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ABSTRACT Sign language recognition is a conversion of sign language into text or speech, bridging the
communication between the hearing and society. Recently, sequence-to-sequence video to text (S2VT)
models has been employed in the field of sign language recognition as an effective method. However,
more than 20 million parameters trained in S2VT models will result in a huge consumption in memory
and computational resources, making it hard to be applied in mobile devices. In order to overcome this
issue, we proposed to employ tensor-train decomposition in S2VT models to reduce the parameters.
First, the impact of parameters of tensor-train factorization on the model performance was investigated
systematically. After that, we applied tensor-train decomposition in different layers of a S2VT model to
establish 6 tensor-train S2VT models for Chinese sign language recognition. The experimental results
demonstrated that when the fully-connected layer and the first LSTM layer in S2VT was represented with
tensor-train format, the model could obtain the best performance, remaining high accuracy and reducing
parameters and memory significantly. The proposed tensor-train S2VT models can also be applied in other
sequence-to-sequence problems to improve the performance.

INDEX TERMS LSTM, sign language recognition, S2VT, tensor-train decomposition.

I. INTRODUCTION
China has the largest number of hearing disabilities in the
world. According to statistics, there are about 27.8 million
people with hearing disabilities in China, accounting for
more than 30% of the country’s disabled people [1]. Due to
the hearing impairment, the hearing disabled people often
encounter inconvenience and embarrassment in daily life
when communicating with the society. Therefore, it is highly
necessary to develop an effective method to help the commu-
nication between the hearing disabled and other people.

Sign language recognition [2] is an effective way to help
deaf people communicate with other people, and it is regarded
as a form of human-computer interaction. In general, sign
language recognition can be divided into two methods,
namely traditional and neural network (NN) based meth-
ods [3]. Nowadays, more and more people use the latter
for sign language recognition due to the rapid development
of Convolutional Neural Network (CNN) [4] which can
be applied for feature extraction, and of Recurrent Neural
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Network (RNN) [5], which can be employed as recogni-
tion model. The inputs of sign language and the recognition
output can be regarded as two sequences, so the sequence-
to-sequence model, like sequence-to-sequence video to text
(S2VT) [6] model, can be used for sign language recog-
nition. Previous researchers [7]–[9] have demonstrated that
sequence-to-sequence models are suitable and effective for
sign language recognition. However, enormous parameters
in S2VT models result in huge consumption in memory and
make it hard to be applied in mobile devices. For instance,
when the input shape of S2VT is 4096 and the number of neu-
rons is 1000, the number of parameters in the fully-connected
layer will be up to 4.1×106. There are also two Long-Short-
Term- Memory (LSTM) layers in a S2VT model, so the total
number of parameters can reach 24 million. Therefore, it is
highly necessary to compress the parameters in S2VT model.
It has been proved in [10]that tensor-train decomposition
could effectively reduce the model parameters without a large
loss in accuracy. In this article, we will employ tensor-train
decomposition in S2VT model to reduce the model’s param-
eters, and apply the tensor-train S2VT models for Chinese
sign language recognition.
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In summary, the major contributions of this paper are:
1) the impact of parameters of tensor-train factorization

on the model performance, including accuracy, param-
eters and runtime, are discussed systematically for the
first time, showing us how to select the parameters.
Proper parameter configuration can reduce the model
runtime significantly.

2) Six tensor-train S2VT models are proposed when the
tensor-train decomposition is applied in different layers
of S2VT. The comparison among the original S2VT
model and the proposed tensor-train S2VT models are
discussed in aspect of model accuracy, parameters.

The rest of this paper is organized as follows: in Section II,
we will give a brief review of the related works. We describe
our method in Section III. Then we discuss the experimen-
tal results in Section IV. Finally, we make a conclusion
in Section V.

