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ABSTRACT More and more conventional electromechanical meters are being replaced with smart meters
because of their substantial benefits such as providing faster bi-directional communication between utility
services and end users, enabling direct load control for demand response, energy saving and so on.
However, the fine-grained usage data provided by smart meter brings additional vulnerabilities from users
to companies. Occupancy detection is one such example which causes privacy violation of smart meter
users. Detecting the occupancy of a home is straightforward with time of use information as there is a strong
correlation between occupancy and electricity usage. In this work, our major contributions are twofold. First,
we validate the viability of an occupancy detection attack based on a machine learning technique called
Long Short Term Memory (LSTM) method and demonstrate improved results. In addition, we introduce an
Adversarial Machine Learning Occupancy Detection Avoidance (AMLODA) framework as a counter attack
in order to prevent abuse of energy consumption. Essentially, the proposed privacy-preserving framework
is designed to mask real-time or near real-time electricity usage information using calculated optimum
noise without compromising users’ billing systems functionality. The results show that without the use
of the proposed AMLODA approach, our occupancy detection attack models using LSTM achieve a high
detection rate with Matthews Correlation Coefficient (MCC) value of 0.89 on average for the five different
households energy consumption data under investigation captured during the winter and summer seasons.
With the proposed AMLODA approach working to protect consumers’ privacy, occupancy detection attacks
are demonstrated to be mitigated with the MCC values of the attack models converging to zero with no
significant change over the actual consumption data and thus protecting needed functionalities of the utility
companies.

INDEX TERMS Adversarial machine learning, long short term memory, private information retrieval,

privacy, smart meter, smart grid.

I. INTRODUCTION

In modern-day households and businesses, smart meters are
being deployed more than traditional meters. For exam-
ple, approximately 86.9 million smart meters were installed
across the United States and nearly 88% of them were
deployed into residential buildings in 2018 [1]. This number
is expected to increase substantially in the coming years.
While old-fashioned analog meters allow company employ-
ees to read users’ electricity consumption data manually on a
monthly basis, fully digitized smart meters can continuously
measure and report the energy consumption to the utility
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providers as needed without direct human intervention. Such
detailed and timely energy usage information offers numer-
ous advantages to both grid participants and utility compa-
nies. On the utilities side, benefits of smart meters include the
elimination of manual meter reading once a month, tracking
of the electric system constantly to minimize power outages,
energy savings and so on [2]. Furthermore, on the users’
sides, benefits of smart meters include monitoring of the
users’ electricity usage pattern in a timely manner, which
allows users to keep track of their energy consumption in
real-time or near real-time. This results in robust demand
response systems that allow customers to save money by
consuming less energy during peak hours and selling excess
energy to the grid provider [3]. For these and other benefits,
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it is expected that conventional meters will be largely super-
seded by smart meters globally in the near future.

With all technological advances, there are risks and the
same is true for the Smart Grid (SG). The collection of
information at a high granularity (e.g., minutes or seconds)
inevitably provides utility companies insight into the private
lifestyles of its inhabitants. This sensitive information can
be sold by utility companies to interested external parties to
get market in the industry or for other subsidiary revenue.
It can also accidentally or wrongfully fall in the hands of
unauthorized individuals through eavesdropping and other
adversarial means. Such unintended information extracted
from electricity usage profiles can expose the lifestyles and
habits of households. This time-of-use information can later
be used for a broad range of purposes and nefarious intentions
such as advertising or surveillance. For example, it can be
used to deduce how often an occupant is on vacation each year
and thus, the occupant may be exposed to advertisement bom-
bardments from travel agencies. Or analyzing home power
signatures can help companies identify its occupants’ meal
habits which can, in turn, make the household target for food
companies.

Many researches have highlighted this invasion of pri-
vacy concerns by demonstrating identification of occupants’
activity by analyzing energy consumption data [4]—-[9]. Some
researchers even identified the appliances being used by
employing Non-Intrusive Load Monitoring (NILM) tech-
niques on energy usage data [10]-[13].

Although the aforementioned researches establish security
and privacy concerns with the advanced metering infras-
tructures, existing smart grid regulations are inadequate in
protecting customers against misuse of their private data.
State legislators and public utility commissions do not have
any standard codes of conduct in place to prevent proprietary
information collection. In Europe, data privacy is put under
protection by the European Union Data Protection Directive,
where it is clearly articulated that "personnel data which is
collected for specified purposes can not be further processed
for other purposes” [14]. Any personal data that is collected
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can only be analyzed with users’ explicit given consent.
However, users do not have extensive knowledge about for
what purposes their information is used and, mostly, they are
not well informed about potential privacy consequences. As a
result, they are likely to rubber-stamp any such requests from
autility personnel unconsciously. Furthermore, although such
legislations might be necessary from a privacy point of view,
legally protected data can hinder crucial investigations such
as police investigation of a crime or investigation after secu-
rity incidents [15]. On the other hand, in the United States,
privacy regulations with regard to personal data protection
vary from state to state. In some states, privacy information
is put under protection by law as in Europe, whereas in
other states, there is no explicit specific legislation related
to this matter [14]. Under some local jurisdictions, such
enforcement activities are approved as legal. For instance, law
and enforcement agencies taking advantage of monitoring
the electricity consumption information on the purpose of
catching marijuana or drug manufacturer in Texas since such
activities consume remarkable signature electricity [16].

While lawmakers continue to revisit and update regulations
regarding the protection of the smart meter consumers’ rights,
we consider solving this challenge through technological
advances by developing a new design with aid of artificial
intelligence (AI) that inherently preserves privacy. In this
work, we present a privacy preserving Al model that conceals
time of use information of consumers without hindering any
of its utility. The proposed model tracks electricity usage
signal of a user using a machine learning model and identifies
the characteristic behavior of flow information from past
experience. Actual energy consumption patterns are modi-
fied slightly per second through optimized noise, which is
obtained from observation, and the process still allows all
necessary usage of smart metering data. As a result, the elec-
tricity supplier gains no useful knowledge other than the
total electricity usage of its customers. As shown in Figure 1,
users’ private information is masked through designated
noise in a way that makes it harder to infer usable information
about a household.
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It is important to note that machine learning techniques are
inherently computationally expensive because of the require-
ment of training time to build a model [17], [18]. However,
in our approach, we pre-train the model offline before we use
it with test data in real-time. This allows it to avoid heavy
computation in building the model and results in low com-
putational complexity and little or no transmission latency in
time-critical traffic. In addition, the new proposed approach
allows easy installation and rapid adaptation to existing smart
metering infrastructure, taking the SG environment to a
higher level of user privacy-preserving.

Il. RELATED WORK

Many studies focused on measuring and analyzing the elec-
tricity consumption of households over the past years. These
investigations addressed various aspects like the estimation of
socio-economic characteristics of homeowners [19], whereas
some tried to place them in groups by their load data [20],
[21]-[23]. De Silva et al. looked into smart meter data and
came to the conclusion that the energy companies can predict
future energy consumption by examining the data that is
measured from occupied households [24]. Therefore, there
is a high probability for the energy companies to differentiate
between houses that are vacant and those that are occupied
during different times of the day. These houses that are iden-
tified as occupied are good candidates to receive special offers
like automatically getting their heater switched off when they
are not at home.

Additionally, due to machine learning algorithms demon-
strating effectiveness in tackling many complex problems,
some of these methods are also used to detect occupancy
of a home. Conditional Random Field Model and a Hidden
Markov Support Vector Machine (HMSVM) were used by
Yang textitet al., for estimating the number of occupants in a
three person residence by using smart meter data [25]. There
are other studies that employed various metrics to detect
occupancy. An important study used sound, temperature,
CO2, and PIR motion sensors data with a neural network
model and their reported accuracy was as high as 75% [26].
Akbar et al. used smart energy meters to calculate electricity
consumption in their research center from the devices on
employees’ work desks [4] and their accuracy was reported
around 94%.

