image because the sensor has a Bayer mask located
in front of it.

In Fig. 1, an overall diagram scheme of the proposed
encoder is given. The data recorded at the large sensor image
that capture the light passing through the array of approxi-
mately a quarter of million microlenses are highly redundant.
The encoder exploits the redundancy in the data by trying to
correlate the data captured under one microlens with the data
captured at the neighboring microlens (left neighbor in our
implementation).

We decide to encode the sensor image in a patch-by-patch
processing, where each patch corresponds approximately to
a microlens and is obtained by cropping a rectangular region
centered at the sensor grid point that is the closest to an esti-
mated microlens center. One reason for this type of operation
is because the same type of rectangular patch cropping is used
in the stage of lenslet resampling and rectification, when the
final array of views is obtained from the sensor image [41].

To formally define the patches in the overall sensor image,
we denote by X the 5368 × 7728 sensor image (also called
lenslet image) associated with a rectangular grid and we
denote the pixel indices as (I , J ), with 1 ≤ I ≤ Mr = 5368
and 1 ≤ J ≤ Mc = 7728.

Each microlens has its center located at a point of a
hexagonal lattice. The lattice alignment with respect to the
image sensor grid is specific to each dataset. The alignment
is specified by five real-valued parameters that we transmit
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FIGURE 1. Diagram of the sparse relevant regressors and contexts (SRRC) encoder for encoding one camera sensor image.

FIGURE 2. Covering the sensor image with rectangular patches (each
patch is 13× 15, shown with thin colored lines) centered at the nodes of
the hexagonal lattice. The patches are seen to slightly overlap. Due to the
patch-by-patch scanning order and due to the slight overlapping, the
pixels processed at each patch are only those enclosed by the thick black
lines. The hexagonal Voronoï cells of the hexagonal lattice points are
shown shaded in pseudocolor (each Voronoï cell approximately
circumscribes a circular microlens). Each rectangular patch contains at
each corner approximately 6 unreliable pixels (that propagate after
pipeline processing to generate the well-known glitch of unreliable views
at the corners of the LF array of views). The centers of the patches (shown
as red circles) are located at the various colors of the Bayer pattern [42],
because in order to obtain the same Bayer color, two neighbor centers
should be separated both horizontally and vertically by an odd number of
pixels, which is not the case for every pair of the neighbor centers in the
figure.

to the decoder in the full precision form. From these param-
eters, the ideal positions of the centers of all microlenses
that cover the 5368 × 7728 rectangular grid can be found,
and these positions are truncated to integers to create integer
coordinates for each center of a microlens, as described in
[41]. As presented in detail in Fig. 2, we show the pixels
fromX that are centers of microlenses that are recovered from
the five parameter metadata by red circles. We can cover the
sensor image by using only 434× 541 microlenses, and each
microlens is referred to by a pair (u, v) with 1 ≤ u ≤ Nr =
434 and 1 ≤ v ≤ Nc = 541. The coordinates in the image
X of the center of the microlens (u, v) are specified by two
434×541 matrices, i.e., the center of the microlens (u, v) has
coordinates (I0(u, v), J0(u, v)) in the image X.

These two matrices are constructed using as necessary
information only five parameters (which we save into the
encoded archive), specifying geometrical parameters of the
hexagonal lattice, and its alignment with respect to the sensor,
and hence the two matrices are also available to the decoder.
The functions necessary for transforming the five parameters
to the set of microlens centers from which we compute I0 and
J0 are given in the light field MATLAB toolbox [41].
We consider rectangular patches of 13 × 15 pixels, each

centered on the center of a microlens (with coordinates given
in I0 and J0), and we index the patches similarly to the
microlenses, i.e., the patch P(u,v) is a 13 × 15 rectangle
centered at coordinates (I0(u, v), J0(u, v)) in the image X.
As an example, for the sensor image Bikes, the four patches

in the first row on the detail in Fig. 2 areP(6,9),P(6,10),P(6,11),
and P(6,12) and the coordinates of their centers in the
image X are (64, 127), (64, 141), (63, 155), and (63, 170),
respectively.

The 434× 541 patches completely cover the 5368× 7728
sensor image with slight overlaps between patches due to the
slight misalignment of the hexagonal lattice of microlenses
with respect to the rectangular lattice of the pixels in the
sensor.

The scanning order of the sensor image is defined as
follows: the image is traversed patch-by-patch, rowwise, and
within each patch the pixels are also traversed rowwise, and
we pass to the next patch only after all of the pixels in the
current patch are traversed. Due to the selected scanning
order, the pixels processed at each patch are those enclosed
by the thick black lines in Fig. 2.

