
Received January 26, 2021, accepted February 9, 2021, date of publication February 16, 2021, date of current version March 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3059324

Adaptive Predefined-Time Synchronization
of Two Different Fractional-Order Chaotic
Systems With Time-Delay
LIXIONG LIN 1, QING WANG 1, BINGWEI HE 1, YANJIE CHEN 1,
XIAFU PENG2, AND RUILIN MEI3
1School of Mechanical Engineering and Automation, Fuzhou University, Fujian 350000, China
2Department of Automation, Xiamen University, Fujian 361005, China
3School of Machinery and Automation, Wuhan University of Science and Technology, Hubei 430081, China

Corresponding author: Lixiong Lin (elelinlixiong@139.com)

This work was supported in part by the Fuzhou University Startup Research Project under Grant XRC-17028, and in part by the Natural
Science Foundation of Fujian Province, China, under Grant 2019J05024.

ABSTRACT This paper devotes to the adaptive globally synchronization within predefined-time of two
time-delayed fractional-order chaotic systems. Firstly, through fractional calculus, two novel different
fractional-order systemswith time-delay are proposed, whose convergence is guaranteed and phase trajectory
is given. Secondly, by exploiting the non-negative Lyapunov function and inequality theorem, a novel
global predefined-time stability theorem is proposed, which can ensure the settling time tunable. And
the upper bound of the settling time estimation is more accurate compared with the classical results.
With the help of novel predefined-time stability theorem, two active controllers are designed, namely
the fixed-time synchronization controller and predefined-time synchronization controller, to achieve the
fixed-time synchronization and the predefined-time synchronization of two different time-delayed fractional-
order chaotic systems respectively. Finally, several numerical simulations are presented in order to show the
effectiveness of the proposed methods.

INDEX TERMS Adaptive controller, fixed-time synchronization, nonlinear fractional-order systems,
predefined-time synchronization.

I. INTRODUCTION
The system synchronization plays a significant role in control
fields and industrial applications, especially in those situa-
tions where fractional calculus are demanded, such as secure
communication [1], [2], complex neural networks [3], [4]
and automatic control [5], [6]. Fractional calculus has a
history of more than 300 years, which has been widely
applied to physics, engineering and control system in recent
years [7]–[10]. As a generalization of ordinary differenti-
ation and integration to arbitrary order, fractional systems
can be used to accurately describe system in many inter-
disciplinary fields [11]–[13]. At present, chaotic behav-
ior of fractional-order nonlinear systems is a pervasive
phenomenon. Meanwhile, numerous fractional-order sys-
tems display dynamical chaotic behavior obviously, which
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have been researched by many scholars [1], [14]–[17].
Fractional-order chaotic system have plenty of forms,
including fractional-order Chen system, fractional-order Liu
system, fractional-order Ameodo system, fractional-order
Lorenz system, fractional-order Chua system, etc [7], [18],
[19]. So far, various research is devoted to the proper-
ties of fractional-order chaotic system, and the characteris-
tics of system synchronization have been found. After the
pioneering research about chaotic system synchronization
was published by Pecora and Carroll in [20], the synchro-
nization of chaotic system gradually became the research
focus [21]–[24]. In 1953, the definition of finite-time sta-
bility was proposed by Kamenkov [25]. According to the
generalized Lyapunov function and the finite-time stability
theorem, Ref. [26] designed an adaptive and state-feedback
controller to investigate the finite-time stabilization prob-
lem of fractional-order chaotic system. The terminal sliding
modes control function was designed in [1] to study the
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finite-time synchronization of fractional-order Chua system.
Ref. [27] provided a feedback controller to analyse the
finite-time synchronization of fractional-order time-delayed
system.

Considering the disadvantage of finite-time stability that
the convergence time is related to the initial state. Whilst,
it’s difficult to accurately obtain the initial values in
practical systems. In 2012, fixed-time stability was put
forward by Andrey [28] to solve this problem. Adopt-
ing to the fixed-time stability theorem in [14], [28],
Ref. [29] studied the fixed-time synchronization of memris-
tor neural networks, and the system could converge with-
out considering the initial values. By using the properties
of Lyapunov function and Weiner process, some fixed-time
synchronization standards were obtained in [30]. Ref. [31]
designed a fractional-order terminal sliding mode control
function to achieve the fractional-order chaotic system sta-
bility within fixed-time.

