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ABSTRACT Target tracking has been a research hotspot in computer vision, and the correlation filtered
target tracking algorithm has the benefits of low computational complexity and fast speed. Still, the tracking
effect is not good when dealing with complicated circumstances. This paper proposes a multi-feature
fusion target repositioning tracking algorithm for the target tracking problem in complex environments.
First, a multi-feature weighted fusion algorithm is presented. Since each feature has different advantages
in different environments, we combine HOG, CN, ULBP, and image edge features and use the weighted
coefficient method to adaptively fuse each feature component. Second, to address the target occlusion
problem, an occlusion judgment mechanism is introduced, and the target is re-located by fusion weighted
filtering. Third, the scale pool is established, and the scale filter is trained by the classification search method.
Finally, an adaptive model update strategy is proposed. We conduct comparison experiments with current
mainstream algorithms on the publicly available datasets OTB-2015, VOT2018, UAV123, and TColor-128,
respectively, and the experimental results show that our proposed algorithm is more robust in complex

scenarios.

INDEX TERMS Target tracking, multi-feature fusion, target repositioning, model update.

I. INTRODUCTION

Studies of tracking algorithms based on literature [1]-[4]
have shown that target tracking has always held an important
place in the field of computer vision. The tracking process
estimates the tracking target’s position in the continuous
video image sequence and determines its motion direction
and trajectory information. However, there are often various
complex factors in video scenes, such as changes in target’s
scale and shape, changes in light intensity, and the target is
being obscured, etc., which lead to significant challenges in
the practical application of the target tracking.

In the past few years, a breakthrough in target tracking
has been achieved, mainly due to the introduction of filtering
related to the communications domain into target tracking.
Based on correlation filtering, some tracking algorithms have
also been developed, which can reach hundreds of frames
per second and can be widely used in real-time tracking
systems.
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In 2010, Bolme et al. applied the correlation filter to
target tracking for the first time and proposed the Mini-
mum Output Sum of Squared Error (MOSSE) correlation
filter for target tracking, which converts the time-domain
computation to the frequency domain computation and can
achieve breakneck tracking speed [5]. 2012, based on the
MOSSE algorithm, Henriques ef al. introduced the concept
of cyclic matrix and proposed the Cyclic Structural Ker-
nel (CSK) algorithm, which solved the problem of sample
redundancy caused by sparse sampling in the traditional algo-
rithm [6]. Since then, cyclic matrix and kernel techniques
have shone in the field of target tracking of correlation fil-
tering. In 2014, Henriques et al. proposed Kernelized Corre-
lation Filtering (KCF) algorithm using HOG features instead
of grayscale features used in the original CSK algorithm to
convert single-channel features to multiple channels [7]. Still,
the KCF algorithm is less robust in the face of occlusion
and scale variation [8]. In the same year, Danelljan ef al. pro-
posed the CN algorithm by replacing grayscale features with
color name features based on the CSK algorithm. Simulta-
neously, to improve the algorithm’s running speed, they used
PCA dimensionality reduction to reduce the 11-dimensional
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features to 2-dimensional ones and achieved better tracking
results. However, the tracking robustness is low for cases
where the target color is similar to the background color [9].
For enabling the tracker to adapt to changes in the track-
ing scene, in 2020, Yuan et al. proposed the TRBACF [10]
algorithm based on BACF [11] to enhance the tracking’s
robustness and accuracy. To address the problem of scale
variation during tracking, Danelljan et al. 2014 used a scale
pooling strategy to estimate the target scale and proposed
a scale pyramid-based prediction model, the Discrimina-
tive Scale Space Tracking (DSST) algorithm [12]. However,
the DSST algorithm’s scale estimation is inaccurate when
the target scale is highly variable, and the algorithm requires
high accuracy of the locator, resulting in low generalizabil-
ity. For the tracking failure brought by a single feature,
in 2014, Li et al. proposed fusing Gray features, HOG fea-
tures, and CN features in the SAMF algorithm from the
feature fusion aspect [13]. However, due to its comprehensive
search strategy, the SAMF algorithm is computationally inef-
ficient. In 2016 Bertinetto ef al. proposed the Staple algorithm
based on the DSST algorithm, which combines HOG features
with global color histograms [14]. However, the algorithm
is poorly useful for tracking complex environments such as
occlusion. In 2019, Yuan et al. fused HOG, CN, and Gray
features to propose the MFFT algorithm, which achieved a
good result [15].

