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ABSTRACT Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is mostly prevalent
in people older than 65 years. The hippocampus is a widely studied region of interest (ROI) for a number
of reasons, such as memory function analysis, stress development observation and neurological disorder
investigation. Moreover, hippocampal volume atrophy is known to be linked with Alzheimer’s disease.
On the other hand, several biomarkers, such as amyloid beta (aβ42) protein, tau, phosphorylated tau and
hippocampal volume atrophy, are being used to diagnose AD. In this research work, we have proposed a
method to diagnose AD based on slice-wise volumetric features extracted from the left and right hippocampi
of structural magnetic resonance imaging (sMRI) data. The proposed method is an aggregation of a
convolutional neural network (CNN) model with a deep neural network (DNN) model. The left and right
hippocampi have been localized automatically using a two-stage ensemble Hough-CNN. The localized
hippocampal positions are used to extract (80 × 80x80 voxels) 3-D patches. The 2-D slices are then
separated from the 3-D patches along axial, sagittal, and coronal views. The pre-processed 2-D patches
are used to extract volumetric features from each slice by using a discrete volume estimation convolutional
neural network (DVE-CNN) model. The extracted volumetric features have been used to train and test the
classification network. The proposed approach has achieved average weighted classification accuracies of
94.82% and 94.02% based on the extracted volumetric features attributed to the left and right hippocampi,
respectively. In addition, it has achieved area under the curve (AUC) values of 92.54% and 90.62% for the
left and right hippocampi, respectively. Our method has outperformed the other methods by a certain margin
in the same dataset.

INDEX TERMS Hippocampus, volumetric features, 2-D/3-D patches, hough-CNN, CNN, DNN, MRI,
Alzheimer’s disease, classification, knowledge transfer.

I. INTRODUCTION
Alzheimer’s disease (AD) is aicities. According to [1], 1 out
of 85 persons will suffer from AD by the year 2050. It will be
an enormous burden in the context of the economy, as well
as for families. It is believed that AD can begin developing a
decade or more before the appearance of clinical symptoms
[2], [3]. Therefore, it is important to diagnose AD patients
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in the early stages so that the necessary treatments can be
provided to delay the progression of AD for a certain period.
In addition, an individual’s lifestyle practices can deter or
slow down AD progression, which is an important aspect that
can be monitored if it is possible to know in the early stages
that a particular individual is likely to become an AD patient
[2]. Therefore, automatic and early diagnosis is an important
research endeavor.

From early 2000 to 2010, Alzheimer’s disease dementia-
related research communities have focused on finding various
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biomarkers for AD [4]. Different biomarkers, such as beta
amyloid (aβ1−42) plaque deposition, tau, phosphorylated tau
(ptau)181, fluoro-deoxy-glucose positron emission tomogra-
phy (FDG-PET) uptake in PET and hippocampal volume
reduction [2], [4], are being investigated to test the effec-
tiveness in detecting early stage AD. Moreover, it remains
an open challenge to select the right biomarker from the val-
idated biomarker list. However, these biomarkers can serve
as early AD diagnostic indicators. For example, axonal death
and neuronal degeneration can cause atrophy in brain regions
such as the hippocampus and may increase the levels of
intracellular tau protein in the cerebrospinal fluid (CSF)
[2], [5], [6]. Hippocampal volume atrophy can be observed
from structural magnetic resonance imaging (sMRI), which
is an important biomarker. Hippocampal volume measure-
ment is a challenging task. There are few software packages,
such as FreeSurfer, that can measure the hippocampal vol-
ume automatically/semi-automatically. However, depending
on the algorithm used by the software package, the required
time may vary significantly.

Computer aided diagnosis is offering a wide variety of
abilities to different branches of medical imaging. Several
methods [3], [7]–[9] have been developed to diagnose various
brain/non-brain diseases based on the different modalities of
medical imaging. An sMRI is one of the variants that provides
high resolution structural information of the human brain
that can be used to diagnose various brain diseases, such as
AD, epilepsy and so on. Various semi-automatic and auto-
matic algorithms have been proposed to predict AD. How-
ever, machine learning and deep learning based approaches
[10]–[13] are offering the most promising performances.