Unfortunately, the main drawback of fixed-time stability
is that the relationship between the convergence time and
the parameters of drive-response systems are not explicit.
Thus, it is desired that the maximum stabilization time,
also called the settling time, of system synchronization
can be determined. Then, Sanchez-Torres gave the defi-
nition of predefined-time stability in [32], whose upper
bound of the settling time can be obtained by tuning
parameters [10], [23]. Further, a series of dynamic chaotic
systems with the settling time in predefined-time were
proposed [17], [23], [33]. In Ref. [23], an active controller of
predefined-time sliding mode synchronization was designed.
For achieving predefined-time sliding mode synchronization,
Ref. [33] proposed a novel formulation and designed a
series of controllers. To enable the synchronization of
drive-response systems within predefined-time, the modified
function of hyperchaotic systems was investigated and an
approaching sliding synchronization controller was designed
in [34].

Additionally, it has been found that time-delay exists in
many synchronization systems and practical applications in
engineering. However, time-delay is an undesirable phe-
nomenon in synchronization system, and effective controller
is expected to suppress it. In this respect, the effects of
time-delays in synchronization system have been examined
in the literature [13], [35], [36]. By exploiting the finite
integral of the past control values, Ref. [37] designed a delay
compensation feedback term to suppress the time-delay.
By designing three synchronization controllers, Ref. [4]
achieved the synchronization of multilayer networks with
time-delay.

Inspired by aforementioned analyses, this paper will con-
centrate on the adaptive predefined-time synchronization
of two different fractional-order time-delayed systems. The
innovative points of this paper summarize as follows.
(1) Novel fractional-order drive system and response

system with time-delay are proposed. Meanwhile,
the phase trajectories are given.

(2) A fixed-time synchronization controller is designed to
enforce the drive-response system convergence within
the upper bound of the settling time.

(3) The predefined-time synchronization controller is pro-
vided to ensure the settling time tunable.

(4) Under the circumstances of diverse initial values,
the effectiveness of predefined-time stability theorem
is proved by several numerical simulations.

The rest of this paper is organized as follows. Several
common definitions and lemmas are presented in Section II.
Novel fractional-order time-delayed chaotic systems and cor-
responding phase trajectories are provided in Section III.
Section IV proposes a new predefined-time stability approach
of fractional-order time-delayed chaotic system. Section V
design the controllers of fixed-time synchronization and
predefined-time synchronization. Section VI give the numer-
ical simulation examples to testify the effectiveness of
predefined-time stability theorems. Finally, several valuable
conclusions are drawn in Section VII.

II. PRELIMINARIES
In this section, useful definitions and lemmas of fractional-
order chaotic system are proposed, which are essential for the
design of the synchronization controller.
Definition 1 ([7]): The fractional integral of h(t) is

defined as

Iqh(t) =
1
0(q)

∫ t

t0
(t − s)q−1h(s)ds,

where q > 0 is the order of integral; t0 is the initial time
and t > t0; h(t) : (0,+∞) → R and 0(·) is the generalized
Euler’s Gamma function

0(q) =
∫
∞

0
tq−1e−tdt.

Definition 2 ([38], [39]): There are three differential
operators of the fractional-order derivative: Caputo,
Riemann-Liouville and Grunwald-Letnikov. The definition of
Caputo derivative for h(t) is given as following

C
t0D

β
t h(t) =


1

0(n−β)

∫ t
t0

h(n)(s)
(t − s)β−n+1

ds, n−1<β < n,

dnh(t)
dtn

, β = n,

where β > 0 is the order of derivative, t0 is the initial time
and t ≥ t0; n is integer and n− 1 < β ≤ n.
The definition of βth-order Riemann-Liouville derivative

is given below

RL
t0 D

β
t h(t) =

1
0(n− β)

(
d
dt

)n ∫ t

t0

h(s)
(t − s)β−n+1

ds.