To improve the algorithm’s tracking robustness when it
encounters complex environments during tracking, we pro-
pose a multi-feature fusion target repositioning tracking algo-
rithm. The contribution of this algorithm is described below:

A. Fusing HOG, CN, ULBP, and EDGE features to obtain

new features for various complex environments.

B. Using fusion-weighted filtering for target re-localiza-

tion when the target is occluded.

C. Constructing a scale pool to predict the target scale

using classification search.

D. Propose an adaptive model update strategy.

Il. KERNELIZED CORRELATION FILTER

A Correlation filtering algorithm is mainly used to find a
linear regression equation f (x;) = w’ x; through the training
sample set to calculate the weight coefficient @ to minimize
the error between the result obtained by linear regression and
the sample’s real value. We use the sum of the squares of
errors as the loss function, and the form of can be solved as
follows:

min y * (f () = yi) + Aol M

where x; is the training sample, y; is the label to which the
sample corresponds, and A is the regularization coefficient to
prevent overfitting accessions in the training process. By tak-
ing the bias derivative of equation (1) we get the general
solution as:

—1
w= (XTX n M) xTy, )
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where X is a matrix of training samples x;, and each row of
the matrix represents one sample x;; / represents a matrix
of units with the same dimension as X, and y is the label
corresponding to the training sample x;.

We have difficulty finding a plane for the tracked target
to separate the background from the target, so we need to
map the sample into the high dimensional space by nonlinear
mapping x; — ¢ (x;), which makes it linearly separable. The
weight vector at this point is expressed as follows:

W=3" aip ), 3)

From equations (2), (3) the expression for a can be obtained
as follows:

a=k+rl"ly, )

where k denotes the kernel correlation coefficient between
samples, expressed as follows:

k (xi, xj) =o) ¢ (xj) , 5)

simultaneous Fourier transformations for both sides of equa-
tion (4) are as follows:

i
o 40

(6)

o=

where k£ denotes the Fourier transform of the kernel matrix
K = (¢ (x) ¢ (x)).

Since the algorithm’s training sample is obtained by the
cyclic shift of the initial target sample, the kernel correlation
matrix between the training samples is a cyclic matrix. For the
test sample, its corresponding response output is as follows:

f@=a0k?, ©)

In equation (7), ke represents the Fourier transform of
the nuclear matrix K = (¢ (x) ¢ (z)).The coordinates cor-
responding to the maximum value obtained by taking the
inverse Fourier transform of equation (7) are the target’s
predicted positions.

Ill. RELATED WORK

A. MULTI-FEATURE FUSION METHODS

The selection and extraction of features significantly impact
target tracking results, whereas traditional target tracking
algorithms use a single feature. HOG features consist of
histograms that compute and count the gradient directions
of local regions. Since HOG features run on the image’s
local grid cells and capture the target contours, they can bet-
ter accommodate interference from geometric distortion and
background color similarity. However, they are insensitive to
occlusion and less robust to motion blur [16]. CN features use
a probabilistic mapping method to transform the image from
the original 3-dimensional RGB space to an 11-dimensional
color feature space to take full advantage of the target’s color
features. The feature is robust to motion blur and light inten-
sity variation. Still, it poorly adapts to similar background col-
ors [17], and literature [18] shows that fusing HOG features
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with CN features gives better tracking results. The traditional
LBP feature is an algorithm used to describe an image’s
local texture features, reflecting the texture changes around
the image pixels [19], [20]. It has the advantage of being
insensitive to image rotation and illumination changes, but
it is computationally complex. ULBP feature [21] improves
the LBP feature, which uses Uniform Pattern to downscale
the LBP operator’s pattern types, reducing the computational
complexity without losing any information. The Edge fea-
tures are generally found in areas of the image where the
brightness changes drastically. They are advantageous in sep-
arating the background and can adapt well to changes in light
intensity [22].