Deep learning algorithms attempt to discover the unknown
hidden representation of the input data. The relation between
the input data and the outputs is mapped based on the
learnable filters [14]. The feature extraction from the input
data is an important step for solving computer-aided tasks
[15]–[17]. In deep learning, automatic algorithms are being
used to extract features without any user intervention. Convo-
lutional neural network (CNN) is widely used in the research
communities for image-based problem solving. CNN auto-
matically extracts features which are distilled in nature,
i.e., only the relevant important distinguishable informa-
tion is collected from the input data during training. The
extracted features are used for different purposes, such as
classification and regression. In addition, distilled knowl-
edge transfer is another important concept [18], [19] that is
being utilized to train a network from another trained net-
work’s observation. The teacher network guides the student
network to learn specific tasks. Moreover, transfer learning
[14], [20], [20]–[22] is widely used in the deep learning
communities to solve various problems in computer vision.
In this research work, a discrete volume estimation convolu-
tional neural network (DVE-CNN) [23] was used to extract
volumetric features from the sMRI scans. This network has
two models named left hippocampal model (LHM) and right
hippocampal model (RHM). DVE-CNN extracts slice-wise

number of voxels attributed to the hippocampus from the
target sMRI. In this study, this slice-wise voxels are consid-
ered as the volumetric features. The proposed deep neural
network network (DNN) learns the hidden representation of
slice-wise volumetric features and ultimately performs better
in classifying the AD and normal control (NC) classes.

In this research paper, we have proposed a deep learn-
ing based fully automatic approach for AD diagnosis using
sMRI data from Gwangju Alzheimer’s and Related Demen-
tia (GARD) dataset. Our proposed approach is the incre-
mental improvement upon our previous works [23], [24],
where the first method automatically predicts the position of
a region of interest (ROI) inside an sMRI, and the second
method estimates the number of voxels (discrete volume)
of the corresponding ROI (in this case, the hippocampus)
from the 3-channel 2-D patches. The obtained slice-wise
hippocampal volumetric features have been used to estimate
the probability score for an AD sample class and the NC
sample class using DNN model. The graphical illustration of
the proposed approach is shown in Fig. 1. The DNN model
learns the important distinguishable features generated from
the DVE-CNN network, where the learned features are dis-
tilled in nature. The trained model is used for final prediction.

This research work is organized in the following manner.
In section II, we have discussed the related literature in
this research field. The methodology along with the dataset,
data processing, network architecture detail, and loss func-
tions have been illustrated in section III. In the following
section, the experimental results for the proposed method are
explained with elaborate reasoning, as well as comparative
analysis of the proposed method with the other recent meth-
ods. In section V, this research work has been summarized.

A. CONTRIBUTION
An aggregated system of Hough-CNN, CNN, and DNN has
been developed to classify AD and NC from sMRI data.
We have used three different deep learning-based models to
complete AD diagnosis, where each of the processes is fully
automatic and the diagnosis is performed based on the hip-
pocampal volume reduction, an early diagnostic indicator of
AD. The DVE-CNN extracted volumetric features are specif-
ically inclined to indicate the hidden cases of Alzheimer’s dis-
ease attributed with the hippocampal volume reduction. The
proposed DNN learns the extracted volumetric information
of each slice related to the hippocampus of an sMRI scan
and achieves higher accuracy than other compared methods.
The proposed approach offers an on-site diagnosis of AD that
can be used to make further clinical decisions. In addition,
the processing of slice-wise volumetric features is one of the
most important contributions to the classification literature,
where processed features help to distinguish the AD and NC
classes.

II. RELATED WORKS
AD is an irreversible chronic neurodegenerative disease.
From the prodromal stage (mild cognitive impairment) to AD
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FIGURE 1. The proposed deep learning model (training and test framework) for AD diagnosis. (a) The two-stage ensemble Hough-CNN model for
predicting the position of the hippocampus has been used to extract patches for the DVE-CNN (LHM and RHM) model to predict the number of voxels
from each patch attributed to the hippocampus. The observed slice-wise volumetric features along with their corresponding class labels are used to
train the DNN model. The trained model is deployed to make inferences for predicting the class label for AD and NC classes. (b) In the testing phase,
the trained DNN model predicts the class probability score based on the volumetric features attributed to the hippocampus predicted by the DVE-CNN
(LHM and RHM) model from each patch. The average predicted class probability score is used to determine the final prediction for any particular subject.

formation, the progression rate is approximately 10 − 15%
per year [25]. Early diagnosis may attenuate further dete-
rioration and offer an opportunity to provide proper treat-
ment to improve patient quality of life. Greater prevalence
of AD is observed among those aged 65 years and older,
and therefore, we must manifest proper preparation to give
them a healthy environment for life. An efficient and reli-
able diagnostic method is an important prerequisite to early
diagnosis. Several research initiatives are being conducted
for the development of methods for automatic and early
detection of AD.