The βth-order Grunwald-Letnikov definition is described
by

GL
t0 Dβt h(t) = lim

a→0
a−β

[(t−t0)/a]∑
i=0

(
−β

i

)
h(t − ia).
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In the rest of this paper, the Caputo fractional-order deriva-
tive is employed. For simplifying, the αth-order Caputo
fractional-order derivative denote as Dα .
Due to the research on fractional calculus, some commonly

properties are provided to analyse the fractional-order chaotic
system.
Lemma 1 ([40]): For the Caputo fractional derivative and

Riemann-Liouville fractional derivative, an equation holds
that

t0D
α
t
(
t0D

m
t f (t)

)
= t0D

α+m
t f (t),

where m ∈ N and n− 1 < α < n ∈ N+.
Lemma 2 ([7]): If f (t) ∈ Cm[0,∞), n−1 < q < n ∈ N+,

then

t0D
q
t t0D

−q
t f (t) = f (t).

Lemma 3 ([3]): Fractional derivative and integer deriva-
tive have similar linear characteristic, for any constant γ and
δ, the linear characteristic of Caputo fractional derivatives
describes as:

t0D
α
t [γ f (t)+ δg(t)] = γ t0D

α
t f (t)+ δt0D

α
t g(t).

Lemma 4 ([41]): Consider the continuous unbounded
function y(t) : Rn→ R+ satisfying the differential inequality

ẏ(t) = −(αyq(t)+ b)k , y(0) = y0 (1)

where α > 0, b > 0, q > 0, k > 0 and satisfying qk > 1,
then y ≡ 0,∀t ≥ T (x0). Thus y(t) is fixed-time stable and the
T (x0) is the settling time upper bounded, satisfying:

T (x0) ≤ T 1
max ,

1
bk

(
b
α
)
1
q (1+

1
qk − 1

). (2)

Lemma 5 ([5]): For any real numbers ηj ∈ R+(j =
1, 2, . . . , n) and ε ∈ R+, satisfying the following inequalities:

(
N∑
j=1

∣∣ηj∣∣)ε ≤ N∑
j=1

∣∣ηj∣∣ε , 0 < ε ≤ 1

n1−ε(
N∑
j=1

∣∣ηj∣∣)ε ≤ N∑
j=1

∣∣ηj∣∣ε , ε > 1.

III. SYSTEMS DESCRIPTION
Considering the n-dimensional dynamic system with
time-delay as drive system

t0D
α
t xi(t) = −σixi(t)+ fi(X , t)+ Fi(X , t − τ ), (3)

where 0 < α < 1 is the order of drive system; i = 1, 2, . . . , n,
σi represents the self-inhibition of drive system and σi > 0;
xi(t) represents the state variates of drive system; τ > 0 rep-
resents the time-delay term; X = (x1(t), x2(t), . . . , xn(t))T ∈
Rn is the state vector of drive system; fi(·) stands for a known
nonlinear function and Fi(·) denote the uncertain delayed
function. When fi(·) is a continuous and derivable function,
meanwhile, Fi(·) is a continuous decreased function, the sys-
tem (3) can show chaotic behavior. The response system is
described by

t0D
α
t yi(t) = −σiyi(t)+ fi(Y , t)+ Fi(Y , t − τ )+ui(t), (4)

where 0 < α < 1, τ > 0, σi > 0 is the self-inhibition of
response system; yi(t) represents the state variates of response
system; Y = (y1(t), y2(t), . . . , yn(t))T is the state vector of
response system; fi(·) is a known continuous function; Fi(·)
is a uncertain delayed function; ui(t) is the control function,
which will be explained later.