In this paper, to improve the algorithm’s robustness for
tracking in complex environments, a multi-feature fusion
algorithm is proposed, which is weighted by calculating the
response values of HOG, CN, ULBP, and EDGE features
separately.

Firstly, four features of the image are extracted for training,
and according to Eq. (7), the training formula is as follows:

f (Zfeature) = Gfeature © kf)-;zature, 3

According to the training of Eq. (8), the maximum output
response values of the four position-correlated filters can be
obtained, which can be expressed as follows:

Dfeature = argmax F - (f (Zfeature)> ) 9

where ®gequre denotes the maximum output response of each
feature, and the corresponding coordinates are the predicted
target locations.

From Eq. (4), it can be concluded that the distance between
the training sample and the actual location of the target is
related to the size of the filter response value; the closer the
distance, the larger the response value, and the farther the
distance, the smaller the response value. So we can exploit the
difference between the maximum response values of different
filters for feature fusion, expressed as follows:

_ max (f (Zfeature))
leeature - f(—Z) 4 (10)

where Breaure denotes each feature’s weighting coefficients,
respectively, and f (Z) denotes the sum of the four feature
response values. According to Eq. (10), the formula for the
target’s final predicted position could be obtained as follows:

P = ,Bfeature Dfeature (1 1)

B. SCALE ESTIMATION METHODS

The scale change affects the accuracy of the tracking algo-
rithm. In the tracking process, the tracking box fails to fully
include the target when the target becomes large, resulting
in losing part of the target information. When the target
becomes small, the tracking box contains the target and
other objects other than the target, resulting in an increase
of interference information, which will lead to the failure of
tracking. Inspired by literature [23], we propose to create a
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FIGURE 1. Schematic of the scale classification search method.

scale pool using a categorical search method to obtain the
scale adaptiveness of the algorithm through scale estimation.

Using Eq. (11) to calculate the central coordinates of
the target position, scale based on the central coordinates,
as shown in Fig. 1.

We use the first layer to determine whether the target scale
is amplifying or shrinking. If the P1 response value is greater
than the P2 response value, then the current target scale is
amplifying, and if the P1 response value is less than the
P2 response value, then the current target scale is shrinking.
If the target scale is amplified, the scale change is calculated
through the P1 branch; if the target scale is shrunk, the scale
change is calculated through the P2 branch. We set 12 scale
filters in the scale pool.

The classification search method is used for scale estima-
tion in this paper, with 12 scale comparisons per branch,
requiring 14 scale operations per updated frame. This can
reduce 19 unnecessary operations and improve the algo-
rithm’s speed compared to the 33 scale changes of the DSST
algorithm. It can cover a broader range of scales and improve
the algorithm’s accuracy compared to the seven mesoscale
changes of the SAMF algorithm.

C. OCCLUSION HANDLING METHODS

1) OCCLUSION DETECTION

To improve the target’s tracking robustness during occlusion,
we introduced an occlusion judgment mechanism inspired by
the literature [24], [25], as shown in Figure 2.

As shown in Figure 2(c), if the tracking target is not
occluded, the tracker’s response graph will show a single
peak. As shown in Figure 2(d), if the tracking target is
occluded, the tracker’s response graph will oscillate violently,
and multiple peaks will appear in the response graph. Accord-
ing to Figure 2, by calculating the oscillation degree of the
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© (d)
FIGURE 2. Tracker response peak graph.

crest, we can judge whether the target is blocked or not.
When the difference between two adjacent frames of the
video sequence is less than the threshold value, it means that
the target is blocked. The specific calculation formula is as
follows:

.2
\lj — lfmax fIIllHI 2 , (12)
mean <Zw,h (fw,h _fmin) )
. . <0 ocCcC =1,
[‘If(l)—‘lf(l—l)]—u{zo 0cc =0, (13)

where fiax represents the maximum response value, fmin
represents the minimum response value, f,, , represents the
response value at position (w, k), ¥ (i) and ¥ (i — 1) rep-
resent the peak oscillation degree of i frame and i — 1
frame respectively, u represents the occlusion threshold,
OCC equals one means the target is occluded, OCC equals
zero means the target is not occluded.