A number of methods have been proposed by various
research communities from different disciplines to diagnose
AD based on different biomarkers [5], [26], [27]. Different
research groups [5], [28]–[31] have investigated the patho-
logical beta amyloid (Aβ1−42) deposition measurement from

CSF to predict AD. On the other hand, metabolic brain
alterations were observed using FDG-PET to classify the
AD and NC classes [27], [32]. The structural atrophy of
brainmorphometry (i.e., size and shapes) is another important
biomarker that has long been used by many research commu-
nities to diagnose AD [9], [33]–[36].

The anatomical size and shape variability/atrophy informa-
tion of brain ROIs (i.e., left and right hippocampi) extracted
from sMRI data [37] is utilized to train the classifica-
tion/regression model to estimate the future progression of
AD. This informative and distinguishable features extraction
from sMRI can be performed in the following three pos-
sible ways: (a) a voxel-based feature extraction approach
[38], [39], which includes the local tissue densities (i.e.,
white matter, gray matter and CSF) of the brain; (b) an
ROI-based/patch-based features extraction technique [13],
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[40], [41], which includes the regional cortical thickness
estimation, hippocampal volume measurement, gray matter
volumes, and so on; (c) the full-MRI-based/multiple fea-
ture extraction process [42]–[44], which considers the whole
sMRI rather considering the sub-regions of an sMRI. How-
ever, complete MRIs with demographic information, such as
age, gender and education, can be used jointly for classifica-
tion and regression.

Next, from the model design and ROI selection perspec-
tive, numerous network architectures have been proposed to
classify the atrophied state [45] of the human brain, seg-
ment the brain regions [46]–[51] and measure the volume of
ROIs [23], [52]. A volume-based automatic cortical thick-
ness pipeline was proposed in [52]. This method is known
as Advanced Normalization Tools (ANTs). ANTs method
estimates the volume-based cortical thickness by conducting
multiple operations, such as (a) primary N4 bias correction on
input sMRI, (b) brain extraction based on template strategy or
hybrid segmentation, (c) performing the pure tissue posterior
probability based weighted bias correction using an open
source software tools (n-tissue) [53] and N4 bias correc-
tion along with altering them with prior-based segmentation,
(d) cortical thickness estimatation based on Diffeomorphic
registration-based cortical thickness algorithm [54]. Another
optional normalization operation is conducted to the specified
template/multi-atlas cortical parcellation. A method based on
the hippocampal volume atrophy detected from sMRI has
been proposed to predict AD in [40]. Yue et al. [55] have
proposed a hierarchical feature extraction process for early
diagnosis of AD. A method based on in vivo mapping of
gray matter loss along with voxel-based morphometry for
mild cognitive impairment (MCI) patients has been proposed
by Baron et al. [38]. Afzal et al. [56] have proposed a data
augmentation framework for imbalanced classes for AD stage
detection. Different temporal information has been retrieved
from longitudinal MRI scans to diagnose AD in [57].

Recently, machine learning- and deep learning-based
approaches have shown promising performance in classify-
ing different stages of dementia, especially diagnosing the
AD, MCI and NC classes. Typical machine learning-based
approaches, such as support vector machine (SVM) and
k-nearest neighbor(KNN), are being used to classify AD,
NC, stable mild cognitive impairment (sMCI), and progres-
sive mild cognitive impairment (pMCI). Gupta et al. [44]
have used the machine learning approaches (SVM, KNN,
and random forest (RF)) to classify the atrophied states
(AD, NC/healthy control (HC), asymptotic Alzheimer’s dis-
ease(aAD), mild Alzheimer’s disease (mAD)) using com-
bined features of voxel-based morphometry (VBM), cortical
and subcortical volumetric features (CSC), and hippocam-
pal volumetric (HV) information of T1-weighted sMRI and
obtained comparatively high performance with respect to AD
diagnosis. 2-D and 3-D deep learning models have been
constructed to diagnose AD [10]. A patch-based ensemble
classifier has been constructed to predict the AD and NC
classes in [13]. Using temporal information of sMRI data,

a method has been developed to diagnose AD in [3] based on
long short-term memory, a deep learning-based framework.
Based on rs-fMRI data analysis, an automatic AD classi-
fication network architecture has been proposed using 3-D
CNN in [58], [59]. In this research work, we have proposed
a deep learning-based classifier for AD versus NC classifica-
tion through extracting deep features of hippocampal discrete
volume by the DVE-CNN (LHM and RHM) model [23].