A. PREDICTION MODEL
We consider a linear prediction model, where the gray value
of the image X at each pixel from the current patch can be
modeled as a linear combination between the gray values of
the image at the pixels already scanned in the current patch
(a causal intra-template) and between the gray values at all
pixels of a previously scanned patch (we consider only the
patch at the left in the entire experimental section), as shown
in Fig. 3. For simplifying the indexing, here we denote by

31094 VOLUME 9, 2021



I. Tabus, E. Palma: Lossless Compression of Plenoptic Camera Sensor Images

FIGURE 3. The maximum support (encompassing the blue circled pixels)
allowed for the sparse filter when applied for prediction at the pixel
(i, j ) = (4,5) (shown as a red circle) in the current patch (u, v ) = (2,3).
It includes all 195 pixels (denoted as the set N ), in the previous (left)
patch (u, v − 1) = (2,2), for inter-patch prediction, and includes at
most 9 causal pixels in the current patch, forming the set denoted
Nc (i, j ), for intra-patch prediction (near the patch border some of the
nine pixels are not available).

Pc
= P(u,v) the current patch to be encoded with the patch

index (u, v), and by Pcn
= P(u,v−1) its neighbor patch to the

left with the patch index (u, v − 1). We refer to the pixels
within the patch by the index (i, j) with 1 ≤ i ≤ 13 and 1 ≤
j ≤ 15, so that the gray value P(u,v)(i, j) = Pc(i, j) is identical
to the gray value X (I0(u, v)+ i− 7, J0(u, v)+ j− 8). Let us
consider that we need to predict Pc(i, j), the gray value at the
pixel (i, j) in the current patch, and similarly denote Pcn(i′, j′)
the image value at any pixel (i′, j′) in the neighbor patch.

The prediction model is defined as:

P̂(u,v)(i, j) =
∑

(i′,j′)∈N c(i,j)

P(u,v)(i′, j′)wi′−i,j′−j

+

∑
(i′,j′)∈N

P(u,v−1)(i′, j′)wni′,j′ + ei,j, (1)

where the variables w and wn with various indices are param-
eters of the model, and ei,j is the residual of the model.
Fig. 3 shows the inter-template N , which is the same for
any predicted location (i, j) within the current patch, and the
causal intra-template Nc(i, j), which depends on the location
(i, j) of the predicted pixel inside the current patch.
The predicted value is:

P̂(u,v)(i, j) =
∑

(i′,j′)∈Nc(i,j)

P(u,v)(i′, j′)wi′−i,j′−j

+

∑
(i′,j′)∈N

P(u,v−1)(i′, j′)wni′,j′ . (2)

For example, considering all of the parameters {w,wn}
involved at the pixel (i, j) in the current patch as shown in (1),
we will assume that the same linear combination holds true
also for the pixel (i, j) at all of the patches that belong to
the same class as that of the current patch. This allows us
to pool all linear equations for the prediction at the same

(i, j) in several patches, resulting in a linear system that can
be solved in the least-squares sense. Our solution will be to
further constrain the number of nonzero coefficients in (1)
and to find a sparse model specific for the location (i, j) in any
patch having the same class label `, where useful patch class
labeling having M classes is explained in the next section.
The degree of sparsity Ns (the maximum number of non-zero
coefficients in the set of parameters {w,wn}) is fixed in all of
our experiments with Ns = 20.
Thus, we must design a distinct sparse predictor for each

patch class and for each patch pixel location, resulting in
13 × 15 × M distinct predictors that must be designed and
transmitted as additional information to the decoder.

1) SPARSE PREDICTOR DESIGN AND ENCODING THE
SPARSE PREDICTOR PARAMETERS
The sparse predictor design is performed similarly to that in
[43]: we estimate by least squares (LS) all of the coefficients
from (1), sort in descending order the absolute values of
the coefficients and keep the first Ns1 largest ones, and then
declare the corresponding regressors as possibly relevant.
Then, we perform an additional least squares estimation,
using only the first Ns1 selected regressors, and then sort in
descending order the absolute values of the Ns1 LS coeffi-
cients and keep only the largest Ns2 of them, again selecting
the corresponding regressors as possibly relevant. Then, the
same process is repeated once more and finally the desired
number of coefficients Ns is obtained, and their correspond-
ing regressors are declared to be the relevant regressors. In the
experiments, we use Ns1 = 50, Ns2 = 35, and Ns = 20.
This is a fast process that is much faster than that where
the full OLS greedy algorithm is applied as it was done in
[11]. We resort to this fast sparse design because we need
to perform the sparse design for each pair of (class, patch
pixel index) so that the sparse design will be carried out many
times.

Here, we describe in more detail the structure of the sparse
predictors and the encoding of the predictor parameters.