The initial values of derive-response systems describe
as X (0) = (x1(0), x2(0), . . . , xn(0))T, Y (0) = (y1(0),
y2(0), . . . , yn(0))T, respectively. If t ∈ [0, τ ], we can know
that xi(t − τ ) = xi(0), yi(t − τ ) = yi(0), Fi(X , t − τ ) =
Fi(X (0)), Fi(Y , t − τ ) = Fi(Y (0)).
Example 1:Considering the chaotic behavior of fractional-

order time-delayed drive system and fractional-order time-
delayed response system. Supposing the drive system is
fourth-dimensional fractional-order chaotic system, that is
i = 1, 2, 3, 4. Let the continuous nonlinear functions be
f1(X , t) = a(x2(t)− x1(t)), f2(X , t) = bx1(t)− kx1(t)x3(t)+
x4(t), f3(X , t) = h(x1(t))2−cx3(t)+x4(t), f4(X , t) = −rx2(t),
and the delayed function be Fi(X , t − τ ) = 0.1 tanh(xi(t −
τ ))(i = 1, 2, 3, 4). Then, the fractional-order time-delayed
drive system can describe as

Dαx1 = −σ1x1(t)+ a (x2(t)− x1(t))
+0.1 tanh(x1(t − τ ))
Dαx2 = −σ2x2(t)+ bx1(t)− kx1(t)x3(t)+ x4(t)
+0.1 tanh(x2(t − τ ))
Dαx3 = −σ3x3(t)+ h(x1(t))2 − cx3(t)+ x4(t)
+0.1 tanh(x3(t − τ ))
Dαx4 = −σ4x4(t)− rx2(t)+ 0.1 tanh(x4(t − τ )).

(5)

Supposing the response system is fourth-dimensional, and
let f1(Y , t) = a1 (y2(t)− y1(t))+ y4(t), f2(Y , t) = b1y1(t)−
y2(t) − y1(t)y3(t), f3(Y , t) = y1(t)y2(t) − c1y3(t), f4(Y , t) =
−y2(t)y3(t) − r1y4(t) and Fi(Y , t − τ ) = 0.1 tanh(yi(t − τ ))
(i = 1, 2, 3, 4). The corresponding response system describes
as following

Dαy1 = −σ1y1(t)+ a1 (y2(t)− y1(t))+ y4(t)
+0.1 tanh(y1(t − τ ))+ u1(t)
Dαy2 = −σ2y2(t)+ b1y1(t)− y2(t)− y1(t)y3(t)
+0.1 tanh(y2(t − τ ))+ u2(t)
Dαy3 = −σ3y3(t)+ y1(t)y2(t)− c1y3(t)
+0.1 tanh(y3(t − τ ))+ u3(t)
Dαy4 = −σ4y4(t)− y2(t)y3(t)− r1y4(t)
+0.1 tanh(y4(t − τ ))+ u4(t).

(6)

The system order is α = 0.82, and the initial values of drive
system and response system are X (0) = [0.6, 0.7, 0.3, 0.4]T,
Y (0) = [3,−4, 2, 2]T. The system parameters are selected as
following

σi = 0.1(i = 1, 2, 3, 4), τ = 0.8,

a = 10, b = 40, c = 2.5, k = 10, h = 4,

r = 2.5, a1 = 10, b1 = 28, c1 = 8/3, r1 = 1.
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FIGURE 1. Phase portraits of drive system.

As revealed in Fig.1 and Fig.2, both the drive system (5)
and response system (6) have obvious dynamic chaotic
behavior. The phase portraits between different variables of
fractional-order time-delayed system (5) are shown in Fig.1.
The three-dimensional trajectory portrait of the response sys-
tem (6) without control input ui(t) is shown in Fig.2.

IV. PREDEFINED-TIME STABILITY
In this section, a novel predefined-time stability theorem is
established.
Theorem 1: Supposing V (·) : Rn→ R+∪0 is a continuous

strictly monotonically decreased function and satisfies
(1) V (x) = 0 ⇒ x ∈ A, where A ∈ Rn is a non-empty set

and globally fixed-time attractive for system (1);
(2) Tc ∈ {r1, · · · , rb} is a user defined parameter.
(3) For all V (x) > 0, there exist positive parameters

α, k, b, q satisfying q ∈ (0, 1], qk ∈ (1,+∞) such that

V̇ ≤ −
Cv
Tc

(αV q
+ b)k (7)

where

Cv =
1

α
1
q

·
1

qk − 1
· b
1-qk
q .