III. METHODOLOGY
The internal properties of the hippocampus and the cases
of its volume reduction are embedded with extracted vol-
umetric features, which are successfully used to diagnose
AD in this research work. Hippocampal volume degrada-
tion/variability is a well-known biomarker to diagnose AD.
A detailed slice-wise volumetric feature extraction procedure
is shown in one of our previous works [23]. However, the vol-
umetric feature extraction process has been briefly explained
in another section of this research work. We used DVE-CNN
to extract the hippocampal volumetric features for NC(171)
and ADD(80) subjects of the GARD dataset. The aAD and
mAD subjects are not considered in this study. The extracted
volumetric features were used to train the proposed DNN
model. In the testing phase, the trained DNNmodel predicted
the class probability score for a particular test subject based
on the transferred knowledge of volumetric features acquired
by DVE-CNN. The detailed procedures of diagnosing AD are
illustrated in the following sections.

A. DATASET
The Gwangju Alzheimer’s and Related Dementia (GARD)
dataset was used in this research work. The dataset was
collected from the National Research Center for Dementia
(NRCD), South Korea, from January 2014 to March 2018
[44]. The dataset consists of 326MRI scans with four classes:
(1) NC (171 subjects), (2) Alzheimer’s disease demen-
tia (ADD) (81 subjects), (3) asymptotic Alzheimer’s dis-
ease (aAD) (35 subjects), and (4) mild Alzheimer’s disease
(mAD) (39 subjects). The subjects’ average age range was
70.018±6.074 years old. Most of the sMRI scans have the
dimensions of 320 × 212x240 with 0.512mm3 unit voxel
volume.

B. DATA PROCESSING
TheMRI scans were processed based on the network require-
ments. The detailed processing of MRI scans and the volu-
metric feature extraction process are explained in the follow-
ing sections.

1) PATCH GENERATION: LOCALIZATION
The localization operation is conducted in two phases,
as explained in our previous work [24]. The left and right
hippocampal positions were previously localized manually.
In the first phase, we have extracted 96 × 96(voxels) 2-D
patches considering random voxel position from the whole
sMRI of axial, coronal and sagittal views and reshaped them
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into 32× 32(voxels) 2-D patches for the global model. After
that, we have normalized the extracted patches with mean
zero and standard deviation of one. The normalized patches
are then reshaped into 32 × 32x1. At the end, we have con-
catenated the axial, coronal and sagittal patches and reshaped
them into 32 × 32x3 3-channel 2-D patches. In the second
phase, 32×32 (voxels) 2-D patches have been extracted based
on random voxel position in the vicinity of the hippocam-
pal region for the local model. The extracted patches were
normalized with mean zero and standard deviation of one.
Normalized patches have then been reshaped into 32× 32x1.
The reshaped patches have been concatenated to construct
the 32 × 32x3 patches. In both phases, the corresponding
displacement vectors have been estimated for the ground
truth. 512 patches from each sMRI were extracted for both
global and local hippocampal position estimation in current
research work. The global and local random samples are
shown in Fig 2. The best and worst case automatic posi-
tion estimation of right hippocampus by two-stage ensemble
Hough-CNN is shown in Fig. 3

FIGURE 2. The global samples (96 × 96 voxels) (a) were extracted
randomly from whole sMRI scan with their corresponding displacement
vectors, whereas, the local samples (32 × 32 voxels) (b) were extracted
from the vicinity of the hippocampus along with their corresponding
displacement vectors.(@ Both patches has been displayed by resizing
them to 1 × 1 inches).

2) PATCH GENERATION: VOLUMETRIC FEATURE
ESTIMATION
The 80×80x80 (voxels) 3-D patches were extracted from the
two-stage ensemble Hough-CNN [24] localized positions of
the left and right hippocampi. The extracted 3-D patches were
then separated along the axial, coronal and sagittal planes.
From each view, 80 patches of size 80 × 80 (voxels) were
extracted. The extracted patches were then normalized with
zero mean and standard deviation of one. The normalized
patches were then augmented by a factor of n (in this case,
n = 15). The augmentation operation is conducted with 2-
degree rotation. The degree of freedom for 2 is −90 <

2 < 90. The augmented patches were then reshaped into
32 × 32x1. At the end, the reshaped patches were concate-
nated along the axis=2 (zero-based axis). The concatenated
32 × 32x3 patches were used to train the DVE-CNN (LHM
and RHM) model to predict the slice-wise number of voxels,
which were later used as volumetric features for the DNN
model training and testing.