To present the encoding of the sparse predictor parameters,
let us denote by2 the vector of weights (all {w,wn} involved
in (1)) of a full predictor to be used at a pixel (i, j), 1 ≤
i ≤ 13, 1 ≤ j ≤ 15 in a patch Pc. The first 195 elements
in the vector 2 are the inter-patch weights, associated with
the gray level values of the pixels in the left neighbor patch,
Pcn, as shown in (1). The rest of the elements in 2 are the
weights to be used for the intra-patch part of the predictor
(the size of the intra-patch part is at most nine, and depends
on the target pixel (i, j) in the patch, as shown in Fig. 3). The
sparse prediction design will select only Ns nonzero elements
of 2, corresponding to the most relevant regressors. These
Ns indices form the sparsity mask I = {i1, i2, . . . , iNs},
identifying the non-zero elements of 2 for the decoder. The
vector formed from the nonzero elements of 2 is given by
θ =

[
2i1 2i2 . . . 2iNs

]T . Hence, encoding a sparse pre-
dictor involves encoding its non-zeros coefficients θ and the
sparsity mask I.

VOLUME 9, 2021 31095



I. Tabus, E. Palma: Lossless Compression of Plenoptic Camera Sensor Images

The encoding of the Ns-dimensional vector θ for each of
the NP = M × 13 × 15 sparse predictors is performed in
Ns groups, where the `’th group has NP values, consisting of
the elements θ` in all vectors θ . Each non-zero coefficient
is uniformly quantized by rounding its fractional part to a
certain number of bits (Nbits). For a coefficient with absolute
valuew = |θ`|, the quantized version iswq = bw2Nbitse/2Nbits ,
which is available to the decoder by transmitting the quan-
tization index for that coefficient that has the integer value
bw2Nbitse. The sign of θ` is transmitted by a single bit. The
absolute values of the quantization indices are gathered in
Ns groups prior to encoding by Golomb-Rice coding. The
`’th group is transmitted by Golomb-Rice coding, where the
optimal Golomb-Rice parameter is transmitted first, followed
by the codes of the elements b|θ`|2Nbitse for all NP predictors.

The encoding of the sparsity mask I for allNP = M×13×
15 sparse predictors is performed by creating anNs×M×195
array with integer elements that is then linearized along the
three dimensions (the indices along first dimension change
the fastest) and finally the linearized vector is transmitted
using the LZ encoding (as implemented in zip encoder).

B. CLASSIFYING PATCHES ACCORDING TO THE BAYER
PHASE
Most predictive schemes of lossless compression of CFA
images [36]–[38] introduced predictors utilizing the Bayer
color labels in the definition of the templates used in the
definitions of the contexts and in assigning different predic-
tors to pixels with different Bayer color labels. Similarly,
we utilize the regularities and features specific to the Bayer
pattern images that clearly make an important contribution in
the type of correlation between the pixels in the current patch
to encode, Pc, and the corresponding pixels in the neighbor
patch, Pcn.

Because of the Bayer mask, each pixel in the image sensor
acquires the light intensity for only one color from the set
{R,G,B}. For a repetitive 2 × 2 Bayer pattern, the image
has its pixels labeled by the Bayer color attributes from
{G1,R,B,G2} (the set was renamed as {gr, r, b, gb} in the
metadata provided by the Lytro camera). Due to the structure
of the Bayer mask that has a 2 × 2 repetitive pattern along
the horizontal and vertical directions in the sensor image,
each pixel will have an associated Bayer color label, and as
in any periodical process, the labels can be identified as the
phases of the pixels. In Fig. 4, we show the allocation of
the Bayer color labels to the sensor image pixels, and the
related definition of the integer labels called in the sequel
simply phases. An almost identical convention was used in
[44] for defining the decomposition of the sensor image into
four polyphase components where the pixels belonging to the
same polyphase component have the same color label. The
polyphase index in Fig. 4 is identical to the convention from
[44] when one reads as integers 0,1,2,3 the binary strings
00,01,10,11 that are the pixel labels in [44].

For the pixel at location (I , J ) in the sensor image, we call
the attribute denoted ϕ(I , J ) ∈ {0, 1, 2, 3} the Bayer phase

FIGURE 4. The Bayer phase ϕ ∈ {0,1,2,3} and color label associated with
each pixel of the CFA image by repeating the 2× 2 basic cell (in bold red
borders), starting from the upper-left corner of the image.

that indicates to which of the four polyphase components the
pixel belongs; the Bayer phase is given by:

ϕ(I , J ) = 2((I − 1) mod 2)+ ((J − 1) mod 2), (3)

leading to the phases illustrated in Fig. 4. We note that the
row and column indices I and J start from 1, as in MATLAB,
and hence the top left corner pixel (1, 1) of the image receives
the label phase 0.

Inside the SRRC algorithm, we only need to group the
pixels in the four classes by their phase label (a number in
{0,1,2,3}), and it is not necessary to specify the correspon-
dence of the phase label to the colors. Fig. 4 was constructed
based on the information that the label of the upper left pixel
is a ‘‘G1’’.

Taking the example of the first row of four patches
(u, v) = (6, 9), (6, 10), (6, 11), (6, 12) depicted in Fig. 2
for which the centers are located at (I0(u, v), J0(u, v)) =
(64, 127), (64, 141), (63, 155), (63, 170), we obtained the
phases ϕ = 2, 2, 0, 1, respectively. This means that the
central pixel in patch (6, 9) is blue, that of patch (6, 10) is
blue, that of patch (6, 11) is green, and that of patch (6, 12) is
red.