II. RELATED WORK
Nowadays, with the rapid development of deep learning
networks, more and more researchers have begun to use
deep learning methods for sign language recognition, such
as CNNs and LSTM networks. Pigou et al. [11] used CNN
extracting sign language features, replacing traditional fea-
ture extraction methods, to recognize Italian sign language.
Huang et al. [12] designed a multi-channel 3D-CNN network
using the multi-channel information obtained by Kinect, and
achieved good results in Chinese sign language recognition.
Yang and Zhu [13] proposed a video-based Chinese sign lan-
guage recognition method using CNN to extract upper body
images, and used a pre-trained CNN to recognize gestures.
Pigou et al. [14] proposed to use RNN in sign language
samples for modeling, combined with CNN timing pooling
and a two-way RNN to achieve sign language recognition.
Wu et al. [15] proposed to use the Belief Network (Deep
Belief Network, DBN) to process trajectory information, use
3D-CNN to process RGB information, and then use Hidden
Markov Model (HMM) for modeling through fusion features
for sign language recognition. Liao et al. [16] presented a
multimodal dynamic sign language recognitionmethod based
on a deep 3-dimensional residual ConvNet and bi-directional
LSTM networks, which was named as BLSTM-3D resid-
ual network (B3D ResNet). In [17], a cross-modal learning
approach embedding video and text in a Joint-Latent Space
was proposed for continuous sign language recognition.

Since the sign language recognition model can be regarded
as a sequence model, more and more researchers are
beginning to use LSTM [18] networks for sign language
recognition. Liu et al. [19] only used the three-dimensional
trajectory information obtained by Kinect and constructed
a classification network with LSTM to recognize Chinese
sign language. S2VT [6] is a typical sequence-to-sequence
model for video description, which is similar to sign language
recognition. Mao et al. [7] treated Chinese sign language
recognition as a sequence-to-sequence problem, and pro-
posed a processing framework based on encoder and decoder.

Li et al. [8] proposed a new Hand Shape Descriptor (Specific
Hand Shape, SHS), and used the S2VT model to recognize
Chinese sign language. Huang et al. [9] proposed a sequence-
to-sequence Chinese sign language recognitionmethod based
on Keyframe Centered Clips. Although the deep learning
method has achieved good results in sign language recogni-
tion, it still has some drawbacks, such as excessive param-
eters, slow network training process and serious parameter
redundancy, etc.

Some researchers apply tensor-train decomposition on
the deep learning model to reduce model parameters.
The tensor-train factorization was first introduced by
Oseledets [10], showing tensor-train decomposition has the
obvious advantage of being capable of scaling to an arbitrary
number of dimensions. Novikov et al. [20] showed how
to reshape a fully-connected layer into a high-dimensional
tensor and how to factorize this tensor using tensor-train
decomposition. Then in [21], it was shown that even the
convolutional layers can also be compressed with tensor-
train layers. Yang et al. [22] used tensor-train decompo-
sition to decompose the Input-to-hidden matrix to process
high-dimensional input signals in RNNs (LSTM, Gated
Recurrent Unit), such as video modeling tasks. Utilizing
LSTM based on tensor-train format, Samui et al. [23] pro-
posed a deep TensorNet model for single-channel speech
enhancement tasks, which achieved competitive perfor-
mances with the state-of-the-art uncompressed RNN model.
Xu et al. [24] proposed a novel framework based on a tensor-
train NN (TensorNet) to extract the essential and discrim-
inative features from the whole-brain fMRI data. In [25],
Zou and Yang used the tensor-train decomposition method in
the Software Defined Access (SDA) network and proposed a
TT-SDA network to improve the performance of sparse signal
recovery.

In this article, we will first investigate the impact of param-
eters of tensor-train factorization on model performances.
After that, we intend to apply tensor-train factorization in
S2VT models to establish tensor-train S2VT models for sign
language recognition.

III. OUR METHOD
A. S2VT: SEQUENCE TO SEQUENCE MODEL
S2VT [6] is a typical sequence-to-sequence model for video
description, where the input is a sequence of video frames
or features (x1, · · · ,xn), and the output is a sequence of
words (y1, · · · ,ym). The models have been applied widely in
the field of sequence-to-sequence problems. Herein, a S2VT
model is employed in sign language recognition. Each sign
language videos will be transformed into a sequence of video
frames or features which can be fed into the S2VTmodel after
feature extraction, while the corresponding captions will be
obtained from the outputs’ sequence.