2) TARGET RETARGETING

When the target is judged to be occlusion, we introduce a
weighted window filter to reposition the target. The predic-
tion of the weighted window filter is usually divided into three
stages. First, the weighted window filter is initialized, and the
weights of the window filter are set by asymptotic memory p,
expressed as follows:

pz(p17p27-"7pr71)7 (14)

After starting tracking, the first r frames are collected to
form the target position window d, expressed as follows:

d=(,dy,...,d—1), (15)

When the target is occluded in the t frame, the window d
is used to obtain the coordinate difference d’ of the adjacent
frames, and the window filter predicts the target position
offset.

d=(—d.,d3s—dy,....d —dr_1), (16)
Ad =d xpT, (17)
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We can obtain the target position di41 in frame 41 through
the target position d; in frame ¢ and the predicted offset Ad.
The specific calculation formula is as follows:

d[.l,_l = d[ + Ad, (18)

In this paper, the target position is stored in the filter
window, the data is analyzed to predict the next frame’s
target position. Compared with other methods that only use
the previous frame’s information to predict the next frame’s
target position, this method has better resistance to the large
area and long-time blocking.

D. MODEL UPDATE METHODS

Traditional correlation filtering algorithms use fixed parame-
ters to update the target model, which is prone to accumulate
tracking bias and decrease tracking accuracy. To improve the
accuracy of the algorithm, we introduce an adaptive dynamic
update model method. The specific calculation formula is as
follows:

{a,=(1—9-n>-at_1+e~n~a,, (19

xx=0-0-n) x-1+60 -7 x,

where x; and x,_; are the target feature models for frame t
and frame t-1, respectively, «; and «;_; are the coefficient
matrices for frame t and frame t-1, and 75 is the learning
coefficient.

1 v > THI,
U —TH2 \?
0= (—= TH2 <V < TH1, (20)
TH1 — TH?2
0 v < TH2,

where 6 is the model interpolation weight and THI1 and
TH2 are the thresholds for W, respectively.

When the value of W is greater than or equal to THI,
the tracking result is completely reliable, and the interpolation
weight 6 can be set to 1.When the value of W is less than or
equal to TH2, the tracking result is wrong, and the interpola-
tion weight 6 can be set to O (the model is not updated). When
the value of W is between TH1 and TH2, we can dynamically
adjust the weight coefficient according to the value of W.

E. ALGORITHM FLOW CHART IN THIS PAPER
The specific flow of the algorithm in this paper is shown
in Figure 3.

IV. RESULTS AND DISCUSSION
The proposed method is implemented in MATLAB2017b
and runs at 244 frames per second on a PC with an Intel
Core-i7-7700 CPU (3.60 GHz) and 8 GB RAM.That is the
whole algorithm running time is about 0.04 seconds. The
initialization parameter A is set to 0.001, n is set to 0.002,
THI1, TH2 is set to 6 and 4, respectively, and the occlusion
threshold p is set to 20.

To demonstrate the effectiveness of the algorithm in this
paper, we conducted comparative experiments with other
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FIGURE 3. Algorithm flow chart in this paper.

mainstream algorithms on the publicly available data sets
OTB-2015 [26], VOT2018 [27], UAV123 [28], and TColor-
128 [29] to analyze the overall performance and the perfor-
mance in different complex environments, respectively.

A. COMPARATIVE EXPERIMENT ON OTB
To verify our proposed algorithm’s validity, we compare it
with the KCF, DSST, Staple, SAMF, DeepSRDCF and Deep-
STRCEF algorithms on the data set OTB-2015, respectively.

* The KCF algorithm uses only HOG features and has no
scale adaptation.

+ The DSST algorithm uses only HOG features and has
scale adaptation,

* The Staple algorithm combines HOG and global color
histogram features and has scale adaptation.

% The SAMF algorithm combines Gary, HOG, and CN
features and has scale adaptation.

* The DeepSRDCF and DeepSTRCEF algorithm combines
depth features and has scale adaptation.