Consumers’ electricity usage was discussed from a privacy
point of view by some other researchers. One group addressed
the problem of identifying different types of appliances from
their energy usage at a given time. Similar studies do not
inherently aim to detect occupancy of a home but their results
can be used to help with the detection of occupancy. George
Hart proposed the first time Non-Intrusive Load Monitor-
ing (NILM) approach in 1992 [12] and his method differen-
tiated characteristic changes in the consumption of energy.
He then went on to compare these changes with previously
recorded values stored in a database. His findings showed that
time of use smart metering data leak users’ sensitive informa-
tion. Since then, securely handling consumers’ information
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during the smart meter data management process has been
attracted by many researchers. We can categorize these solu-
tions into two groups.

The first one is cryptographic-based privacy-preserving
solutions, where smart meter data is encrypted and decrypted
with users’ keys in order to prevent any unauthorized access
to sensitive information [27]-[30]. This type of solution pro-
vides confidentiality over data-in-use. In other words, it pro-
vides a secure communication channel between consumer
and providers in order to protect smart meter data transmis-
sion from third parties. However, in a real-word scenario,
providers or utility companies behave more like honest-but-
curious attackers [31]-[33]. To put it all in simple terms,
electricity suppliers abide by protocol rules but they can leak
the private information of users. Therefore, users’ sensitive
information has to be secured from, not only the external
threat actors, but also internal entities in a smart grid environ-
ment. For these reasons, a solution based on cryptography is
not an effective solution where utility companies are not con-
sidered part of the problem. The second category of solutions
aims to protect data itself from electricity providers. One such
naive solution is the data aggregation method through a third
party [34]-[36]. These solutions offer an escrow mechanism
for data collection by smart meters and deliver aggregated
data to the necessary operational unit at regular intervals.
This escrow system makes out an invoice for each cus-
tomer and keeps their private information confidential. This
method assumes that third parties are fully trusted. However,
a ‘trusted third party’ concept solely passes over trust assump-
tion from utility companies to an intermediary. Users’ privacy
is always subjected to the mercy of the intermediary with this
technique. In the absence of trust, this method is impracti-
cal. It should be noted that data aggregation service can be
performed by an Advanced Metering Infrastructure (AMI)
system itself. Since AMI is managed by utility companies,
this is still conceptually similar to the honest and curious
attacker models, therefore, it is not sufficient to provide
necessary security safeguard with respect to user privacy.

To mitigate the aforementioned limitation of data aggre-
gation method, some researchers proposed complex load
data aggregation schemes utilizing cryptographic methods
for protecting users’ private information from both the
grid operator and the aggregator itself. Borges er al. [37]
presented a privacy-preserving protocol that offered data
aggregation with secure and verifiable billing. To preserve
customers’ privacy, measured data is encoded with homo-
morphic encryption or homomorphic commitment. After-
wards, energy consumption data is securely aggregated for
protecting individual privacy before it is sent to the utility
company. Tonyali et al. [38] looked into the feasibility and
performance of homomorphic encryption aggregation in AMI
networks and showed that homomorphic cryptography is
inefficient in terms of delay and bandwidth usage. Therefore,
Borges et al.’s approach can create a high computational
burden on resource-demanding smart meters. Furthermore,
the approach was not validated with proof-of-concepts and
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experimental simulations, and thus, it is hard to study its
benefits properly. Marmol et al. [39] presented a privacy
enhancing aggregation architecture which allowed the aggre-
gator to successfully receive total consumption of smart meter
data in a protected way. In this approach, each smart meter
encrypts its own consumption using a key and the electricity
consumption of the group of users is aggregated using a
ring-based topology ensuring that the aggregator obtains the
integrated data in an encrypted form without compromising
individual’s privacy. Afterwards, the aggregator can decrypt
the total meter readings of the all the users with a single static
key. This approach creates a high level of complexity because
of usage of the homomorphic encryption scheme, which also
doesn’t provide non-repudiation since asymmetric encryption
is involved. Additionally, this architecture has adaptability
issues because a reconfiguration is required when a node
joins/leaves the network. Another drawback of this scheme
is low scalability as a high number of smart meters are linked
directly to the latter. This situation imposes high overhead on
the utility side because they have to perform a large number of
aggregation operations. Erkin ef al. [40] proposed a modified
Paillier (additive) homomorphic aggregation scheme allow-
ing any user to additively aggregate total energy consumption
for all users for each agreed time slot. In addition, the method
offered random numbers to be added into all individual read-
ings to keep information secure from other users. Decryption
can only be possible after the computation of all individual
consumption such that any user is not able to decrypt load
data for others. However, there are a lot of interactions among
smart meters which leads to heavy communication overhead.
Also, the proposed protocol assumes that a trusted third party
generates all the necessary parameters such as keys and mod-
ulii in the set-up phase and requires a secure channel to be
established between each pair of smart meters in the initial-
ization phase. Also, the proposed method cannot detect fraud-
ulent individuals from malicious aggregators in the system.
A single point of failure during the uploading process of the
data makes the scheme impractical. Kursawe et al. [41] sug-
gested an innovative scheme for privacy-preserving aggrega-
tion using Diffie-Hellman and a Biliniear-map based protocol
instead of homomorphic encryption. In this method, each
participating set of smart meters conceal their measured con-
sumption from the aggregator by adding random numbers,
which cancels out when added together. In this way, aggrega-
tor can obtain total consumption of participating smart meters
without revealing any additional information about individual
smart meter usage. The authors showed that their proposed
protocol improved efficiency compared to a homomorphic
solution in terms of communication overhead. However, this
mechanism requires a complex reinitialization process when
a smart meter joins or leaves a group. This can negatively
impact the protocol’s performance when the public keys of
all other smart meters in the group have to be initialized at
the same time. Although the authors mention existence of
signature keys to provide data origin, there is no detail on
how the protocol assures non-repudiation. Knirsch et al. [42]
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presented a masking-based scheme for a privacy-aware data
aggregation. This approach employs the notion of homo-
morphic hashing in order to confirm the correctness of the
shared secrets. Nevertheless, this strategy has a few issues.
The technique are complicated to implement and the data
aggregation approach using hash is vulnerable to collusion
attacks. Therefore, an aggregator can collude with a smart
meter to figure out consumption data of another smart meter,
which is undoubtedly an important privacy concern. While
the above mentioned data aggregation models with crypto-
graphic primitives provide strong protection of the privacy of
consumers, these privacy models work under the assumption
that security models have desired security properties. There
are multiple challenges with these security models. First of
all, cryptographic keys have to be securely created. Then,
keys have to be securely distributed to all parties which is
not an easy process. Security models always offer a solution
based on the assumption that keys have safe storage and the
adversary has limited computational power. Stolen or hacked
private keys can lead to a loss of privacy of consumers and
billing accuracy of users. Our proposed AMLODA model
uses optimum noise added to or subtracted from the meter
data such that the adversary receives scrambled data without
using any cryptographic keys. To balance between opera-
tional efficiency and customer privacy, the AMLODA model
provides an alternative solution as a trade-off between the
noise and the leakage of privacy. In addition, utility compa-
nies may prefer individual load profile of users rather than
aggregated one for delivering various beneficial services such
as improving detection of energy theft, fair distribution, virtu-
alization of power consumption of users and so on. For exam-
ple, a smart meter might behave as an attacker by hacking
another smart meter by tampering of its reading. Such fraud-
ulent behavior cannot be recognized easily over aggregated
data, since no suspicion can arise due to no change in the
aggregate mean consumption [43]. The collection of electric-
ity consumption data of grid users on a regular basis can help
energy suppliers to detect and identify electricity theft [44].
In addition, high-frequency energy usage measurements of
individual users help utility companies to track and manage
their energy efficiently. For example, utility companies can
identify high rate of consumption approaching by analyzing
regular granular load data and alert consumers accordingly -a
process known as consolidated consumption [45].