The dependences needed in (1) will be obtained from the
analysis of the equivalent situations: whenever the current
patch Pc has a phase ϕc at its center, and its left patch Pcn has
a phase ϕcn at its center, we expect the same type of depen-
dence to hold for a given (i, j) in (1). Therefore, we consider
all 16 possible pairs (ϕc, ϕcn) as possibles classes, and say
that a patch Pc belongs to the specific class (ϕc, ϕcn).

More formally, let us consider the current patch, Pc,
indexed by (u, v), and its neighbor patch, Pcn, indexed by
(u, v−1). The phase at the center of Pc is ϕ(I0(u, v), J0(u, v))
and the phase at the center of Pcn is ϕ(I0(u, v− 1), J0(u, v−
1)) as in (3). We define the phase signature of the cur-
rent patch, Pc

= P(u,v), as the variable Lϕ(u, v) = 1 +
ϕ(I0(u, v), J0(u, v))+4ϕ(I0(u, v−1), J0(u, v−1)), which is
an integer between 1 and 16.

A fruitful modeling assumption is that for a given phase
signature Lϕ(u, v) = Lϕ , the possible predictive dependences
between the pixels of P(u,v−1) and those of P(u,v) are similar,
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while for a different phase signature, the dependences will
have to be inferred separately because they will refer to the
relation between the pixels at different color labels.

We name the algorithm that designs the sparse predic-
tors by assigning the class label Lϕ(u, v) to the patch P(u,v)
SRRC-PHASE. As shown below, this algorithm displays
excellent performance.

C. CLASSIFYING PATCHES ACCORDING TO THE DEPTH
INFORMATION
To avoid the performance of the predictor design too many
times, it is useful to pool the regression equations (1) over as
few classes of patches as possible. While the pooling in the
previous section was based on the phase signature at a patch,
Lϕ(u, v), based on the Bayer mask colors, now we consider
the second natural choice, namely, of pooling the patches
together depending on the value of the depth in the scene (or
according to the disparity) at the central pixel of a patch.

The depth estimation from rectified LF array data has
been studied intensely and has a dedicated evaluation bench-
mark with its own datasets and evaluation methodology [45]
with more than 70 methods evaluated under various metrics.
According to most of these metrics, methods based on con-
volutional neural networks are among the top methods.

In the experimental section, we first present experiments
with the depthmap images saved in the EPFL Lytro database
[25] available at the JPEG Pleno Database website, namely,
the EPFL Light-field data set [46] generated according to [25]
by the Lytro proprietary software for depth estimation. Then,
we also show a comparison with the results obtained using the
depthmap estimates obtained by the recent EPINET convolu-
tion neural network depth estimator [47], that was trained in
[48] on the light field datasets from HCI Benchmark [45] and
then was applied to the Lytro datsets of the JPEG Pleno Light
Field CTC [46]. Visually, the depthmap produced by EPINET
is less noisy and conveys finer details than the depthmap
produced by the Lytro proprietary software as observed for
the data that we made available in [49].

The depthmap is needed in SRRC at a resolution of (Nr ×
Nc), and if the depth estimation routine produces a different
resolution, it is necessary first to resize the depthmap to a size
of (Nr × Nc).
The depthmaps are rather noisy and they do not convey

very precise values, so that we decided to quantize the val-
ues using a relatively small number of intervals, M , also in
accordance with our goal of not having too many classes
for patches. A study of the performance obtained when
changing M is shown in the experimental section. In fact,
we need only to classify the patches (into a small number
of classes), and hence the scale of the depth value or dis-
parity value is not important. We first linearly rescale the
range of the depth values provided by any of the two depth
estimators, so that the depth value 0 is the closest point in
the scene and depth value 1 is the furthest away, obtaining a
(Nr × Nc) depth image that we denoteD. Then, we transform
the values of D by scaling and rounding with the relation

Dq(u, v) = 1+ bD(u, v)(M − 1)e, obtaining for each pixel an
integer class label between 1 andM .
After this process, the number of elements in some classes

may turn out to be too small, and therefore we performed
an additional reassignment of the less populated classes as
follows. We traverse the classes from 1 to (M − 1), and if
class ` has less than Nmin elements, we merge its elements
to the class ` + 1. Then, we finally traverse the classes
from M down to 2 and for any class ` with less than Nmin
elements, we merge its elements to the class `− 1. The value
of Nmin was taken as 400. After the reassignment, the final
number of distinct classes may be less than the initial value
M , and then we letM denote the true number of classes, after
reassignment.

The (Nr × Nc) image of labels must be transmitted to
the decoder and for this task, we use the CERV encoding
method [50] that is well-suited for transmitting depthmap
images with sharp transitions between piecewise constant
regions.