1) EVALUATION METRICS

The OTB data set is the most widely used data set in target
tracking and mainly consists of two versions, OTB-2013 and
OTB-2015. The evaluation criteria use two metrics: precision
and success rate. Accuracy is the percentage of the number of
frames with CLE (Center Location Error) less than a certain
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threshold to the video sequence’s total number of frames.

CLE = \/(xp —x1)* + (p —y1)?, 2D

where CLE is the Euclidean distance between the center
position coordinate (xp, yp) of the tracked target and the
actual target center position coordinate (xr, yr).

The success rate evaluation indicator is the percentage of
frames where the OS between the tracked target area Rp and
R7 the real target area is more significant than a particular
threshold value over the total number of frames in the video
sequence, where the OS is expressed as follows:

__|IRpPNRr|
|Rp URT|’
where Rp denotes the tracking region of the current frame, Ry

denotes the standard target region, N denotes the intersection
of the two regions, U denotes the union of the two regions.

oS (22)

2) QUALITATIVE ANALYSIS

We selected six subsets (in the order of Joggingl, Birdl,
Soccer, Singerl, Bolt, and Tiger2) from the OTB-2015 data
for comparison experiments. These six subsets represent mul-
tiple complex scenes of short-time target occlusion, long-time
target occlusion, background clutters, scale variation, fast
motion, and illumination variation. Figures 4, 5, and 8 show
that multiple targets appear in the occlusion, complex back-
ground, and fast motion tracking scene, and the algorithm
proposed in this paper can maintain excellent robustness. The
results of the experiments are as follows:

OURS — m— QST — DeepSTRCF
m— === SAMF Staple == === | MCF
KCF DeepSRDCF

FIGURE 4. The tracking result of eight trackers at the Jogging1.

a: SHORT-TIME TARGET OCCLUSION

As shown in Figure 4, the target encounters occlusion at frame
69, and the tracking of Staple, DSST, and KCF algorithms
Fail. The algorithm in this paper can always track the target
stably.

b: LONG-TIME TARGET OCCLUSION

As shown in Figure 5, the target occludes for a long time
in 126-133 frames. Compared with other algorithms. The
tracking accuracy of the algorithm proposed in this paper is
the highest.
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OURS —_— g = == DeepSTRCF
== === SAMF Staple | MCF
KCF DeepSRDCF

FIGURE 5. The tracking result of eight trackers at the Bird1.

OURS m— mmm DSST s e DeepSTRCF
=== === SAMF Staple === === LMCF
KCF DeepSRDCF

FIGURE 6. The tracking result of eight trackers at the Soccer.

OURS m—— )SST e = DeepSTRCF
m— = SAMF Staple = = |MCF
KCF DeepSRDCF

FIGURE 7. The tracking result of eight trackers at the Singer1.

¢: BACKGROUND CLUTTERS

As shown in Figure 6, Objects similar to the target appear in
the background from frame 10 to frame 165. The algorithm
in this paper has strong robustness.

d: SCALE CHANGING

As shown in Figure 7, the target scale changes significantly
from 165 to 350 frames, and this paper’s algorithm always
has better tracking accuracy than other algorithms.

e: TARGET FAST MOVING

As shown in Figure 8, when the target moves fast, this paper’s
algorithm can always track the target accurately and better
than other algorithms.
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OURS — — GQT e DeepSTRCF
== === SAMF Staple === === | MCF
— K CF DeepSRDCF

FIGURE 8. The tracking result of eight trackers at the Bolt.

== === DeepSTRCF

m— === | \CF
DeepSRDCF

— o oqT

m— GURS
= === SAMF Staple

——— KCF

FIGURE 9. The tracking result of eight trackers at the Tiger2.
TABLE 1. Average performance of algorithms on the OTB-2015 data set.