The framework of S2VT is shown in Fig.1, The main
processing flow of S2VT is as follows. First, themain features
of Chinese sign language videos are extracted through the
VGG16 [26] network, and a 4096 vector will be obtained
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FIGURE 1. The framework of S2VT, which has two LSTMs. The first LSTM layer (colored blue) models visual features inputs
of sign language videos. And the second LSTM layer (colored yellow) models the language given the text input and the
hidden representation of the video sequence.

to represent the corresponding video. It passes through a
fully-connected layer (FC layer) and the shape of the vectors
are reduced to 1000. After that, the vectors will be feed
into the first LSTM layer (LSTM1) of the S2VT model and
the hidden representation from LSTM1 (with 1000 hidden
units) will be feed into the second LSTM layer (LSTM2)
(with 1000 hidden units). Finally, the corresponding word
sequences are generated from the output of the second LSTM
layer. In this S2VT model,<BOS> is labelled to indicate the
beginning of decoding, while <EOS> is used to indicate the
end of decoding. Zeros padding is used when there is no input
at the time step.

When a S2VTmodel is directly employed in sign language
recognition, over 20 million of parameters will be gener-
ated. For instance, as shown in Fig.1, the fully-connected
layer has 4,097,000 parameters, and the first LSTM layer
has 8,004,000 parameters. The second LSTM layer has
24,004,000 parameters. In this study, millions of param-
eters in this model will be reduced through tensor-train
factorization.

B. TENSOR-TRAIN FACTORIZATION
Tensor-train factorization [10] is a kind of tensor factorization
models that can scale to an arbitrary of dimensions. Assuming
a d-dimensional target tensor of the formA ∈ Rp1×p2×···×pd ,
it can be factorized in form of:

Â (l1, · · · ,ld ) = G1 (l1)G2 (l2) · · ·Gd (ld ) (1)

where Gk ∈ Rpk×rk−1×rk , lk ∈ [1,pk ]∀k ∈ [1,d], and
r0 = rd = 1.

As shown in Fig.2, all matrices Gk (lk)will be transformed
with the size of rk−1× rk , and r0 = rd = 1, to retain the final
matrix multiplication result as a scalar. The set of matrices
{Gk}

d
k=1 are called TT-core, the complexity is determined by

the ranks {r0, r1, · · · , rd }.

FIGURE 2. Tensor-Train Factorization Model: Calculating an element
Â

(
j1, · · · ,jd

)
using a set of TT-cores

{
Gk

}d
k=1.

If pk in (1) is factorized as pk = mk ·nk∀k ∈ [1, d], Gk can
be reshaped as G∗k ∈ Rmk×nk×rk−1×rk . Then, target tensor A
will be represented equivalently to (1) as follows [20]:

Â ((i1, j1) , (i2, j2) , · · · , (id , jd ))
= G∗1

(
i1, j1

)
G∗2 (i2, j2) · · ·G

∗
d (id , jd ) (2)

where the indices ik =
⌊
lk
nk

⌋
, jk = lk − nk

⌊
lk
nk

⌋
and

G∗k (ik , jk) ∈ Rrk−1×rk .

C. TENSOR-TRAIN LAYER
The linear transformation in NNs can be written as:

y = Wx+ b (3)

where x ∈ RM , y ∈ RN , b ∈ RN andW ∈ RN×M . (3) can be
rewritten equally in scalar format as:

ŷ (j) =
∑M

i=1
W (i, j) x (i)+ b (j) ∀j ∈ [1,N ] (4)

If both M and N can be factorized into two integer arrays
of the same length, such as M =

∏d
k=1 mk , N =

∏d
k=1 nk .

Then, the input x and the output vector y should be reshaped
into two tensors with X ∈ Rm1×···×md and Y ∈ Rn1×···×nd .
Therefore, the linear mapping function can be written as:
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Algorithm 1 Tensor-Train Factorization

1: calculate ik =
⌊
lk
nk

⌋
and jk = lk − nk

⌊
lk
nk

⌋
.

2: establish G∗k (ik , jk) to construct Â.
3. update G∗k (ik , jk) to maximally reduce the error ensuring ||
A-Â|| < ε.