In the SRRC-DEPTH method, we use LD(u, v) = Dq(u, v)
as a label of the patch P(u,v). The results of using this labeling
of patches for the sparse predictor design are shown in the
experimental section; however, it is observed that the labeling
based on the phase signature at a patch, Lϕ(u, v) almost
always produces better results.

D. CONTEXTING POLICY
The context at a pixel inmost lossless predictive codingmeth-
ods for gray level images is selected to depend on the quan-
tized value of the estimated energy of the prediction error at
that pixel. The difference between the context definitions lies
in the manner in which the energy of the error is estimated.
An often used approximation is that the context is the uniform
quantized logarithm of the mean absolute fluctuations of the
signal in a causal neighborhood of the current prediction
point. The M-MRP method [16] has shown excellent perfor-
mance by obtaining the context through weighing the abso-
lute values of residuals at the location of regressors, where
the weighing values are the Euclidean distances between the
geometrical locations of the regressor pixel and the current
pixel.

In our codec, we use the magnitudes of the sparse predic-
tor vector elements (all {w,wn} used in (1)) as the relevant
weights for the residuals, when defining the context, since
these magnitudes convey the information about the relevance
of each regressor retained in the final sparse predictor mask
(out of the 204 possible regressors). Intuitively, themagnitude
of an LS coefficient resulting from the sparse design can be
considered as ameasure of the relevance of the corresponding
regressor pixel, and we define the contexts based on this
type of relevance (which is also reflected in the name of the
method, sparse relevant regressors and contexts (SRRC)).

When encoding an integer prediction residual R(u,v)(i, j) =
P(u,v)(i, j)−bP̂(u,v)(i, j)e at location (i, j) within the patch Pc,
the context is selected as a function of the normalized error
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amplitude defined as:

Ei,j =

 ∑
(i′,j′)∈Nc(i,j)

|R(u,v)(i′, j′)| · |wi′−i,j′−j|

+

∑
(i′,j′)∈N

|R(u,v−1)(i′, j′)| · |wni′,j′ |

 1
‖Wi,j‖1

(4)

where ‖Wi,j‖1 is the L1-norm of the (sparse) vector with
elements {w} (the nine causal weighting coefficients for intra-
patch elements) and {wn} (195 weighting coefficients for the
inter-patch elements). By the sparse design, only Ns elements
have non-zero values. Since the sparse filter selected only Ns
relevant regressors out of all of the possible regressors with
each regressor influencing the prediction in (1) with their
corresponding weighing factor, we decide to use the same
weighing factors as in the prediction model (1) also in the
average amplitude definition in order to form the weighted
L1-norm of the residuals at the locations used for prediction.
Thus,Ei,j is a proxy for the estimation of the normalizedmean
absolute error expected for the current prediction. Following
the traditional definition of the contexts, we use the rounded
value of the base2 logarithm of Ei,j as an integer context,
C(u,v)(i, j) = blog2 E(i, j)e, which is the definition of the
context used in all experiments.

The final stage of the encoder is the arithmetic coding.
As defined earlier, we traverse the lenslet image patch-by-
patch and for each patch P(u,v) and pixel (i, j) inside the patch,
we encode the integer prediction residual R(u,v)(i, j) using the
cumulative frequency table collected at the contextC(u,v)(i, j),
using the arithmetic coding package from [51]. The decoder
can track the values of the context identically to the encoder,
resulting in the lossless reconstruction of R(u,v)(i, j) that
together with the integer prediction, bP̂(u,v)(i, j)e, produces
the lossless reconstruction P(u,v)(i, j) = bP̂(u,v)(i, j)e +
R(u,v)(i, j).

III. EXPERIMENTAL RESULTS
We used images from the database introduced in [25] and
available on-line at [46]. We used the 12 plenoptic scenes
denoted I01, . . . , I12, as shown in Table 1. The camera sensor
images are gray-level images of size 5368 × 7728 with a
resolution of 10 bits per pixel. For each scene, we consider
two important sensor images provided at [46]: first, the input
sensor image of the scene that we denote X that is contained
in a LFR file, and second, the white image W that is the
plenoptic camera sensor image obtained when taking the
image of a white sheet using the same camera setting as when
imaging the real scene image X. The two images are needed
in the plenoptic processing chain for obtaining the light field
array of views. The format and procedures for reading the
images X and W associated with each scene are given in the
Light field MATLAB toolbox [41] and are also provided for
convenience in the software implementation of our methods
provided at [49].

TABLE 1. Set of twelve scenes used in the experiments.