Another approach is anonymizing smart metering data
for each individual participant by hiding their real iden-
tity against electricity providers [46]-[48]. In the context
of anonymity, a user must be undetectable [49]. However,
such a technique is still inadequate in hiding grid users’
personal information because it still streams significant infor-
mation to the utility providers [50]. For instance, electricity
providers can still access electricity consumption information
and infer grid users’ identities from this auxiliary informa-
tion. Additionally, these data aggregation and anonymizing
smart metering data techniques benefit from cryptographic
primitives in order to establish a secure channel. Therefore,
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FIGURE 2. A tree diagram of privacy-preserving solutions.

this is the cost of high overhead because of intensive compu-
tational power, which poses additional operational challenges
on the resource restrained SG environments.

A. CONTRIBUTIONS

Our privacy-preserving solution is obfuscation based and
uses data perturbation without data aggregation approach or
having to trust any institution. Data perturbation is not a new
idea and has already been proposed for ensuring user privacy
by a few researchers. Dong et al. [S1] proposed a heated
water-based technique to make users’ electrical power routing
flat at the highest consumption point by tampering with smart
metering data. Flat signals make it look like an occupant is
always at home. Implementation of this technique is very
challenging with no knowledge of future users’ consumption
in the absence of sufficient thermal storage, especially when
the difference between the highest and the lowest point of
the signal is great. In addition, not every household supports
electric water heaters. As per a survey, approximately half of
the families in the US have natural gas water heater systems
at their residences, while 41% have electric water heater
systems [52]. The implementation of the electric water heater
system is also impractical because converting natural gas
heater systems to electric water heater systems is expensive.
Man et al. [53] proposed a battery-based technique to make
the electricity signal flat in a similar way by defining a thresh-
old point while charging or discharging this external battery.
However, batteries are costly and they deplete after extended
use. Furthermore, defining a threshold value is challenging,
especially without knowledge of user electricity consumption
patterns. The success of the battery-based solution is highly
dependent on storage capacity and sometimes storage capac-
ity may not be enough to implement this algorithm. Another
point to consider is that SG environment is designed to
generate revenue by scheduling of electricity as per demand
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response. A significant change with a flat rate will produce a
negative impact on the demand response market. Both of the
aforementioned solutions do not take into consideration this
important fact.

To alleviate these concerns and maintain system relia-
bility with consumer privacy preservation, we propose a
novel method that integrates well with current smart metering
infrastructure with any changes at the infrastructure level. Our
unique privacy framework also does not require any hardware
change on the smart meter. The only change it necessitates
is a small software change to the program running on the
smart meters. The proposed add-on functionality can simply
be incorporated as a software update. Figure 2 shows the dis-
tribution of schemes along with proposed AMLODA model
for privacy-preserving security solutions.

As mentioned before, our proposed method is based on
a data perturbation technique by means of noise injection.
In order to inject noise in an intelligent way, the model ini-
tially aims to learn users’ energy consumption profile patterns
from their past electricity usage. Then, these usage patterns
are used to calculate optimum noises in order to modify the
consumers’ current usage information in the shortest period
of time in a cost-effective manner that preserves overall data
integrity. These modifications lead to ‘data-obliviousness’,
a term that is used in the research community [54] to desig-
nate no obvious learning of new knowledge from the pattern
of the operations. In our case, it means that users’ energy con-
sumption is presented in such a way that electricity providers
are unable to learn any usable information other than what
is needed for billing. Thus, our proposed model preserves
information needed for meaningful interactions between con-
sumers and providers that is crucial for SG environment
economy. This solution empowers SG users to monitor and
control their energy savings by accessing their own data as
needed. Most importantly, consumers are able to control a
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level of influence over their smart meter data that best meets
their privacy-preserving needs. As stated previously, our pro-
posed model reports households’ energy consumption in a
way that does not affect the correctness of the billing invoice.
In addition to properly managing energy usage data with
users’ privacy preservation, the model also prevents timing
analysis for a possible occupancy attack. Thus, the proposed
model presents a win-win situation for both utility companies
and smart meter users.

To the best of our knowledge, this paper presents the
first research that demonstrates an effective and efficient
obfuscation-based privacy preserving solution that does
not rely on any external devices/entities for maintain-
ing consumers’ privacy. Our research has the following
contributions:

o Using LSTM, we show the viability of an occupancy
detection attack over a massive real-world electricity
consumption dataset.

« We propose a non-intrusive automatic method for pro-
tecting the privacy of grid customers with the extension
of the meter program functionality. Our method works
by allowing self-coordination and self-healing through
false data injection in smart meter data. Carried out
in a trustworthy manner, with rearrangement of users’
electricity consumption data over a period, the added
noise does not compromise the correctness of users’
billing, while preserving privacy.

o We propose a client-driven system that allows them to
govern their own data with the aim of fulfilling their
privacy needs.

The rest of this paper is organized as follows: the back-
ground relevant to occupancy detection attacks is reviewed
in Section III. We present the proposed model in Section IV.
Section V describes the implementation and the evaluation
results of our model. In conclusion, we finalize the paper in
section VL.

lll. BACKGROUND
In this section, we review background information related to
our research.

1) SMART METERING DATA
Utility companies have a need to better understand con-
sumers’ usage profiles for operational reasons. More
detailed energy usage information supports more efficient
energy management services. Therefore, SG technology was
designed to collect information more widely and quickly than
its predecessors. Such information is vital for operational
efficiencies such as automatic billing, load monitoring and
dynamic pricing.

Smart meters report information every fifteen minutes as
a default [16]. New brand meters are capable of collect-
ing data every minute or second by increasing data storage
capacity. Time-of-use tariffs might change from minute to
minute. Hence, the more precise data is, the more accurate
calculations for customers’ billing can be made to assist grid
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managers. In addition, the fine-grained usage data is useful
for monitoring customers’ loads in more detail. This helps
to forecast future load needs in order to cover all users’
demands. However, as stated previously, this time of use
data can conflict with security and privacy goals of users.
This information can be used malevolently for other purposes
than intended. For example, smart meter data at frequent
time intervals provides insight into customers’ eating habits
or sleep/wake circles. Because of this double-edged sword,
the expected data frequency of smart metering could not
be standardized. Each utility company has slightly different
types of the metering system. As a remedy of this problem,
we propose to intercept smart meter readings in order to
mask critical information without worsening its operational
efficiency. As a result of our proposed approach, both grid
providers and grid participants can take advantage of smart
grid benefits with ease.

2) DEMAND RESPONSE MANAGEMENT

Demand Response Management (DRM) is a key component
to improve the efficiency of energy consumption of grid users
economically in an automated manner. DRM records a large
range of information such as the real-time price of electricity
and net demand. This helps to properly optimize customers’
demand by shifting demand to off-peak hours considering
dynamic pricing with customers permission. For example,
the temperature at the thermostat can be controlled by the
utility server and set automatically to a lower temperature
setting during the period of high prices.

Any significant changes to data that DRM uses can cause
operational inefficiency. Accordingly, we follow a reasonable
strategy by manipulating smart meter data to safeguard con-
sumer privacy in a way that is compatible with the metering
price and demand prediction policies.