Ŷ (j1, · · · ,jd ) =
∑

i1,i2,··· ,id

W ((i1, j1) , (i2, j2) , · · · , (id , jd ))

·X (i1, · · · , id )+B (j1, · · · , jd ) (5)

The d-dimensional double-indexed tensor of weights W
in (5) can be replaced by its tensor-train representation:

W ((i1, j1) , (i2, j2) , · · · , (id , jd ))
= G∗1 (i1, j1)G

∗

2 (i2, j2) · · · G
∗
d (id , jd ) (6)

Now instead of explicitly storing the full tensor W of size∏d
k=1 mk · nk = MN , we only store its TT format, i.e., the set

of low-rank core tensors {Gk}dk=1 of size
∑d

k=1 mknkrk−1rk ,
which can approximately reconstruct W [22].
Thus, the computational complexity of an M × N

fully-connected layer can be reduced from O (MN )
to O

(
dr2m · max {M ,N }

)
, where m = max {mk},

r = max {rk}.
When the weight matrix of a fully-connected layer is trans-

formed into the TT format, it produces a tensor-train Layer
(TTL). For the rest of the paper, y = Wx + b, whose weight
matrixW is factorized with tensor-train factorization, will be
written as

y = TTL (W , x, )+ b (7)

D. TENSOR-TRAIN LSTM
LSTM [18] is a variant of RNN and is widely employed
in sequence-to-sequence problems. As shown in Fig.3,
an LSTM unit contains a memory cell and three gates, called
forget gate (ft ), input gate (it ) and output gate (ot ). The forget
gate determines the information that the cell state needs to
discard, the input gate determines how much information the
cell should input, and the output gate needs to determine what
value to output.

Using TTL as in (7), the tensor-train LSTM model can be
represented as follows [22]:

it = σ (TTL (W i, [xi, ht−1]+ bi))

ft = σ
(
TTL

(
W f , [xi, ht−1]+ bf

))
ot = σ (TTL (Wo, [xi, ht−1] ,+bo))

gt = tanh
(
TTL

(
Wg, [xi, ht−1]+ bg

))
ct = ft◦ct−1 + it◦gt
ht = ot◦tanh (ct) (8)

where W i, W f , Wo and Wg ∈ RH×(I+H), represent the
concatenated matrices which is required to compute each

Algorithm 2 Tensor-Train LSTM
1: calculate the linear transformation of three gates, namely
input gate it , forget gate ft , output gate (ot ), and memory cell
gt based on TTL.
2: calculate the corresponding activations through sigmoid
function σ , and tangent functions tanh.
3. update memory cell state, ct = ft◦ct−1 + it◦gt and hidden
state, ht = ot◦tanh (ct).

FIGURE 3. Block of a basic LSTM unit.

gate output. As shown as (8), each LSTM block needs
4 TTL to represent its functionality in tensor-train format.

Based on the above description, we can replace the fully-
connected layer of the S2VT model with tensor-train layer,
and replace its first LSTM layer and second LSTM layer with
tensor-train LSTM to improve the performance of the model
in sign language recognition.

IV. EXPERIMENTS
In this section, we first explore the influence of its parame-
ters’ setting on tensor-train factorization, and then established
six tensor-train S2VT models. These models are carried out
based on a sign language dataset from USTC-SLR [12].
At last, we evaluate the effectiveness of our models on this
dataset.

A. IMPACT OF TENSOR-TRAIN PARAMETERS
We assume W ∈ RM×N , M =

∏4
i=1 mi and N =

∏4
i=1 ni.

It is obvious that mi and ni can have different values and
different orders. However, the impact of tensor-train parame-
ters on the model performance is still unknown, especially in
model runtime. Thus, in this part, we will compare different
strategies for setting tensor-train parameters: the ranks and
different decomposition methods of the tensors representing
the input/output.

Since the size of W in the fully-connected layer of S2VT
model is 4096× 1000, we build a two-layer NN, and the
first layer with the shape of 4096 × 1000 will be repre-
sented with TTL. We run the experiments on the MNIST
dataset [27], resizing the origin images size from 28 × 28
to 64× 64.
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One of the important parameters is the rank of tensor-train
factorization. We use rank = 0 to indicate that tensor-train
decomposition is not applied on the model, and the rank is
varied from 0 to 6, to compare the experimental performance.

As shown in Fig.4, the parameters of model after tensor-
train factorization are reduced drastically, and the accuracy
rate is increased at the same time. When ranks raise, the
number of parameters increases but the accuracy rate changes
slightly. We can obtain the best result when rank is equal to 3.
The accuracy is the highest, increasing by 25.8%, compared
with the undecomposed model, and the number of parameters
was also relatively small. Therefore, rank = 3 is chosen for
the following experiments.