FIGURE 3. The representative automatic localized position of right
hippocampus is shown in (a, b, c) and (d, e, f) for best case and worst
case (respectively) of the axial, coronal and sagittal views by the
two-stage ensemble Hough-CNN of the test MRI scans. Two-stage
ensemble Hough-CNN localized position is used to extract patches for
DVE-CNN. The DVE-CNN estimated slice-wise volumetric features are used
to classify the AD and NC classes.

3) DATA PREPARATION: CLASSIFICATION
We have performed 5-fold cross validation while training
the DVE-CNN model. The predicted number of voxels
for all 5 folds were combined together with correspond-
ing class labels for training and testing the classification
model. The patches extracted from each MRI of the whole
GARD dataset, the DVE-CNN (LHM and RHM) model
predicted the number of voxels in each slice attributed to
the left and right hippocampi. The volumetric features with
their corresponding class labels are used to train the pro-
posed DNN models. It has been shown in our previous
work [23] that the predicted number of voxels (volumes)
exhibit high correlation with the ANTs method [52]. The
class labels (AD and NC classes) determined by the clinician
for the GARD datast have been used as the ground truth
for the current work. The diagnosis criteria and guidelines
considered by clinician to analyze the data based on the
following research works [60]–[62]. Th Neuro I software
package(http://www.infomeditech.com/) is used to analyze
the GARD dataset, where the ANTs method is included with
this software package. The detail information about subject
selection, sMRI acquisition can be found in these research
works [26], [58], [59].

C. NETWORK ARCHITECTURE: TWO-STAGE
HOUGH-CNN
The original network architecture of two-stage Hough-CNN
is modified to simplify the localization model. Instead of
using three models for each stage, we have used one model
for each phase following previously proposed DVE-CNN
model [23]. The global and local models have the same
number of layers. There are 6 convolutional layers followed
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TABLE 1. GH-CNN and LH-CNN network architectures used to localize the left and right hippocampi.

TABLE 2. LHM and RHM network architectures used with the GARD cohort dataset to measure the discrete volume of the left and right hippocampi.

by a rectified linear unit (ReLU) activation function [63]
and batch normalization layer [64]. The max pooling layer
is used after the 3rd , 4th and 5th convolutional layers. There
are 3 fully connected layers followed by a ReLU activa-
tion function and batch normalization layer. After the first
and second fully connected layers, a dropout layer (25% and
35%, respectively) has been used. Both networks have been
trained with Adam optimizer [65], along with a mean square
error loss function. The learning rate used to train the global
Hough-CNN (GH-CNN) and local Hough-CNN (LH-CNN)
was 1e-4. The network details are shown in Table 1.

D. NETWORK ARCHITECTURE: DVE-CNN
(LHM AND RHM)
We have retained the exact same network settings as
described in our previous research work [23]. The only
modification here is the input size of the patches. We have
extracted 80 × 80x80 (voxels) 3-D patches for the current
model instead of 64 × 64x64 (voxels) 3-D patches. To con-
struct the discrete volume estimator CNN model (DVE-CNN
(LHM and RHM)), 6 convolutional layers and 3 fully con-
nected layers have been used, where each convolutional layer
is followed by a batch normalization layer [64] and a ReLU
activation function. The fully connected layers are also fol-
lowed by a batch normalization layer and ReLU activation
function [63]. A max pooling layer is used after the 3rd , 4th

and 5th convolutional layers. The DVE-CNN (LHM and
RHM) detailed architectures are shown in Table 2. DVE-CNN
(LHM and RHM) were trained with the Adam optimizer. The
considered learning rate was 1e-4.

E. NETWORK ARCHITECTURE: CLASSIFICATION
To diagnose AD, we have constructed a 6-layered DNN
model for left and right hippocampal data. The left and
right hippocampal DNNmodels are denoted as LH-DNN and

RH-DNN. Each layer of the LH-DNN and RH-DNN models
is followed by a ReLU activation function [63] with one
exception. The 6th layer is followed by a sigmoid activation
function. The number of filters is different in different lay-
ers. Adam optimizer [65] is used with its default parameter
settings, along with a cross-entropy loss function. The DNN
model parameter detail for left and right hippocampi is shown
in Table 3.