A. SELECTION OF THE PARAMETERS OF THE SPARSE
PREDICTORS FOR THE SRRC-PHASE ALGORITHM
The main parameters of a sparse predictor are the degree of
sparsity, Ns, defined as the number of nonzero coefficients
selected out of the number of all possible regressors included
in the prediction template, and the number of bits per frac-
tional part of a coefficient, Nbits.
The degree of sparsity clearly affects the performance of

the SRRC scheme. Fig. 5 shows the lossless bitrate for SRRC-
PHASE in bpp for the sensor image I01-Bikes for several
degrees of sparsity between 5 to 50 and for the number of
bits per fractional part of predictor coefficient Nbits in the
set {8; 12; 16}. It is observed that a too low Ns has a strong
impact, e.g., at Ns = 5, the lossless bitrate is approximately
7% worse than the best value that is achieved at Ns = 30.
There is no reason to choose a too low Ns because this
will lead to less accurate prediction and to large residuals,
resulting in a poor compression performance.

On the other end, a too high Ns, e.g., Ns = 50 will require
more bits to encode the predictors without a significant reduc-
tion in the bitrate needed for encoding the residuals.

It is observed from Fig. 5 that for Bikes the range between
Ns = 15 to Ns = 50 is rather flat, incurring changes of the
lossless bitrate of less than 0.7%.

The number of fractional bits per coefficients, Nbits, has
a weaker impact on the compression performance. For a
given Ns, the lossless bitrate in bpp is observed to be within
0.3% from the best value achieved at that Ns. Hence, a very
careful selection ofNbits is expected to have little influence on
improving the performance of the SRRC-PHASE scheme.

Since performing such a study for selecting optimal Ns and
optimal Nbits for each dataset requires running the encoding
algorithm multiple times, we decided to use the fixed values
Ns = 20 and Nbits = 12 for all of the datasets in our
experiments. As a final check, we show the behavior of the
compression rate for I04-Pillars, for varying Ns, at Nbits = 12,
as the bottom curve of Fig. 5. It is observed that at our
selected fixed value, Ns = 20, the bitrate is 5.125, which
is approximately 0.45% worse than the best bitrate for this
dataset, which is 5.102 at Ns = 30. Hence, we may expect
small slight gains when changing the parameter Ns = 20, but
we would like to maintain a fair scenario in the experiments
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FIGURE 5. Coding results for SRRC on camera sensor images I01-Bikes
and I04-Pillars for various degrees of sparsity Ns and number of bits Nbits
per fractional part of a predictor coefficient.

by using the same Ns and Nbits for all of the datasets and for
both SRRC-PHASE and SRRC-DEPTH.

B. INSIGHTS INTO SRRC-DEPTH METHOD USING TWO
DIFFERENT ESTIMATES OF DEPTHMAPS AND SEVERAL
DEPTH QUANTIZATION LEVELS
We have run the algorithm SRRC-DEPTH for the camera
sensor image I01-Bikes, first using the depthmap, provided
in the original EPFL database [25], estimated by a Lytro
proprietary software. Then, we have run the algorithm using
the depthmap obtained from the EPINET estimate. For both
depthmaps we have applied the pre-processing and quan-
tization method from Section II-C, for several numbers of
quantization levels, M . The resulting performance is shown
in Fig. 6. Surprisingly, the lossless bitrates obtained with the
two depthmap estimates are very close to each other, for a
same value of M . An examination of the dependence of the
bitrates on M shows that the values at M = 8 and M = 16
are rather close. We have selected to run the SRRC-DEPTH
in the rest of the paper on all datasets I01, . . . , I12 using the
value of M = 16 with the same number of classes as in
SRRC-PHASE for a fair comparison. Additionally, we chose
to use the original Lytro dataset estimate of the depthmap in
the rest of the experiments, since it is readily available for
all of the datasets in the database [25], while the EPINET
depthmap estimation requires the execution of the CNN esti-
mator on GPU.

Table 5 of Supplemental material shows the breakdown of
the final bitrate into individual bitrates needed by the vari-
ous elements that are encoded in the final archive produced
by SRRC-DEPTH. Once again, it is observed that SRRC-
DEPTH shows very similar behavior for the two different
depthmap estimates. The fraction of the bitrate for encoding
the depthmap itself by CERV is very small, hinting that
the differences observed in the next subsection between the
bitrates of SRRC-PHASE and SRRC-DEPTH are not due to
the extra cost of encoding the depthmap, but rather arise from
the better classification of the patches obtained by Lϕ .

FIGURE 6. Comparing the bitrate for the lossless encoding of ‘Bikes’
image sensor X by SRRC-DEPTH method using the quantized depth maps
provided by Lytro proprietary software used in [25] and by Epinet [47], for
different number of quantization levels M.

Table 6 of Supplemental material compares the per-
formance when encoding five datasets by SRRC-DEPTH
method using for each dataset the corresponding depthmap
from the set of depthmaps D1 obtained by Epinet [47] and
from the set of depthmaps D2 from [25], when the targetted
number of quantization levels is M = 16. The compression
performance at each datasets is seen to be very similar for the
two depthmap estimation methods.