FIGURE 4. Comparative results with the change of rank.

Subsequently, we study the impact of different decom-
position methods of the tensor-train factorization. At first,
we study the decomposition in the output tensor. Herein,
M = 4096 is decomposed into (8,8,8,8), but N = 1000 is
decomposed differently. We assume {ni|2, 5, 10, 10} to
explore the effect of different arrangement orders on the
results.

As shown in Fig.5, we can find that when the output tensor
1000 is decomposed into (10, 10, 5, 2), the runtime is the
shortest, while the runtime is the longest when n1 = 2,
n2 = 5,n3 = 10,n4 = 10, increasing by 376%. It can also be
found that the accuracy varies slightly. Therefore, when the
order of the output shape is from large to small, the runtime
is the shortest, and the accuracy still keep high.

Then, we research different decomposition methods of the
input tensors shape. We assume {mi|4, 4, 16, 16} to explore
the effect of different arrangement orders on the model
performance.

As shown in Fig.6, the runtime in the first case is the
shortest, where the output is decomposed into (4, 4, 16, 16),
and the runtime is 85s. However, the runtime is the longest
when m1 = 16,m2 = 16,m3 = 4,m4 = 4, increasing by
261% compared to the first case. We can conclude that the
order of input tensor shapes should be arranged from small to
large, which will result in a shorter runtime and still remain
high accuracy.

FIGURE 5. Different tensors representing the output.

FIGURE 6. Different tensors representing the input.

Last, we consider the impact of different values of tensor-
train factorization on the model performance. Herein, input
tensor is selected for research.

As shown in Fig.7, when the distribution of the value in the
decomposition is more scattered, the runtime is shorter, but
the accuracy rate reduces obviously. When the distribution
is tighter, the accuracy will be improved, but the runtime is
prolonged. Therefore, we should balance the accuracy and
runtime when we determine the decomposition methods of
tensor-train factorization.

In summary, when tensor-train factorization is performed
on the weight matrixW, the performance is the best when the
input tensor is arranged from small to large, and the output
tensor is arranged from large to small, and the value of mi
and ni cannot be too dispersed. Therefore, in the following
experiments, we will follow the rules to apply tensor-train
factorization in S2VT model.

B. DATASET AND SETTINGS
The dataset is from USTC-SLR [12], which is a public
dataset. We choose 50 short sentences from it, each con-
taining 5-7 isolated words, that are widely used in our daily
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FIGURE 7. Influence of polarization distribution on results.

life. 20 signers play each word for 5 times, so each sentence
has 100 samples, and the dataset consists of 5,000 samples.
We divide it into 2 subsets, one for training and another for
testing. In the training subsets, we randomly choose 16 sign-
ers from all the 20 signers in the dataset. The rest of the dataset
is used as the testing subsets. Details of our datasets are shown
in Table 1. The data is recorded byKinect 2.0, andwe can cap-
ture the color image, depth map, and skeleton joint location in
realty. In this work, we ignore the trajectory of four skeleton
joints and depth information, and only focus on exploring the
color information. The features of the videos in the dataset are
extracted throughVGG16 [26]. It should be noted that, before
feature extraction through VGG16 network, the original size
of videos, 1280× 720 is resized into 480× 400 centering on
signer, and then compressed to 224× 224, which can reduce
the information loss partly.

TABLE 1. The details of our dataset.

C. RESULTS AND ANALYSIS
In this paper, we proposed several tensor-train S2VT models
for sign language recognition. As introduced in Section III,
the S2VT model mainly contains three layers, namely the
fully-connected layer (FC layer), the first LSTM layer
(LSTM1) and the second LSTM layer (LSTM2), so we can
represent the three layers with tensor-train format separately
or together. Therefore, 6 scenarios are established to compare
the performance of the 6 tensor-train S2VT models with the
original S2VT model. It should be noted that the parameters
of the tensor-train S2VTmodels are set according to the rules
found in previous section.