F. LOSS FUNCTIONS
Three different models were used to perform the AD ver-
sus NC classification in completely automatic fashion. First,
the localization models have been used to estimate the hip-
pocampal positions in an sMRI scan. After that, discrete
volume estimation models have been employed to measure
the number of voxels (volumes) contributing to construct
the hippocampus. The slice-wise output of the DVE-CNN
model is considered as the volumetric features for the left
and right hippocampi of each sMRI scan. Finally, using the
extracted volumetric features in each patch, the AD versus
NC classification operation has been performed.

To train the two-stage ensemble localization network
model, the mean squared error is considered as the loss func-
tion. If q number of sMRI scans are involved in the training
process, and the number of patches extracted from each sMRI
scan is α, then the mean squared error cost function can be
expressed in the following way, where (Xj,Yj,Zj) are the
target displacement vectors and (X ′j ,Y

′
j ,Z
′
j ) are the predicted

displacement vectors.

MSEHippocampus localization

=
1

α ∗ q

j=α∗q∑
j=1

(1
3

(
(Xj−X ′j )

2
+(Yj−Y ′j )

2
+(Zj−Z ′j )

2
))
(1)
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TABLE 3. LH-DNN and RH-DNN network architectures used to diagnose Alzheimer’s disease.

FIGURE 4. The representative loss and accuracy curves for Fold 2 are shown above for training and testing sets with ROC curves along with AUC scores
for all Folds.

If the numbers of slices/patches contributing to construct
the hippocampus from each sMRI scan are β, and each
slice/patch was augmented by a factor of n, and if the true and
predicted numbers of voxels attributed to the corresponding
axial, coronal, and sagittal views are (AXj , AYj , AZj ) and (A

′
Xj ,

A′Yj , A
′
Zj ), respectively, then the cost function for DVE-CNN

(LHM and RHM) can be expressed in the following manner.

MSEDiscrete volume

=
1

n ∗ q

j=β∗n∗q∑
j=1


∗
1
3

(
(AXj − A

′
Xj )

2
+ (AYj − A

′
Yj )

2
+ (AZj − A

′
Zj )

2
)

(2)

If the true distribution of a classification model is y and the
estimated distribution by the same model is y′, then the cross
entropy loss for γ *m number of training samples extracted

from each sMRI scan can be expressed in the following way.

Cross− EntropyAD/NC

= −

(
1

γ ∗ m ∗ k

)

∗

j=γ ∗m∗k∑
j=1

(yjlog(y′j)+ (1− yj)log(1− y′j)

 (3)

Here, γ is the number of observations from the slices/patches
used to estimate the volumetric features from each sMRI scan
involved in the training process and m is the observation
factor of repetition by which the slices/patches have been pre-
viously augmented in the discrete volume estimation period.
k is the total number of sMRI scans involved in the training
of LH-DNN and RH-DNN models.

The training and test operations are performed on an
HP Z640 workstation with an Intel(R) Xeon (R) CPU
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TABLE 4. The classification accuracy for LH-DNN and RH-DNN models.

TABLE 5. The precision, recall/sensitivity, F1 score and confusion matrix
for the left hippocampus: Fold 1.

E5-1607 V4 @3.10 GHz (4 CPUs) and 32 GB RAM along
with an 8 GB Nvidia Quadro M4000 GPU. The models were
implemented using the Keras library (backend: TensorFlow).

IV. EXPERIMENTAL RESULTS
The experimental results for the AD versus NC classification
are shown in this section based on the volumetric features of
left and right hippocampi extracted by DVE-CNN (LHM and
RHM) from the GARD dataset. The comparative analysis has
been conducted to validate the proposed method based on the
number of matrices explained in the following section.

A. EVALUATION MATRICES
We have used a number of matrices to validate our model and
compare it with the state-of-the-art methods. The accuracy,
precision, recall/sensitivity, and F1 score are reported for AD
versus NC classification. In addition, the value of area under
the curve (AUC) has been reported, and the receiver operating
curve (ROC) has been plotted for the LH-DNN and RH-DNN
models.

Acc =
TP+ TN

TP+ FP+ TN + FN
(4)

Precision =
TP

TP+ FP
(5)

Recall/Sensitivity =
TP

TP+ FN
(6)

f 1Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(7)

Here, TP, TN, FP, and FN denote true positive, true nega-
tive, false positive, and false negative, respectively.