Tracker Precision Success rate Speed
(Threshold) (AUC) (FPS)

OURS 77.4% 62.4% 27.27
DSST 64.3% 46.1% 18.14

KCF 62.2% 41.5% 162.87
SAMF 73.0% 50.0% 20.85
Staple 75.7% 53.0% 33.94
LMCF 71.8% 50.2% 78.21
DeepSTRCF 88.1% 67.5% 4.26
DeepSRDCF 78.9% 59.8% 0.32

f: ILLUMINATION VARIATION

As shown in Figure 9, the light changes significantly at 212
frames, and the algorithm in this paper can still track the target
accurately.

g: QUANTITATIVE COMPARISON
As shown in Tablel, the average performance metrics
obtained for all algorithms tested on OTB-2015.

The bold character indicates that the performance of the
current tracker ranks first in the comparison process. As can
be seen from Tablel, the accuracy of the algorithm proposed
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Precision plots of OPE Success plots of OPE

m DeepSTRCF [0.881]
DeepSRDCF [0.789],

= %2 130URS [0.774]

— Staple [0.757)

= = SAMF [0.730]
LMCF [0.718]

e DSST [0.643]
m—=KCF [0.622]

e DeepSTRCF [0.675]
OURS [0.624]

11 DeepSRDCF [0.598]

e Staple [0.530]

= =LNCF [0.502]

SAMF [0.500)
e DSST [0.461]
=—_=KCF [0415]

",

06
05
0,

Precision

Success rate

0 02 04 06 08 1

Overlap threshold

0 10 20 30 40 50
Location error threshold

FIGURE 10. Precision and success rate plots of different algorithms on
the OTB-2015 data set.

in this paper ranks third, second only to DeepSTRCF [30]
and DeepSRDCF [31] algorithm using the deep learning
method. And the success rate ranks second, second only to
DeepSTRCE. The algorithm proposed in this paper is tens of
times faster than DeepSTRCF and DeepSRDCEF algorithm in
terms of speed, achieving real-time performance, as shown
in Fig 10 is the precision and success rate curve of different
algorithms on the OTB-2015 data set.

B. COMPARATIVE EXPERIMENT ON VOT2018

We use the VOT2018 data set, which contains 60 test
videos, to objectively compare and analyze this algo-
rithm’s performance with other algorithms. Compared with
the OTB data set, tracking is more complicated. On the
VOT2018 dataset, we compare it with KCF, DSST, Staple,
ECO [32], LADCF [33], and UPDT [34], in which ECO,
LADCEF, and UPDT all introduce depth features.

1) EVALUATION METRICS

The VOT data set is evaluated differently from the OTB data
set. The OTB data set focuses on the algorithm’s long-term
tracking ability and is initialized only once during testing.
Simultaneously, the VOT selects sequences that are more dif-
ficult to track, re-initializes them after each tracking failure,
and continues to count the overlap rate after re-initializing the
frame.

The performance of the algorithm in this paper is evaluated
using A-R (Accuracy Robustness), Failures, EAO (Expected
Average Overlap), and EFO (Equivalent Filter Operations).
A-R is the abbreviation of accuracy robustness, in which
accuracy evaluates the overlap rate between the predicted
result and the actual state of the tracker in each frame. In con-
trast, robustness considers each sequence’s average failure
times, and VOT2018 calculates the corresponding average
value by using the result of the tracker running 15 times on the
sequence. Failures represent tracking failure statistics. When
the overlap is below the threshold, the algorithm’s tracking
is considered to have failed; EAO represents the expected
average overlap rate. The higher the value, the more accurate
the tracker is. The specific statistical method is to

x Intercept short clips in the test video

* Perform a one-time tracking using an uninitialized
method

28960

TABLE 2. Average performance of algorithms on the VOT2018 data set.

Tracker A-R Failures EAO EFO
OUR 0.5080 11.9009 03194  15.4127
ECO 0.4978 13.5112  0.3077 0.8806
LADCF 0.5337 7.4410 0.4016 0.1116
UPDT 0.5507 8.2848 0.3919 0.0845
DSST 0.4005 63.0723  0.0976  12.7101
KCF 0.4721 30.1225  0.1780  30.3514
Staple 0.5405 19.8836  0.2733 16.497

AR plot for experiment baseline (mean)

1

O cco

OUR oot

LADCF

uPDT 08I
? pssT

KCF 0.7 F
<] staple

o
@

L

Accuracy
o o o o
N w B [

o
N

o
[=}

0.2 0.4 0.6 0.8 1
Robustness (S = 30.00)

FIGURE 11. Accuracy robustness plots of different algorithms on the
VOT2018 data set.

x Calculate the average overlap rate of the algorithm on the
clips

* And finally, calculate the expectation value of the average
overlap rate for several different lengths.