6 scenarios are shown in Table 2. Scenario 1 replaces
the FC layer in S2VT model with tensor-train layer.
Scenario 2 and scenario 3 replace the LSTM1 layer and
the LSTM2 layer with tensor-train LSTM respectively.
Scenario 4 is to replace the two LSTM layers with tensor-
train LSTM and scenario 5 is to replace the FC layer and the
LSTM1 layer with tensor-train layer together. For scenario 6,
the FC layer and two LSTM layers in S2VT model are
formulated by tensor-train factorization.

TABLE 2. Correspondence between model and scenario.

As shown in Fig.8, the models of baseline and scenario2,3
and 5 converge faster and to a small value after 50 epochs.
Compared to baseline, scenario 5 converges a little faster.
However, the models of scenario 3,4 and 6 converge slowly,
and the loss train of scenario 3 can converge to a smaller
value after 90 epochs. Accordingly, when the FC layer and
the LSTM1 are represented with tensor-train format, the con-
vergence is better than the original S2VT model, while these
models with the LSTM2 layer represented by tensor-train
LSTM, perform worse, due to the slow convergence.

FIGURE 8. Training loss of various scenarios.

As shown in Table 3, we compare the parameters, memory
and accuracy of 6 scenarios with that of the baseline system-
atically, and can claim that:

1) the parameters of tensor-train S2VT models can
be reduced significantly. When the FC layer or
the two-layer LSTM are represented by tensor-train
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TABLE 3. Experimental Results on USTC-SLR Dataset. We report i) the
number of parameters, ii) the memory of models, iii) the decrease of
parameters iv) the accuracy.

format separately, the corresponding parameters of the
model can be reduced by 16.8%, 32.8% and 49.2%
respectively. When the three layers are represented
with tensor-train factorization together, the number of
parameters can be reduced to 302840, which is reduced
by 98.8% compared with the original S2VT model.
Correspondingly, the memory of tensor-train S2VT can
also decrease significantly.

2) The accuracy of the original S2VT model was 98.4%.
When the FC layer and the first LSTM layer in the
S2VT model are represented with tensor-train format
separately or together, the accuracies are similar to
that of the original model basically. When the second
LSTM layer is represented with tensor-train format,
the accuracy decreased 6.5%. But, when two LSTM
layers in S2VT are represented by tensor-train format,
the accuracy is reduced obviously by 14.5%. The worse
performance is in scenario 6, where all layers are rep-
resented by tensor-train format, which only has the
accuracy of 29.3%.

3) To sum up, when the FC layer and the first LSTM layer
in the S2VT model are transformed into tensor-train
format, the accuracy of the model will remain high, and
the parameters in the model will decrease significantly.
However, the second LSTM layer in S2VT is not rec-
ommended to be transformed into tensor-train format,
because it will result in a worse model performance in
accuracy.

V. CONCLUSION
In this paper, we proposed to employ tensor-train factoriza-
tion in S2VT to reduce the parameters. First, we explored the
influence of parameters settings of tensor-train factorization
on model performance, finding that the model performs best
when the rank is 3, the input tensors are arranged from small
to large, and the output tensors are from large to small,
and the distribution cannot be too dispersed. We then apply
tensor-train factorization in different layers of S2VT model
for Chinese sign language recognition. The experimental
result of 6 scenarios demonstrated that the parameters of
the tensor-train S2VT models can be reduced significantly.
Among them, the fully-connected layer and the first LSTM

in S2VT model, represented with tensor-train format, has
the similar accuracy compared to the original S2VT model,
but the number of parameters is decreased by 49.5%. How-
ever, when the second LSTM layer of S2VT is expressed
with tensor-train format, the convergence rate slows down
significantly and the accuracy decreases greatly. Therefore,
the tensor-train S2VT with the fully-connected layer and the
first LSTM layer expressed with tensor-train format is the
best model, which can remain similar accuracy and reduce
parameters and memory significantly. This makes it possible
to apply sign language recognition models to mobile devices
without strict requirements in hardware devices, and making
it easier for the hearing impaired to communicate with soci-
ety and others. The proposed tensor-train S2VT models is
also significant to other sequence-to-sequence problem and
improve the performance.

In the future, we will try to apply tensor-train decomposi-
tion in other models for sign language. Also, we will also try
to investigate the possibility of developing a novel end-to-end
S2VT model, which do not need any CNN model to extract
the features of videos. Instead, the images of videos will be
directly feed into the S2VT through TTL.
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