3) GRADIENT DESCENT ALGORITHM

The gradient descent algorithm, which is widely used by
various machine learning models, is a first-order iterative
optimization technique. It is used to find an optimal point
of a given function that helps to minimize error rates. This
algorithm modifies all parameters to find the most appropri-
ate way to minimize errors. The parameters are randomly
initialized at the beginning of the process. Then the cost
function is calculated based on these parameters. During the
backpropagation phase, the parameters self-update until the
lost function converges to the minimum point.

The perturbed version of the time series energy data pro-
duced by the exploiting and modifying the gradient descent
algorithms behavior can help to prevent unauthorized disclo-
sure of private information. Section IV will explain how we
used this algorithm to control the privacy of users in their
energy usage data.

4) LONG SHORT-TERM MEMORY (LSTM) MODEL
The Recurrent Neural Network (RNN) is a neural sequence
model successfully used for the processing of sequential
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data such as handwriting recognition, speech recogni-
tion, language modeling, machine translation, among others
[55]-[59]. The architecture of RNNs consists of internal
state (memory) to store historical data. The model considers
this past contextual information along with current input
to make a better decision for further timestep predictions.
The learning process is carried out based on computing the
gradient of a loss function in terms of the weights of the model
during backpropagation. However, the model has access to
limited contextual information because of its limited storage
capacity, a phenomenon known as the vanishing gradient
problem [60].

In order to mitigate the vanishing gradient problem, an ele-
gant RNN, known as LSTM was designed [61]. LSTM
relies on gating mechanisms that regulate the flow of
information. These gates are able to learn which data in a
sequence deserves to be kept or discarded, based on its impor-
tance. By doing that, LSTM allows remembering information
for an extended number of timesteps (up to 1000). Due to its
learning capacity of long term dependencies present in long
sequences, LSTM has received a great deal of attention in the
research community for its solution of time series prediction
problems.

IV. AVOIDING OCCUPANCY DETECTION

In the following subsections, we first describe the proposed
scheme. We then present another straightforward solution
based on Gaussian noise perturbation as a benchmark to
compare with the proposed model.

A. AMLODA MODEL

As outlined earlier, we assume a scenario where the utility
companies behave like honest-but-curious attacker models,
meaning that they follow the protocol rules but compro-
mise user privacy. To prevent such a scenario, we propose
the Adversarial Machine Learning for Occupancy Detec-
tion Avoidance (AMLODA) model inspired by [62]. The
AMLODA model learns by capturing the most prominent
features of occupancy detection from historical usage data.
For example, a significant change in the power consumption
is a good indicator of the interaction of an occupant. Such
special movement patterns are automatically acquired by the
system. Our proposed scheme then generates indiscernibly
small carefully crafted perturbations to hide the electricity
consumption patterns. Therefore, manipulated smart meters’
data reveals less useful information and occupancy detection
attack classifiers would likely work less accurately when
predicting sensitive user behavior patterns.

Typically machine learning algorithms use cost functions
by model parameters in order to penalize any predictions that
are far from the correct label. The models are trained using
the gradient descent algorithm to find the model’s optimum
parameters by minimizing the cost function. The idea behind
the proposed novel framework is to find adversarial direc-
tions that can lead to misclassifications [63], [64]. Adding
or subtracting subtle computed noises in the same direction
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of the gradient descent of the cost function of the pre-trained
model based on LSTM, allows it to maximize the cost func-
tion, instead of minimizing it. By doing this, we are able to
assign modified electricity consumption data with minimal
changes to the incorrect labels with high confidence from the
machine learning models. The reason to exploit the gradient
descent to generate oblivious samples is that without a good
gradient, the loss function cannot be successfully optimized.
Mathematically speaking, we wish to solve the following
optimization problem:

objective max ¢c(M, x, y) 1
y#P 2
subjecttox = x + 8y 3)
3 < y.lx| 4)

In the above equations, let M be our pretrained model,
x represents electricity usage of users for a given time interval
and y represents the corresponding ground-truth output label
(occupied or unoccupied) of each x value. C(M,X,y) is the
cost function used to train occupancy attack models and y
is the level of perturbation. X is the manipulated smart meter
data which is crafted by our proposed AMLODA model at
the given time and y is the prediction of the model given x.

The aim is to maximize error in (1) and if our proposed
solution succeeds, the equation in (2) must be true. In addi-
tion dx in (3) denotes perturbation added or subtracted to
the original power consumption data. The magnitude of this
perturbation should be equal or less than y as constrained
in (4). 6x is computed as follows:

Sx = € sign(Vyc(M, x,y)) @)

where V, c(M,x,y)) is the gradient descent of the cost func-
tion. We compute the gradient of all smart meter data at each
time slot for the finding calculated perturbation. The V oper-
ator is a derivative of a function according to its parameters
and € is the penetration coefficient. Sign(V,c(M,x,y)) is the
direction of minimizing of the cost function of the pretrained
model and € controls the penetration magnitude.

To visualize, we draw a scenario in Figure 3, with squares
representing occupancy of a home and circles representing
the vacancy of a home at a certain time interval. An occu-
pancy attack model plots the data in feature space for
class prediction. For data that is close to the boundary,
the decision is predicted correctly by the attack model as
unoccupied. After adding subtle perturbation by gradient
descent, the same model predicts the same data incorrectly
as occupied.

It should be noted that a large perturbation to the data could
lead to substantial changes in load patterns and hence it can
have a detrimental impact on DRM’s performance. Hence,
finding the optimum minor perturbation is of vital impor-
tance to carry out privacy-preservation of users’ information
without compromising the operations of the utility. Therefore,
we set the epsilon to very small numbers. As it can be seen
from Figure 4, when we set the epsilon value to 0.0001,
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FIGURE 3. AMLODA counter attack scenario.

Time Interval Original Electricity Perturbed Electricity
Consumption Consumption
'02:21:00' 6.578530 6.331495
'02:21:01' 110.676003 110.923035
'02:21:02' 4.440550 4.193515
'02:21:03' 31.981501 32.228535
'02:21:04' 4.332490 4.085455
'02:21:05' 0.000000 0.247035

FIGURE 4. Energy usage of a house for secondly time interval with
epsilon value 0.0001.

the original data is corrupted slightly, which is statistically
insignificant. Therefore, with its negligible impact, DRM
services are not disrupted. It should also be pointed out that
the AMLODA model will not work for a home, that is not
being used for a long time such as a vacation home.

Note: Before the proposed AMLODA modeling algorithm
runs, a pre-trained model needs to be built with historical
consumption metering data and we can assume that a trusted
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third party will be responsible for this task. This third party
will be no longer needed after the model is implemented.

In order to develop the pre-train model, the trusted
third party will need to have the consumption data and
ground-truth information of some users for several days. For
this, the trusted third party can select a set of customers
with different load profiles based on incentivized voluntary
agreements. Each individual profile can be categorized based
on energy consumption and used to create a diverse set of
systematic load profiles.

To collect ground-truth occupancy information of par-
ticipants, the trusted third party can install additional
devices [65] at the participants’ households with their
permission. This will help to build realistic generic pro-
file of customers of different behavioral patterns. However,
due to the additional costs and efforts of planting these
additional devices in residential homes, unsupervised learn-
ing approaches can be used as well to label the dataset as
occupied or unoccupied at each time interval [66]. Using
consumption data and ground-truth information of the par-
ticipants, pre-train models can be tailored to any related load
profile groups and provided to the utility companies. When
a new user signs up to use the AMLODA model for privacy
preservation, the utility company matches the user to a spe-
cific profile and pre-train model based on their responses to
a set of screening questions and then, the proposed algorithm
retrieves the pre-train model of this profile for this user. Once
the AMLODA model is in use, the system can adapt more
closely to the specific usage pattern of the particular user. This
process is shown step by step in Figure 5.