Then, the system (1) is globally predefined-time stable within
predefined-time Tc.

Proof: For all we known, when V (x) > 0,

dV
dt
≤ −

Cv
Tc
· (αV q

+ b)k

= −
Cv
Tc
· ((α

1
qV )

q
+ (b

1
q )q)

k
.

FIGURE 2. Trajectory portrait of response system without control
inputs ui (t).

According to the supposing of Theorem 1, one can obtain
that

T (x0) =
∫ T (x0)

0
dt

≤ −

∫ 0

V (x0)

Tc
Cv
·

1

((α
1
qV )q + (b

1
q )q)k

dV .

By virtue of q ∈ (0, 1), using Lemma 5, one has

(α
1
qV )q + (b

1
q )q ≥ (α

1
qV + b

1
q )q,
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thus

T (x0) =
∫ T (x0)

0
dt ≤

Tc
Cv

∫ V (x0)

0

1

((α
1
qV )+ (b

1
q ))qk

dV

=
Tc
Cv

1

α
1
q (1-qk)

· (α
1
qV + b

1
q )
1-qk ∣∣∣V (x0)0 .

By virtue of qk > 1, T (x0) becomes

T (x0) ≤
Tc
Cv

1

α
1
p (1-qk)

· (
1

(α
1
qV (x0)+ b

1
q )
qk−1 − b

1-qk
q )

=
Tc
Cv

1

α
1
q (qk − 1)

· (b
1-qk
q −

1

(α
1
qV (x0)+ b

1
q )
qk−1 ).

If V (x0) = 0, T (x0) = 0 can be derived.
If V (x0)→∞, one can derive that

T (x0) ≤
Tb
Cv

1

α
1
q (qk − 1)

(b
1-qk
q −

1

(α
1
qV (x0)+ b

1
q )
qk−1 )

=
Tc
Cv

1

α
1
q (qk − 1)

b
1-qk
q = Tc.

Therefore, Tc in Theorem 1 is a predefined-time for
system (1). This proof is completed. �
Remark 1: In Theorem 1, the settling time of predefined-time

stability is only related to the tuning parameter, namely the
predefined-time Tc. After removing the parameters Tc and Cv,
the predefined-time stability of Theorem 1 can be changed
into the fixed-time stability. Then the fixed-time stability of
system (1) can be achieved. And the upper bound of settling
time can be indicated as T 2

max = Cv.
Theorem 2: If p ∈ (0, 1], the settling time T 1

max in Lemma 4
is less precise than T 2

max .
Proof: Evidently, if 0 < q ≤ 1

T 2
max − T

1
max =

1

α
1
q

·
1

qk − 1
· b

1-qk
q −

1
bk

(
b
α
)
1
q (1+

1
qk − 1

)

= −
1
bk

(
b
α
)
1
q < 0.

then T 2
max < T 1

max . This proof is completed. �
Remark 2: Apparently, Theorem 1 provides a new proof

process of predefined-time stability. Although Lyapunov func-
tion (7) is the same as that in Ref. [41], different settling time
is obtained in Theorem 1. From Theorem 2, the settling time
T 2
max obtained in Theorem 1 is more accurate than the settling
time T 1

max in Lemma 4.
If qk = 1, by Lemma 5 and Theorem 1, one has

T (x0)1 ≤
Tc
Cv

1

α
1
q

· ln
(α

1
qV (x0)+ b

1
q )

b
1
q

.

If 0 < qk < 1, T (x0) satisfies

T (x0)2 ≤
Tc
Cv

1

α
1
q (1− qk)

· ((α
1
qV (x0)+ b

1
q )1-qk − b

1-qk
q ).

which means that function V (·) converges to zero within
finite-time and the convergence time is only dependent on the
initial value V (x0). Therefore, the equilibrium solution of the
system (1) can achieve finite-time stability when 0 < qk ≤ 1.
Meanwhile, it is easy to draw the following Corollary.
Corollary 1: Supposing V (·) : Rn→ R+ ∪ 0 is a continu-

ous strictly monotonically decreased function and satisfies
(1) V (x) = 0 ⇒ x ∈ A, where A ∈ Rn is a non-empty set

and globally fixed-time attractive for system (1);
(2) Tc ∈ {r1, · · · , rb} is a user defined parameter.
(3) For all V (x) > 0, there exist positive parameters α, b, q

and satisfying q ∈ (1,+∞), such that

V̇ ≤ −
Cv
Tc

(αV q
+ b) (8)

where

Cv =
1

α
1
q

·
2(q−1)

q− 1
· b

1−q
q .