TABLE 6. The precision, recall/sensitivity, F1 score and confusion matrix
for the left hippocampus: Fold 2.

B. WEIGHTED AVERAGE SCORE ESTIMATION
The volumetric features in each patch predicted by the
DVE-CNN (LHM and RHM) models consist of multiple
augmented patches, where each patch was repeated 15 times
by2-degree rotation. Therefore, there will be an observation
from the proposed model based on each patch. However,
the predicted average probability score of the total number of
patches generated from each sMRI scan will be considered as
the final predicted class for the corresponding sMRI scan. Let
us consider the number of patches extracted from each sMRI
scan as β, where the corresponding augmentation factor is
n. Therefore, the number of observations is γ , where the aug-
mentation factor of the observations is m. Then, the predicted
class will be determined in the following manner.

[AD,NC]=argmax
[0,1]

 1
γ ∗m

i=γ ∗m∑
i=1

C ′1i,
i=γ ∗m∑
i=1

C ′2i

 (8)

where C ′1 is the class probability score for the AD subject
and C ′2 is the class probability score for the NC subject. The
argmax function returns the axis (0/1) of the max value of the
weighted average probability score. If the function returns 0,
then it is AD, otherwise, it is NC.

C. LEFT HIPPOCAMPAL OBSERVATION
Using the DVE-CNN (LHM) estimated left hippocampal
volumetric features attributed to each patch, the trained
LH-DNNmodel has been used to predict the class probability
scores. Based on the volumetric features attributed to each
patch, the LH-DNN model training and testing accuracy for
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TABLE 7. The precision, recall/sensitivity, F1 score and confusion matrix
for the left hippocampus: Fold 3.

TABLE 8. The precision, recall/sensitivity, F1 score and confusion matrix
for the left hippocampus: all folds.

TABLE 9. The precision, recall/sensitivity, F1 score and confusion matrix
for the right hippocampus: Fold 1.

Fold 1, Fold 2, and Fold 3 are shown in Table 4. The average
predicted class score for all patches of an sMRI scan has been
used to determine the final class label (Weighted Accuracy)
for AD versus NC classification. The weighted accuracy
values for the testing set of the LH-DNN model for Fold 1,
Fold 2, and Fold 3 are 86.75%, 100%, and 100%, respec-
tively. The average weighted accuracy for the testing set of
all three folds is 94.82%. The precision, recall/sensitivity
and F1 score are reported for Fold 1, Fold 2, and Fold 3 in
Tables 5 – 7, respectively. The weighted average values
of precision, recall/sensitivity, and F1 score are reported
in Table 8.

D. RIGHT HIPPOCAMPAL OBSERVATION
Similarly, for the right hippocampal volumetric features
attributed to each patch, the RH-DNN model is used to infer

TABLE 10. The precision, recall/sensitivity, F1 score and confusion matrix
for the right hippocampus: Fold 2.

TABLE 11. The precision, recall/sensitivity, F1 score and confusion matrix
for the right hippocampus: Fold 3.

TABLE 12. The precision, recall/sensitivity, F1 score and confusion matrix
for the right hippocampus: all folds.

the class probability scores for AD and NC classes. By con-
sidering the attributed volumetric features in each patch,
the training and testing accuracy are reported for Fold 1,
Fold 2, and Fold 3 in Table 4. The weighted average accuracy
values for the test sets of Fold 1, Fold 2, and Fold 3 are
84%, 100%, and 98%, respectively. The average weighted
accuracy for the test set of Fold 1, Fold 2, and Fold 3 is
94.02%. The precision, recall/sensitivity, and F1 score of the
RH-DNN model are reported for Fold 1, Fold 2 and Fold 3 in
Tables 9 – 11, respectively. The estimated average weighted
values of precision, recall/sensitivity, and F1 score of the
RH-DNNmodel for the whole dataset are shown in Table 12.