EFO is an evaluation of the speed; the larger the value,
the faster the tracker.

2) QUANTITATIVE COMPARISON
As shown in Table2, the average performance metrics
obtained for all algorithms tested on VOT2018.

The bold font indicates that the current tracker ranks first
in comparison with the benchmark algorithm. Table 2 shows
that the A-R of the algorithm proposed in this paper ranks
the fourth, and the third in failures and EAO indexes, which
is only worse than LADCF and UPDT algorithm. In EFO
indexes, the algorithm proposed in this paper ranks third,
which is tens of times faster than the algorithm using depth
features. Therefore, the comprehensive performance of the
proposed algorithm is the best. Figure 11 shows the accuracy
robustness comparison of different trackers in VOT2018.

As shown in Figure 11, the algorithm proposed in this
paper ranks fourth in accuracy among all the test algo-
rithms, which is worse than LADCF, UPDT, and Stable
algorithm. The Third is robustness, which is only worse than
the LADCF and UPDT algorithm. Figures 12 and 13 show
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FIGURE 12. Average overlap expectation scores graph.

Expectation overlap curves for baseline
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FIGURE 13. Average overlap expectation curve comparison plot.

the ranking of each tracker’s expected overlap performance
and the change of expected overlap with sequence length,
respectively.

As shown in Figure 12, the algorithm proposed in this
paper has the third-highest average expected overlap rate
score compared to the other algorithms. Figure 13 shows
that the expected average overlap rate of all the compared
algorithms gradually decreases as the tracking sequence’s
length increases. Because the longer the sequence length,
the more errors are accumulated, resulting in a worse aver-
age performance of the algorithm in longer sequences. The
average overlap rate of the algorithms proposed in this paper
decreases faster than the LADCF and UPDT algorithms and
performs better than the other algorithms.

C. COMPARATIVE EXPERIMENT ON UAV123

1) DATA SET INTRODUCE AND EVALUATE INDEX

The UAV123 dataset consists mainly of 91 UAV videos,
several of which are long and split into three or four shorter
segments, used several times. Hence, there are 123 video
sequences in total, and this dataset is characterized by a
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TABLE 3. Average performance of algorithms on the UAV123 data set.

Tracker Precision Success rate Speed
(Threshold) (AUC) (FPS)
OURS 70.7% 50.9% 23.71
SiamRCNN 83.4% 64.9% 4.35
ECO 74.1% 52.2% 1.46
SRDCF 67.6% 46.4% 5.23
UDT 67.3% 48.0% 67.28
MEEM 62.7% 39.2% 7.71
SAMF 59.2% 39.6% 19.32
MUSTER 59.1% 39.1% 1.24
DSST 58.6% 35.6% 16.15
KCF 52.3% 33.1% 146.23
Precision plots of OPE Success plots of OPE
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FIGURE 14. Precision and success rate plots of different algorithms on
the UAV123 data set.

clean background and more variations in viewpoint. The
UAV 123 dataset uses the same evaluation metrics as the OTB,
which also uses the two metrics of precision and success rate
to evaluate the algorithm performance.

2) QUANTITATIVE COMPARISON

To demonstrate the effectiveness of the algorithms pro-
posed in this paper, we compared them with the KCF,
DSST, MUSTER [35], SAMF, MEEM [36], UDT [37],
SRDCEF [38], ECO, and SiamRCNN [39]algorithms on the
UAV 123 dataset, respectively. Table 3 shows the average
performance metrics obtained for all algorithms tested on
UAV123. The bold character indicates that the current tracker
ranks first compared with other algorithms.