The trusted third party can introduce the AMLODA
model as new business model and provide the service to
the utility companies for commercial purposes. Also, our
privacy-friendly solution is both realistic logistically and eco-
nomically feasible and therefore smart metering manufac-
turers can consider it as an investment tool to strengthen
consumer privacy and trust.

Load Profile Database

Creates abstract load profiles and

& pre-train models

it

Trusted Third Party

Group 1 pre-train model 1

Group 2 re-train model 2

pre-train model n

Group n

signs up to use
AMLODA model
8 -
[
Utility Comg_a_ny A New User
%%‘ Matches the user to a specific
profile

FIGURE 5. Collecting ground-truth occupancy information and developing pre-train models

scenario.
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Note: For the sake of simplicity, we use publicly available
dataset which contains both residential electricity usage and
ground truth occupancy information. The detail information
regarding the dataset is provided in Section V-A.

The AMLODA model is designed in a way that conceals
instantaneous energy usage, not a long term period. Due
to this property of the system, it does not interfere with
the utilization of the original characteristic patterns found
in the consumers’ power usage for various beneficial pur-
poses. For example, electricity theft can be detected by iden-
tifying abnormal changes in the long-term consumption of
electricity.

It is important to note that this attack scenario using a
machine learning model can be regarded as a black-box in
real-world settings. In this black-box scenario, we have zero
knowledge about a target model’s internal workings. How-
ever, for the sake of simplicity, we implement our proposed
technique under the white-box assumption, where we obtain
optimum perturbation by accessing the target model in order
to compute gradients. Although the black-box assumptions
can be perceived as more realistic for this work, it should
not be forgotten that previous works proved that adversarial
samples have transferability property [67]-[69]. This means
that an adversarial example generated for one occupancy
detection model is more likely to be misclassified by another
machine learning model as well, because when different
machine learning models are trained with the same data
distribution dataset, they learn similar decision boundaries.
Therefore, in this research study, we have shown a successful
generation of less privacy-related samples using data pertur-
bation techniques under the white-box assumption. We leave
testing adversarial examples under the black-box settings for
future work. We hope that our method establishes a strong
baseline for further research.

Preserving of total energy consumption of users: When
it comes to not compromising users’ billing systems’ func-
tionality, we use the calculated noise to raise and lower the
consumption energy identically every two seconds so that the
positive and negative manipulation cancels each other out.
Thus, there is no net change in users’ power consumption for
the two second period. Also, since in reality energy consump-
tion of a household cannot be negative, when we implement
the model, we take this into consideration. This strategy is
implemented in the following manner:

p. - =P —n, ifP >n
e .
=P, otherwise;
A =P +n, ifP>mn
Py .
= P11, otherwise;

In the above equation, let Py, Ist denote actual and per-
turbed power consumption data of a user respectively at
any time slot t. ‘n;’ represents calculated noise at time t.
Calculated noise are estimated every other time. If actual
consumption value is higher than the calculated noise at
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Algorithm 1: Pseudocode of Our Proposed Approach
in Order to Produce Oblivious Data

1 Input:

2 - Train data pair {x;, y;} where x; = Smart meter data
at each time slot and ¥; = Corresponding
ground-truth label

3 - Training iteration number N;;,-, Number of
manipulated examples N,4,, Number of training
samples Nygin

4 - Test data pair {x;, y;}

5 Function generate oblivious data

6 for iteration =0, ..., Ny,
7 Update all parameters based on gradient
descent algorithm
end
for iteration =0, ..., Ny,
10 for iteration =0, ..., Nyain
1 Oy, = € x sign(Vyl(M, x;, y;))
# Calculate penetration for each time slot
if x; > &y,
12 )ACi =X — (le.;
13 Xip1 = Xip1 + 8xs
14 else
15 | continue;
16 end
17 # Generating oblivious samples to avoid
detection
18 end
19 end
20 Output: X # Generating oblivious samples for
each time slot to avoid detection

21 end

time t, consumption value is subtracted from the calculated
noise, otherwise, no change takes place. The same pertur-
bation value is added to the next consumption value at
t+1. This process is repeated every two seconds. Therefore,
the proposed scheme always guarantees that the total energy
usage that the utility companies receive for the their cus-
tomers will be equivalent to the actual usage by customers.
In Figure 6, we can see that the total energy consumption
remains unchanged for a one day period with our proposed
scheme.

For convenience, the outline of the this algorithm is given
in Algorithm 1.

Design of a Privacy-Preserving Billing Policy: Energy
companies apply various tariff policies for their customer
service such as time-of-use pricing, variable peak pricing,
peak-load pricing and so on. Our propose algorithm sup-
ports different smart metering tariffs while providing maxi-
mum privacy. In this study, we investigate how the proposed
scheme meets the requirements of time-of-use (TOU) and the
peak-load pricing (PLP) tariff structures which are two most
commonly used tariff plans by service providers.
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FIGURE 6. Comparison between original total energy consumption with
perturbed one from our dataset with epsilon value 0.1.

1-) TOU Pricing Tariff: This electricity consumption rate
plan allows energy providers to charge their customers for
amount of energy based upon time of energy usage. In this
policy, time is split into the frames and each frame has dif-
ferent price rate. The customer’s electricity cost is calculated
with TOU as follows:

Assume that the day is divided into Ehe n different rates,
clenoted by a vector form of T. Then T = (¢1,12, ..., ty).
M represents the actual total consumption measurement at
each time frame, where M = (m1, mo, ..., my,). With knowl-
edge of T and M, the utility company can calculate the result
of the price function as:

n
P(M,i): Zl‘i*mi
i=1

With AMLODA model, let M be the perturbed version of
the electricity consumption that is generated by our proposed

algorithm, where M= (ﬁu S, .., ﬁzn).

if T=2i then PM,T)=PWM,T)

because M =M Vi

In the above equation, i is an arbitrary number. If service
provider selects time intervals for the pricing rate as a multi-
ple of two seconds, the proposed model does not compromise
the correctness of users’ billing as shown mathematically by
the above equation.

2-) PLP Tariff: According to this tariff, price mechanism
is arranged based on either the time of the day or customers’
electricity consumptions. PLP tariff based on the time of the
day is calculated the same way as TOU tariff cost estima-
tion explained above. In this case, customers pay more for
electricity consumed during peak times compared to off-peak
times. As is proven above, our proposed method supports
a time-based tariff. On the other hand, PLP tariff can be
implemented based on consumers’ energy usage. In such
cases, the consumption usages are split into certain intervals
with price differentiations. Electricity usage during high load
can be penalized more than electricity consumption at low
load. Therefore, this tariff is used with the aim of protecting
peak demand. Price function at time slot t is calculated in the
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following equation.

mxpi(t) ifm <k

mxpo(t) ifky <m<k
p(m, 1) =

m*py(t) ifk, <m

where ki, kp,.. k, are different threshold values that is
defined by utilities whereas p1, pa, .. p, are different price
rates of the interval the consumption falls into. The total
cost for the consumer is calculated for the billing period as
follows:

n
P(M,T) =Y pi(mj, )
i=1
if T=2 then PM,T)=PWM,T)
because p;(m;, t;) = pi(m;, ;) Vi

As a consequence, we verify that the sum of electric-
ity cost of the consumer with actual consumption is equal
to total cost for the consumer with perturbed consumption
generated using AMLODA model based on TOU and PLP
tariff designs. However, substantial changes in load patterns
can cause a negative effect on demand management system
such as adjusting demand of users’ consumption by reducing
their demands during peak hour times. The main goal of
this research is to propose a mechanism to minimize this
trade-off between privacy protection and data-utility. While
our novel framework provides an efficient level of privacy
with infinitesimal perturbation amount, a more sophisticated
analysis is needed for the evaluation and optimization load
control and perturbation amount. It remains an important
topic for future work.