E. COMPARISON AND DISCUSSION
The GARD dataset is not available for public usage, there-
fore, only a few research works have been conducted using
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TABLE 13. Comparison between existing methods and the proposed method.

this dataset. In addition, all scanned subjects (male and
female) are of Korean origin. The inter-subject racial vari-
ability does not exist, therefore, the dataset is homogeneous
in nature. We have performed 3-fold cross validation and
reported the accuracy results for left and right hippocampi
in Table 4 and the precision, recall/sensitivity, and F1 score
in Tables 5 - 8 and Tables 9 - 12.Moreover, we have compared
our proposed approach with two other methods [13], [44]
which were published in the literature in 2019 to differentiate
the AD class from NC for the GARD dataset. We have
reported the comparative results in Table 13.
The proposed method obtained average weighted accuracy

values of 94.85% and 94.02% for the extracted volumetric
features from each corresponding slice attributed to the left
and right hippocampi, respectively. Gupta et al. [44] have
reported accuracy of 93.06% by using both the left and right
hippocampi’s features along with voxel-based morphometry
and cortical and sub-cortical volumetric features. On the other
hand, Ahamed et al. [13] have proposed an ensemble-based
classifier to distinguish the AD and NC classes from the
GARD dataset and obtained accuracy of 90.06%. Our pro-
posed approach has outperformed bothmethods in the context
of accuracy. In addition, Gupta et al. have used multiple
features to improve the accuracy, where multiple software
packages such as FreeSurfer and SPM have been used to
extract features, which may require a large amount of time.
Moreover, Ahmed et al. have usedmanual localization, which
is a complicated task. The proposed approach is completely
automatic and requires comparatively less time than the other
two methods.

The reported values of precision, recall, and F1 score of the
proposed approach are either superior or comparable to those
of the other methods. Furthermore, the confusion matrices
have been reported for each individual fold, as well as for
the whole dataset. It can be determined that out of 80 ADD
subjects, 69 were correctly classified using left hippocampal
volumetric information, whereas 65 were identified correctly
using right hippocampal volumetric information. The pro-
posed method achieved 86.25% and 81.25% accuracy on
diagnosing the AD class using left and right hippocampal

volumetric information in the GARD dataset, respectively.
However, it is also seen that the proposed method obtained
low accuracy in the first fold for both the left and right hip-
pocampal volumetric data in comparison with the other two
folds. This may be due to the low correlation with the man-
ually measured volumetric data estimated by the automatic
DVE-CNN(LHM and RHM) method. However, the obtained
results for both hippocampi are comparable to the state-of-
the-art literature on this dataset.

The proposed DNN model with Hough-CNN and
DVE-CNN models offers a completely automatic system to
classify the AD and NC classes. In addition, hippocampal
volume atrophy is an important biomarker used in this study
that proved the viability of the biomarker. Furthermore, using
single features, we have achieved better results than the
multi-featuredmodel proposed by Gupta et al. [44], as well as
the ensemble-based classifier proposed by Ahmed et al. [13].

F. LIMITATION
Although the proposed approach offers high performance
in classifying AD versus NC classes, there are still a few
limitations that must be addressed. The proposed method
highly depends on the accuracy of the previously proposed
automatic localization (Hough-CNN) and discrete volume
estimation (DVE-CNN (LHM and RHM)) methods, where
the performances of those two methods can be problematic
for the current method. In addition, the proposed method has
been validated on a relatively small private dataset. However,
the embedded hidden correlation of volume reduction with
Alzheimer’s disease is useful to diagnose AD, which is shown
by the proposed approach.

V. CONCLUSION
In this research paper, we have proposed an aggregated
approach of Hough-CNN,CNNandDNNmodels to diagnose
Alzheimer’s disease based on volumetric features from sMRI
data. The proposed DNN model used the volumetric features
extracted by the DVE-CNN model to classify the AD and
NC classes. We reported the obtained average weighted accu-
racy values of 94.82% and 94.02% based on the volumetric

VOLUME 9, 2021 29879



A. Basher et al.: Volumetric Feature-Based AD Diagnosis From sMRI Data Using a CNN and a DNN

features attributed to left and right hippocampi of the GARD
dataset, respectively. Three fold cross validation has been
performed, demonstrating the obtained results. The proposed
method achieved AUC values of 92.54% and 90.62% for the
left and right hippocampal data, respectively. Our method
successfully diagnosed 69 subjects and 65 subjects from
80 AD subjects using left and right hippocampal volumet-
ric features, respectively. The advantage of the proposed
method is that it is fully automatic and obtains comparatively
higher accuracy than the other methods proposed in the
literature on the same dataset. Moreover, it is also shown
that the slice-wise volumetric features of the hippocampus
are important biomarkers, and that it is possible to diagnose
Alzheimer’s disease using the volumetric features. However,
in the future, we will apply our method on large open
source datasets along with data of other modalities, such as
positron emission tomography (PET), and when combining
the volumetric features of left and right hippocampi with
other regional features, such as VBM and CSC.
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