C. COMPARISONS BETWEEN THE PERFORMANCE OF
SRRC-PHASE, SRRC-DEPTH, AND OF OTHER CODECS
Columns 2 and 3 of Table 2 show the bitrates achieved
by the proposed algorithm, SRRC, in the two versions,
namely, when the Bayer phase Lϕ at the neighbor patches
is used for classifying the patches and when the quantized
depth LD is used for labeling the patches. The first ver-
sion, SRRC-PHASE, is consistently better than the second,
SRRC-DEPTH, on average by 0.19 bpp. The values presented
in Table 2 are the compressed file sizes in bits divided by
the total number of pixels in the input sensor image. The file
sizes are the actual sizes from the file system, and the lossless
reconstruction after decoding is confirmed for all of the files.

Table 2 also shows the results of the specialized coder
that we call sparse modeling compression (SMC), which is
the method presented in [8], and we observe an improve-
ment by 0.58 bpp on average for our SRRC based on Lϕ .
We also show the results of a general use coder for color
and gray images based on the FLIF (free lossless image
format based on maniac compression), method introduced in
[52]; it is observed that for all files, SRRC obtains better
compression rate than FLIF, improving the coding perfor-
mance by 0.53 bpp on average. Compared to the standard
lossless JPEG 2000 coding, SRRC shows improvements of
approximately 1.17 bpp on average.

We also present a comparison of SRRC with respect to
one of the best-performing CFA image compressionmethods,
namely, the HPCM [37] method, the results for which are
shown in column 6 (we have used our own implementation of
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TABLE 2. Coding results for camera sensor images X and W by SRRC-PHASE, SRRC-DEPTH and other codecs.

the HPCMmethod); it is observed that SRRC-PHASE shows
better performance than HPCM by 0.7 bpp on average.

It is found that our best proposed method, SRRC-PHASE,
uses in average 22.4% less bits than JPEG-LS, 18.5% less
bits than JPEG 2000, and 12% less bits than HPCM [37] on
the sensor images X for the 12 datasets considered in the
experimental section.

This is consistent with the above-described results for the
compression efficiency of the CFA specialized methods that
are superior to the general lossless compression methods,
e.g., the HPCM method [37] uses on average 24% less bits
than JPEG-LS and 10% less than JPEG 2000 for the Kodak
datset that is a common dataset used for comparing CFA
compression methods. The competition between the CFA
specific methods is closer, e.g., HPCM successfully encodes
the Kodak dataset with 2% less bits than CMBP [38] and
7% less bits than LCMI [35]. The fact that SRRC-PHASE
uses 12% less bits than HPCM for the plenoptic camera
sensor images shows that in addition to effectively taking
advantage of the Bayer pattern regularities, SRRC-PHASE
also highly effectively utilizes the regularities due to the array
of microlenses.

The rightmost five columns of Table 2 show the results of
compressing W, the ‘‘white’’ sensor image associated with
the used settings for the plenoptic camera when capturing
each scene by using all codecs (the results for the SMC
methods were unavailable). We did not run SRRC-DEPTH
forW because this lenslet image corresponds to a scene with
constant depth, so that no gains can be obtained by using the
depthmap (which was not even available). The database of
white images associated with the camera used for collecting
the lytro dataset is also found on the calibration data given
for each of the two grand challenges, and is available on-line
at [46].

Comparison to the competing methods shows that
SRRC-PHASE obtains much larger gains on W with respect

to the JPEG-LS and JPEG-2000 general codecs, when
compared to the gains obtained by SRRC-PHASE on X.
Additionally, the gains with respect to HPCM are larger
onW.

It is observed by the compressed size that some scenes such
as I02 and I03 have the same associated white images. The
information content in the bits for each of these white images
is remarkably large and has almost the same information
size as the scene themselves. The white image information
plays an essential role in obtaining the final LF array of
views because in the plenoptic processing pipeline the two
sensor images, X and W are used for generating the devi-
gnetted image, by pixelwise divisions X (i, j)/W (i, j) at all
5368× 7728 pixels.

D. COMPLEXITY OF SRRC-PHASE ALGORITHM
Here, we present the running times of the programs used
to produce the results shown in the experimental section.
The programs are partly written in MATLAB and partly
in C (the arithmetic coding part) and are available online
at [49]. We present the running times on a laptop that has
a i7-7820HQ CPU @ 2.90 GHz processor, 64 GB RAM,
and 64-bit operating system. The times are mostly indicative
of the expected running times because they vary depending
on the other tasks performed by the computer (we noticed
differences of as much as 10% when running the same pro-
gram twice on the same computer). Because we make the
source program publicly available, the execution times can
be obtained on other platforms when needed. For the memory
usage of the programs, we use amounts in bytes,MB, andGB,
using the definitions 1MB= 106 bytes and 1GB= 109 bytes.

Columns 2 and 6 of Table 3 show the total encoding time
and the total decoding time, respectively, for running the
SRRC-PHASE algorithm on the twelve datasets. We also
show the breakdown into component times: TENC1 is the
time required for running the sparse prediction design and
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TABLE 3. Encoding and decoding times for SRRC on camera sensor images X.

encoding the predictor parameters; TENC2 is the time required
for computing the predictions and residuals; and TENC3 is the
time required for encoding of residuals. At the decoder side,
the major components are TDEC1 for decoding the residuals
and TDEC2 for computing the predictions. On average, the
encoding takes 21 minutes and decoding takes 10 minutes.