B. GAUSSIAN NOISE PERTURBATION

To prevent inadvertent disclosure of users’ private informa-
tion, the smart meter readings have also been modified based
on Gaussian noise perturbation and we evaluate its perfor-
mance with the proposed AMLODA model’s. The majority of
datasets, including electricity consumption data, have Gaus-
sian distribution by nature. For example, an electricity load
profile’s curves, peak points, and the position of the center
peak can be calculated with a small error margin using Gaus-
sian function [70]. Therefore, the goal of such noise interfer-
ence on the individual metering data is to obfuscate the power
consumption patterns in order to avoid information leakages.
The Gaussian function has the following expression:

_a=w?
e 202

i ——
V2ro?

where o2 is the variance of the data distribution and u is
the mean of the data distribution. We set a mean of zero in
our implementation so that the total load remains unchanged.
Therefore, new perturbed samples are calculated as follows:

X=x+ Ax 6)
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Ax ~ N(0, o) (7

In the above equations, x represents actual electricity con-
sumption for a given time interval and Ax represents the mag-
nitude of perturbation under the N (O, 0?) data distribution.

Technically speaking, the goal of this approach is to
enforce the posterior distribution p(y|x) in order to pursue
N(x, 02) instead of N (x, 0'%). The assessment of privacy loss
details based on different variance values is presented in the
following section.

V. EVALUATION

A. DATASET

ETH Zurich provides Electricity Consumption and Occu-
pancy (ECO) dataset to the general community in an effort to
encourage researchers to contribute in improvement of grid
participants’ information security [71]. The dataset contains
both residential electricity usage and ground truth occupancy
information. Data was collected from June 2012 to Jan-
uary 2013 over a period of more than 6 months by observation
of five distinct homes in Switzerland.

Data is sampled every second within a day from
00:00:00 to 23:59:59 using off-the-shelf digital electricity
meters deployed in the individual houses. This dataset con-
tains 5 different files and each file holds the average power
consumption (in watts). This smart metering data is divided
into two periods which are summer ( July to September 12)
and winter ( November 2012 to January 2013).

B. MODEL IMPLEMENTATION

To verify the effectiveness of an occupancy detection attack,
we implement a machine learning model based on LSTM in
Python programming language using Pytorch library. For the
implementation of the model, we split the dataset into two
parts as training and test. We use 80% of the dataset to train
the model and the remaining is reserved for evaluation of the
model’s performance. Figure 7 shows the fine-tuned system
parameters for the experiment.

System Parameters Value

Hidden Layer Size 2

Each Hidden Layer’s Node Count 150

Learning Rate 0.001

Epoch Number 200

Loss Function Cross Entropy
Optimizer Adam Optimizer

FIGURE 7. Experimental parameters for occupancy detection attacks.

Briefly speaking, the LSTM model consists of two hidden
layers. After each hidden layer, Rectier Liner Unit (ReLU)
functions are applied whereas, after the output layer, the sig-
moid function is applied to ensure the non-linearity of the
model which is required to solve complex problems.

It is important to note that the dataset includes some
missing values. Therefore, in order to eliminate the neg-
ative impact of the missing values on the smart metering
time-series data, we remove them in the pre-processing phase.
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In addition, in our implementation, only power consumption
data is considered as a feature and this feature is normalized
between 0 and 1 during the pre-processing phase in order to
have all features at the same scale. In this way, none of the
electricity patterns becomes dominant.

C. OCCUPANCY DETECTION ATTACK EVALUATION
To show privacy concerns with highly granular smart meter
data and to quantify the amount of information leaked, we uti-
lize machine learning techniques. A massive energy profile
data collected from real homes are analyzed to evaluate the
viability of an occupancy detection attack by implementing
an LSTM model. We evaluate the performance of the LSTM
model by considering the following metrics:

Accuracy: The number of correct predictions over the total
predictions of the model [72].

A TP + TN ©
ccuracy =
Y= TPYTIN + FP+FN

Precision: The number of true predictions of positive sam-
ples over the total number of positive samples. [73].

. P
Precision = ——— &)
TP 4 FP

Recall: The proportion that is correctly predicted as posi-
tive samples within all positive samples [74].
TP
Recall = —— (10)
TP + FN

F1 score: The harmonic mean of precision and recall [73].

2 % Precision * Recall
F1 score = — (11
Precision + Recall

False Positive Rate (FPR): The ratio of the number of neg-
ative labeled samples incorrectly predicted as positive [75].

_FP
~ FP+ 1IN

False Negative Rate (FNR): The proportion of positive

samples incorrectly predicted as negative [76].
FN
~ FN+TP

Table 1 demonstrates how different households are prone
to privacy threats. The occupancy of five homes is detected
with high accuracy using the LSTM attack model. According
to our findings, home-4 and home-5 are the most vulnerable
because of the availability of detailed smart metering data.
On the other hand, home-1’s energy consumption profile is
more resilient on revealing the behavior of its occupants but
still vulnerable to the extraction of private information with
92% accuracy during the winter period and 93% during the
summer period.

In addition, as it can be seen in Table 1, the value of FPR
is generally higher than the value of FNR. This is because
the ground truth label data collected for these houses are
imbalanced and as a result, the occupancy attack model’s
prediction is biased to the majority class presented by the

FPR (12)

FNR (13)
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TABLE 1. Performance of the occupancy detection attack.

Winter

Summer

Accuracy  Precision Recall F1 Score FPR

Homel 92.42 93.04 97.15 95.05 21.73

Home2 94.01 92.92 94.50 96.91 11.98

FNR

2.85

0.65

Accuracy  Precision Recall F1 Score FPR FNR

93.41 94.16 98.13 96.10 29.45 1.87

98.79 99.61 98.64 99.12 0.87 1.36

Home3 | 96.11 96.98 98.53 97.75 18.19 147 N/A N/A N/A N/A N/A N/A
Home4 | 99.64 99.90 99.71 99.81 141 029 98.97 99.15 99.73 99.44 9.67 027
Homes | 97.59 98.51 99.15 98.62 12.49 0.85 99.69 99.80 99.87 99.84 2.84 0.13
TABLE 2. Comparison the performance of the occupancy detection attacks based on different machine learning models.
Winter Summer
Our Our
5] Results 5] Results
Home SVM KNN GMM HMM LSTM SVM KNN GMM HMM LSTM
1 84 81 79 87 92 83 80 78 83 93
2 94 91 88 92 94 92 89 76 90 98
3 78 76 59 71 96 83 79 70 82 N/A
4 92 90 70 84 99 91 88 70 87 98
5 85 79 63 74 97 20 84 59 79 99

data. It should be pointed out that house-3 data for the summer
period is not made publicly available. Therefore, we could not
analyze the data for house-3 during that time interval.

We also compare our model’s effectiveness with another
research that used the same dataset. Kleiminger et al. [5]
used the ECO dataset to addres privacy issues by carrying
out privacy threat analysis using machine learning mod-
els based on a Support Vector Machine (SVM) classifier,
a K-Nearest Neighbor (KNN) classifier, a Gaussian Mixture
Model (GMM) and a Hidden Markov Model (HMM). Table 2
shows that in comparison with their models, the occupancy
detection attack is more successful with our proposed LSTM
model. The main reason for this is that the LSTM model is
better at adapting to the non-linear surface of the feature space
and therefore, it can capture more meaningful information
regarding the relationship between high granularity smart
metering data and occupancy.