As shown in Table 3 and Figure 14, the algorithm proposed
in this paper ranks third in precision and success rate, and it’s
only inferior to SiamRCNN and ECO algorithms. In terms
of speed, the algorithm proposed in this paper ranks third,
only inferior to KCF and UDT algorithms. In terms of overall
performance metrics, the algorithm proposed in this paper has
the best overall performance.
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TABLE 4. Average performance of algorithms on the TColor-128 data set.

Tracker Precision Success rate Speed
(Threshold) (AUC) (FPS)
OURS 71.2% 52.0% 25.42
DSST 53.5% 37.6% 21.47
SAMF 63.3% 46.2% 23.74
SITUP 63.9% 47.1% 31.35
MUSTER 64.1% 47.2% 2.63
UDT 65.8% 50.4% 69.32
BACF 66.0% 49.6% 30.13
Staple 66.8% 50.9% 29.31
SRDCF 69.6% 51.5.% 7.15
ECO 79.2% 59.9% 2.28

D. COMPARATIVE EXPERIMENT ON TColor-128

1) DATA SET INTRODUCE AND EVALUATE INDEX
TColor-128 is a benchmark dataset dedicated to color vision
tracking, consisting of 50 color sequences frequently tested
in previous studies and 78 color sequences collected from
the Internet. These 128 sequences have many challeng-
ing factors, such as complete target occlusion, high illu-
mination variation, high target distortion, and low reso-
lution. The dataset uses the same evaluation method as
the OTB dataset, which also uses two evaluation met-
rics, precision and success rate, to evaluate the algorithm’s
performance.

E. QUANTITATIVE COMPARISON
To verify the effectiveness of the algorithm proposed in
this paper, we also test and verify our proposed tracker on
the TColor-128 benchmark against 9 state-of-the-art track-
ers, including DSST, SAMF, SITUP [40], MUSTER, UDT,
BACEF, Staple, SRDCF, and ECO.

As can be seen from Figure 15 and Table 4, com-
pared with other trackers, the algorithm proposed in this
paper ranks second in the precision and success rate indi-
cators, which is only worse than the ECO algorithm using
the deep learning method. In terms of speed, the algo-
rithm proposed in this paper is tens of times faster than
the ECO algorithm and has an excellent comprehensive
performance.

F. MULTIPLE TARGETS IN COMPLEX SCENES

To verify the proposed algorithm’s tracking effect in complex
scenes with multiple targets, we selected several such scenes
on the OTB-2015 dataset. The tracking effects are shown
in Figures 4,5,6,8 and 16.
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FIGURE 15. Precision and success rate plots of different algorithms on
the TCOLOR-128 data set.
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FIGURE 16. The tracking result of eight trackers at the Shaking.

From Figs. 4, 5, 6, 8, and 16, it can be seen that the
algorithms proposed in this paper track well in scenes with
multiple targets in occlusion and fast motion. But the algo-
rithms proposed in this paper fail to track when multiple
targets are present in scenes with complex factors such as
illumination, in-plane rotation, and high target similarity. The
main reason for the tracking failure is that the conventional
features are not as good as the in-depth features.

V. CONCLUSION

This paper proposes a multi-feature fusion target reposition-
ing tracking algorithm to address the problem of low robust-
ness of correlation filter tracking in complex environments.

1. The HOG, CN, ULBP, and edge features under differ-
ent conditions are fully utilized to obtain new features by
weighted fusion of the calculated response values.

2. A scale pool is constructed to estimate the target scale
by classification search to improve the algorithm’s computa-
tional speed.

3. A blocking judgment mechanism is introduced, while a
weighted window filter is used to reposition the target

4. Finally, an adaptive update method is used to update the
model.

To verify the proposed algorithm’s effectiveness, we have
done comparison experiments with the state-of-the-art algo-
rithms on OTB-2015, VOT-2018, UAV-123, and Tcolor-
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128 datasets, respectively. The experimental results show
that the proposed algorithm improves the tracking accuracy
and success rate while ensuring the algorithm’s real-time
performance, which has good comprehensive performance
and high practical value. However, due to the shortcomings of
traditional features, this paper’s method is not very effective
in some scenes. The next work will explore the combination
of correlation filtering with depth features for target tracking.
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