It is not easy to experimentally trace the needed memory
usage of the programs because the programs are running in
MATLAB, and the MATLAB core itself needs some sub-
stantial amount of memory (2-3 GB). We start by presenting
the memory requirements for the major data structures that
are used in the encoder of the SRRC-PHASE method (the
best performing of the two SRRC variants), following the
blocks of the algorithm in Fig. 1. The input sensor image
has Mr × Mc elements, stored with 2 bytes per pixel, in a
83MB data structure; however, along the processing, they are
in some cases converted for high-precision computations to
double format (8 bytes), hence requiring 332MB. TheNr×Nc
matrices I0, J0, for storing the coordinates of centers of the
microlenses in the sensor image grid, require 3.8 MB.

The dominant memory consumption is certainly that
required during the sparse predictor design process for col-
lecting the data matrices needed in the LS designs involved
in the sparse design procedure, as presented in Section II-A1.

In each sparse design, say at patch class Lϕ and at a patch
pixel index (i, j), we need to run a procedure starting with
solving in the LS sense a system b = A2, where the
(nA × mA) data matrix A contains in each row the regressors
from (1) (see Section II-A1), hence each element of A can
be stored in 2 bytes. The number of rows nA is the number
of patches with the patch class Lϕ . The classes Lϕ with the
largest number of patches are the classes Lϕ = 0, 5, 10, 15
(for the pairs (ϕc, ϕcn) = (0, 0), (1, 1), (2, 2), (3, 3)) with
about Nmax.Patch = 41000 patches each. The largest number
of regressors is mA = 195+ 9 (as shown in Fig. 3).

The sparse designs are performed iteratively in 16 itera-
tions, where in a single iteration, we collect the data matrices

A and b for all of the predictors needed at the patches of
class Lϕ , namely, the predictors for each of the 195 distinct
pixels (i, j) of a patch (we chose this arrangement to lower the
memory requirements).

Hence, the worst case of required memory during the
sparse design procedure (largest sizes nA,mA) is for Lϕ =
0, 5, 10, 15, where for each of the 195 patch pixel indices
we need to store a data matrix A, with at most Nmax.Patch ·
mA ·2 bytes. For all 195 patch pixel indices, the total memory
requirement isNmax.Patch·mA·2·195 = 41000∗204∗195∗2 =
3.27 ∗ 109 bytes.

Using the memory and whos functions of MATLAB,
we experimentally evaluated the memory usage at the var-
ious stages of the algorithm reported in Table 4. The sec-
ond column reports the memory occupied by the variables
created by the user (collected by adding up the sizes of all
of the variables reported by whos), while the third column
presents the overall memory required from the operating
system by MATLAB (including the MATLAB’s system own
created variables), as reported by the memory function. It is
observed that the encoder required memory is dominated by
the memory for sparse predictor design that has the total
value of 4.1 · 109 bytes (out of which the data matrices
occupy 3.3 · 109 bytes, as described above). By modifying
the details of the implementation, the memory requirements
can be reduced for example at the expense of larger encoding
times. If the programs will be re-coded into C, using similar
variables and data structures, the memory requirements most
likely will remain similar to those reported in column 2 of
Table 4; however, the extra space up to the values in column 3,
accounting for MATLAB kernel variables, will no longer be
needed. Nevertheless, the overall requirements will remain
approximately 4 GB at the encoder and approximately 3 GB
at the decoder.

Finally, in the Supplemental material, we report the execu-
tion times for the SRRC and the general codecs used in the
compression performance comparisons.
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TABLE 4. Memory used in the SRRC-PHASE algorithm in MB (i.e., in 106

bytes).

When reporting the times for SRRC-DEPTH, we do not
report the times for acquiring the depthmap, since they vary
strongly depending on the program used for depth estimation.
For example, the EPINET program trained on the HCI data
can provide a depthmap estimate for a Lytro dataset in a
couple of seconds but requires a GPU for execution and a
large amount of memory for storing the CNN parameters.
The extra call of CERV [50] encoding and decoding requires
only a couple of seconds for the 434 × 541 quantized depth
images).

IV. CONCLUSION
We have presented several compression methods for encod-
ing plenoptic camera sensor images. The best results are
obtained by SRRC-PHASE that utilizes both the regularities
induced by the Bayer mask located in front of the image
sensor, and the regularities due to the array of microlenses.
Compared to the methods developed for traditional camera
CFA images, the proposed methods significantly reduce the
size of the compressed file due to utilization of the regulari-
ties induced by the array of microlenses that are efficiently
exploited by the sparse predictor design and by the tuned
contexts used in the arithmetic coding of the residuals.
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