The drawbacks of the other models are explained as
follows. With SVM, each time stamp is considered as an
individual optimization problem. However, time-series smart
metering data has a long dependency, which cannot be rec-
ognized well by SVM. The KNN gives a good result with a
basic recognition problem but does not work well with com-
plicated large datasets and is not robust to noise. Especially,
KNN cannot capture sudden changes in electric power sup-
ply well, which is a good indicator of occupancy detection.
GMM is more like a probability distribution function than
a model. It can predict the occupancy of a house based on
the prior distribution of electricity consumption. The main
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disadvantage of GMM is that it cannot consider the prior
distribution’s dependency. Although HMM can consider his-
torical data relying on some strong assumptions, making
external assumptions are not trivial, especially over a large
and complex dataset. On the other hand, LSTM can acquire
automatically usable information efficiently for occupancy
detection. Based on the discussion above, it is safe to con-
clude that our approach is superior for occupancy attacks
where users’ private information can be inferred. To address
the challenge of hiding privacy revealed by granular smart
metering data, we present the AMLODA model. The model’s
performance presents in the next subsection.

D. AMLODA COUNTER ATTACK MODEL PERFORMANCE
As previously noted, the AMLODA model is designed to
deliberately change meter readings in a way that preserves
billing integrity but at the same time provides assurance that
users’ data is protected against occupancy type of privacy
attacks. In order to evaluate the effectiveness of our proposed
model in protecting against the occupancy attack, we initially
observe the impact of various noise coefficients.

As noted in Figure 8, we first set the epsilon value to zero.
It represents the original data without noise and associated
manipulation. Then, we perturb the data with small distinct
epsilon values and monitor the extent to which the crafted
samples impair the performance of the occupancy attack for
five house during summer and winter periods. As the epsilon
value is increased, the accuracy of the LSTM model used
in the occupancy attack degrades until it stabilizes at an
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FIGURE 8. Accuracy vs. penetration coefficient for five houses during winter and summer periods.

equilibrium. This is due to the model undergoing training
to the extent that it can recognize the occupancy detection
patterns. As it is seen in Figure 8, once the equilibrium point
is reached, increasing the epsilon value might cause arbitrary
fluctuations on the accuracy. [77].

However, the real electricity consumption dataset we use is
highly imbalanced. Even though, the most widely used model
evaluation metric is accuracy, this metric can be mislead-
ing when working with an imbalanced dataset [75]. In such
cases, alternative evaluation metrics should be taken into
account along with accuracy. Therefore, we have added alter-
native evaluation metrics, which are Matthews Correlation
Coefficient (MCC) and area under the receiver operating
characteristic (ROC) curve (AUC), for assessing the effec-
tiveness of the proposed AMLODA model. These metrics
are reliable and robust parameters in the presence of class
imbalance so that they are commonly used for evaluating the
classification of a highly imbalanced datasets [78]. MCC is
used as the measure of the binary classifier’s performance,
in the range between —1 to 1 [79]. 1 represents perfect
prediction while —1 indicates totally wrong prediction and
0 means random prediction. MCC values that converge to
0 are better for masking users’ private information because
that is no better than random prediction. On the other hand,
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ROC curve is a performance metric for binary classification
problems at different threshold values [80]. The AUC value
lies between O to 1, similar to MCC, where O indicates
the absolutely worst prediction, the mid point 0.5 denotes
random prediction and the highest value 1 signifies perfect
prediction. As seen in Figure 9, the AMLODA model suc-
cessfully manages to mask users’ privacy most of the time
with epsilon set to 0.0001, which is an insignificant change
over actual consumption pattern. However, this number fails
to protect users’ information adequately for Home-3 during
the winter period. If we increase the epsilon value up to
0.01, the MCC value converges to zero indicating that the
occupancy attack performs similarly to random guessing.
In addition, we measure AUC values of houses during the
summer and winter periods based on different epsilon values
in Table 3 and in Table 4. The result of AUC values confirms
that our proposed method leads the occupancy attack model
to be close to a random guess model most of the time, with
epsilon value set to 0.0001.

As seen in Figure 10, infinitesimally small epsilon val-
ues, like 0.0001, in Figure (10a) slightly perturb the original
data. This difference is not even visible on the figure due
to the very negligible change. Such subtle changes do not
affect the demand response efforts for real-time optimization,
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FIGURE 9. Matthews correlation coefficient vs. penetration coefficient for five houses during winter and summer periods.
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FIGURE 10. Different options for masking occupancy under the AMLODA technique.

which tend to present the best profitable service. When we
set the epsilon value to 0.001 in Figure (10b), the differ-
ence is more prominent. Also, when we set the epsilon to
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a relatively high value to observe its’ affect, we noticed,
as seen in the Figure (10d), the noise changes the actual
energy consumption data to a great extent. This can lead
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TABLE 3. Area under the curve vs. penetration coefficient for five houses during summer periods.

AUC
Epsilon Homel Home2 Home4 Home5
0 0.84 0.99 0.95 0.99
0.000001 0.84 0.96 0.94 0.98
0.00001 0.73 0.71 0.85 0.91
0.0001 0.48 0.54 0.51 0.57
0.001 0.47 0.48 0.5 0.49
0.01 0.47 0.45 0.5 0.48
0.05 0.46 0.45 0.5 0.47
0.1 0.46 0.46 0.5 0.48
TABLE 4. Area under the curve vs. penetration coefficient for five houses during winter periods.
AUC
Epsilon Homel Home2 Home3 Home4 Home5
0 0.88 0.91 0.90 0.99 0.93
0.000001 0.87 0.90 0.90 0.99 0.93
0.00001 0.73 0.69 0.90 0.92 0.80
0.0001 0.61 0.60 0.85 0.59 0.54
0.001 0.54 0.52 0.68 0.52 0.50
0.01 0.48 0.49 0.47 0.51 0.48
0.05 0.48 0.49 0.47 0.51 0.46
0.1 0.48 0.49 0.47 0.50 0.46

to a compromise of the operational efficiency of the smart
grid environment. In this experiment, we sometimes set
epsilon values high intentionally to demonstrate maximum
damage to occupancy detection attack model. There is a
trade-off between efficiency and privacy. Some users may
deem privacy more important than energy efficiency and vice
versa.

To provide the control at the users’ hands, the level of
noise or influence on the perturbation can be regulated by
the customers. To accomplish this, the customer needs to
visit the service provider with a valid identification. To be
truly secure, the customer and the utility company’s first
interaction needs to happen out-of-band with a face-to face
meeting. After identity authentication, the customer needs to
fill out an application form to request use of our proposed
model for privacy protection and selects the amount of pri-
vacy level. Whenever the users need to update this preference,
they will need to contact the utility company in the same
way. This can be added to the customer’s contract terms and
the service provider must follow these rules. Public Utility
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Commissions (PUCs) can protect consumers from unethical
behavior of utility companies if consumers file a complaint
regarding any abuse. PUC has already similar responsibilities
for protection of users’ rights [81].

E. COMPARISON OF AMLODA MODEL's PERFORMANCE
WITH GAUSSIAN PERTURBATION

To analyze AMLODA model’s performance, we carry out
the same experimental approach under the Gaussian noise
assumption and compare the experimental results. Home-4
and home-5 are the most vulnerable against occupancy detec-
tion attack based on our findings in Table 1. For this reason,
we select home-4 and home-5 as case studies for comparison
analysis of both perturbation techniques.

Table 5, Table 6, Table 7 and Table 8 show this comparison
in terms of accuracy, MCC and AUC. We see that both
techniques aid in protecting users’ privacy to some extent
with a small change in power consumption data, however,
larger perturbation is required to significantly compromise
the performance of the attack models until an equilibrium
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TABLE 5. Comparison of performances between AMLODA and Gaussian techniques with different level of perturbations on home-4 during summer

period.
Home4
Gaussian Technique AMLODA Model
Variance  Accuracy MCC AUC Epsilon Accuracy MCC AUC
0.0 98.96 0.93 0.95 0 98.96 0.93 0.95
0.1 97.53 0.87 0.93 106 98.83 0.91 0.94
0.2 97.64 0.82 0.91 10° 95.01 0.67 0.85
0.3 91.45 0.80 0.90 104 91.78 0.04 0.51
0.5 91.42 0.75 0.88 103 91.43 -0.01 0.5
1.0 91.38 0.67 0.85 102 91.38 -0.01 05
5.0 91.38 0.67 0.85 5x10-2 91.39 -0.01 0.5
7.5 91.39 0.67 0.85 101 91.36 -0.01 0.5

TABLE 6. Comparison of performances between AMLODA and Gaussian techniques with different level of perturbations on home-4 during winter period.

Home4
Gaussian Technique AMLODA Model
Variance  Accuracy mMcCC AUC Epsilon Accuracy MCC AUC
0.0 99.63 0.97 0.99 0 99.63 0.97 0.99
0.1 98.48 0.92 0.96 10 99.53 0.96 0.99
0.2 96.15 0.88 0.92 105 96.18 0.73 0.92
0.3 92.34 0.85 0.90 104 86.68 0.15 0.59
0.5 92.31 0.79 0.87 103 86.12 0.04 0.52
1.0 92.34 0.76 0.85 102 81.72 0.02 0.51
5.0 92.33 0.65 0.80 5x1072 80.75 0.02 0.51
7.5 92.35 0.65 0.80 101 80.44 0.01 0.50

point can be reached. We also notice that the occupancy of
the households is harder to detect with AMLODA model
compared to the Gaussian model evident by more signifi-
cant MCC and AUC value deteriorations. This experiment
shows that even though the real data can be manipulated
with large Gaussian noise, this solution fails to protect users
privacy effectively for home-4 during summer and winter
and home-5 during summer. We still observe occupancy
prediction of the attack model that it has AUC of 85%
and 80% for home-4 during summer and winter periods
respectively and it has AUC of 76% for home-5 during
summer period. On the other hand, AMLODA model effec-
tively conceals users’ private information in such a way
that an attacker cannot obtain any meaningful information
from this perturbed data. As shown in Tables 5 through 8§,
AUC values of the attack model are close to 50%, which
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means that the model is close to random guessing, with the
small perturbation amount for home-4 and home-5 during all
season.

In Table 5, Table 6, Table 7 and Table 8, it is important to
note the differences in the used noises and their impact on the
attack’s model performance in terms of accuracy, MCC and
AUC. In order to analyze the impact of noise better, we plot
Figure (11a). In Figure (11a), the green line corresponds to
the perturbed electricity consumption under the AMLODA
model with 0.0001 epsilon value for noise while the orange
line corresponds to perturbed electricity consumption under
the Gaussian noise with 7.5 variance value. The reason we
selected such value pair is because they have similar success
rate for home-5 over the winter period as observed in Table 8.
Although same results are achieved with both approaches,
the electricity changes are more negligible in AMLODA
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TABLE 7. Comparison of performances between AMLODA and Gaussian techniques with different level of perturbations on home-5 during summer
period.

Home5
Gaussian Technique AMLODA Model
Variance  Accuracy MCC AUC Epsilon Accuracy MCC AUC
0.0 99.69 0.97 0.99 0 99.69 0.97 0.99
0.1 99.20 0.95 0.98 10 99.62 0.96 0.98
0.2 97.60 0.92 0.96 10> 97.16 0.78 0.91
0.3 88.53 0.80 0.88 10 90.05 0.09 0.57
0.5 87.96 0.74 0.84 103 88.49 -0.02 0.49
1.0 87.75 0.67 0.80 1072 83.71 -0.02 0.48
5.0 87.77 0.61 0.75 5x102 76.98 -0.03 0.47
7.5 87.93 0.61 0.76 101 73.97 -0.03 0.48

TABLE 8. Comparison of performances between AMLODA and Gaussian techniques with different level of perturbations on home-5 during winter period.

Home5
Gaussian Technique AMLODA Model
Variance Accuracy MCC AUC Epsilon Accuracy MCC AUC
0.0 97.59 0.89 0.93 0 97.59 0.89 0.93
0.1 96.20 0.83 0.90 10 97.30 0.88 0.93
0.2 93.16 0.76 0.86 105 92.19 0.65 0.80
0.3 90.27 0.69 0.82 104 72.68 0.06 0.54
0.5 85.57 0.52 0.76 103 71.46 0.01 0.50
1.0 81.08 0.32 0.67 102 60.94 -0.02 0.48
5.0 73.29 0.08 0.58 5x102 60.47 -0.05 0.46
7.5 72.89 0.06 0.54 101 59.52 -0.05 0.46
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FIGURE 11. Different false data injections by the AMLODA model and the Gaussian noise technique.

model. As it is seen on the figure (11a), with AMLODA effects on the actual consumption is more apparent than
model, the original electricity consumption and perturbed AMLODA. In addition, we plot Figure 12 that demonstrates
electricity consumption plot lines fall on top of each other perturbed energy consumption of home-5 (winter) for sec-
because of similarity. However, the Gaussian perturbation’s ondly time interval by AMLODA and Gaussian techniques
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We demonstrated with empirical experiments that our novel
framework protects users’ privacy more efficiently without
reducing the performance of SG operations and satisfy exist-
ing privacy-related challenges. Consequently, the essential

Time Interval Original Electricity  Perturbed Electricity  Perturbed Electricity
C ion Ci ion with Consumption with
AMLODA Gaussian
'01:30:55' 110.676003 110.42897 100.785126
'01:30:56' 31.981501 32.228535 25.752052
'01:30:57' 6.578530 6.331495 0.000000
'01:30:58' 112.800003 113.047035 105.987869
'01:30:59' 4.443320 4.196285 1.470129
'01:31:00" 110.676003 110.923035 120.042328

FIGURE 12. Comparison of perturbed energy consumptions of home-5
(winter) for secondly time interval with epsilon value 0.0001 and variance
value 7.5.

with abovementioned noise injections in order to show these
differences.

Also, Figure (11b) demonstrates that increased perturba-
tion level with AMLODA model resulted in lower model
evaluation metrics for the occupancy attack model, thus
boosting privacy protection capabilities further. Even though
it has higher success in privacy preservation, AMLODA has
closer proximity to the actual data. Thus, this experiment
demonstrates that the proposed AMLODA model achieve
higher success with varying degrees of masking high fre-
quency metering data without jeopardizing workings of the
demand response systems in the smart grid environment.
In addition, we can consider the AMLODA model as a
one-way function to produce calculated noise. Therefore,
attacker cannot feasibly recover actual consumption of users
from perturbed consumption. On the other hand, if the sup-
plier knows the distribution of actual consumption of a user,
(s)he can compute the noise distribution and eventually actual
measurements because Gaussian based noise data is corre-
lated to the actual data.

VI. CONCLUSION
Commentators have defined privacy in different ways. Some
of these definitions are ‘Essential to democratic govern-
ment’, ‘Heart of our liberty’, ‘The beginning of all freedom’
[82]. Although privacy has vital importance for freedom
and democracy, promising and futuristic new technologies
like SG suffer from privacy leakage. Therefore, this paper
presents a valid countermeasure named AMLODA model
to accomplish the enhancement of user’s privacy. The pro-
posed model’s aim is to maximize the privacy protection
by finding the optimum rescheduling of smart metering
consumption data. In addition, we offer different required
levels of privacy by customizing users’ preferences. When
households enjoy a very high degree of privacy with the
proposed customer-oriented model, the system maintains the
correctness of payments. Since the involvement of any trusted
third party or any additional hardware devices is not required,
it makes the adaption of the proposed model practical.
Furthermore, we analyze the impact of the noise coefficient
found from both AMLODA model and a Gaussian model.
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security requirements of dwellers are fulfilled.
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