The system (1) can achieve globally predefined-time stability
within predefined-time Tc.

Proof: If q ∈ (1,+∞), by Lemma 5, one can get

(α
1
qV )q + (b

1
q )q ≥ 2(1−q)(α

1
qV + b

1
q )q

thus

T (x0) ≤ −
∫ 0

V (x0)

Tc
Cv
·

1

(α
1
qV )q + (b

1
q )q

dV

≤
Tc
Cv

2(q−1)
∫ V (x0)

0

1

(α
1
qV + b

1
q )q

dV

=
Tc
Cv

2(q−1)

α
1
q (1− q)

· (α
1
qV + c

1
q )

1−q ∣∣∣V (x0)0

≤
Tc
Cv

2(q−1)

α
1
q (1− q)

· (
1

(α
1
qV (x0)+ b

1
q )
q−1 − b

1−q
q )

=
Tc
Cv

2(q−1)

α
1
q (q− 1)

· (b
1−q
q −

1

(α
1
qV (x0)+ b

1
q )
q−1 ).

If V (x0) = 0, T (x0) = 0 can be derived.
If V (x0)→∞, one can drive that

T (x0) ≤
Tc
Cv

2(q−1)

α
1
q (q− 1)

· (b
1−q
q −

1

(α
1
qV (x0)+ b

1
q )
q−1 )

=
Tc
Cv

2(q−1)

α
1
q (q− 1)

· b
1−q
q

= Tc.

This proof is completed. �
Remark 3: Compared with Theorem 1, the Lyapunov func-

tion (8) in Corollary 1 has one less parameter k, which makes
the Lyapunov function simpler. Theorem 1 and Corollary 1
can be selected and applied according to different situations.
Remark 4: From the hypothesis of Theorem 1, qk > 1,

and hypothesis of Corollary 1, q > 1, one can see that
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the exponents of the Lyapunov function (7) and (8) are not
necessarily integer, but can also contain decimals. There-
fore, Theorem 1 and Corollary 1 can not only be used for
integer-order systems, but also for fractional-order chaotic
systems with time-delay, such as Ref. [42], [43].

V. FIXED-TIME SYNCHRONIZATION AND
PREDEFINED-TIME SYNCHRONIZATION
In this section, the predefined-time synchronization of two
different fractional-order chaotic systems with time-delay
will be investigated. Further, the fixed-time and predefined-
time synchronization controller for the response system will
be designed. According to the definition of errors at drive
system and response system, we have

ei(t) = yi(t)− xi(t), i = 1, 2, . . . , n. (9)

Supposing that E(t) = (e1(t), e2(t), . . . , en(t))T ∈ Rn

is the state vector of error system and the initial value is
E(0) = Y (0)− X (0). According to Lemma 2, the system (9)
is described by

t0D
α
t ei(t) = t0D

α
t yi(t)− t0D

α
t xi(t), (10)

Therefore, formula (3) and (4) are substituted into (10) to
obtian the following:

Dαei(t) = −σiei(t)+ hi(ei(t))+Hi(ei(t−τ ))+ui(t) (11)

where hi(ei(t)) = fi(Y , t)− fi(X , t), Hi(ei(t− τ )) = Fi(Y , t−
τ ) − Fi(X , t − τ ), and the control law ui(t)(i = 1, 2, . . . , n)
will be discussed later.

A. FIXED-TIME SYNCHRONIZATION
Definition 3 ([30]): Drive system and corresponding

response system can achieve fixed-time synchronisation in all
initial value X (0),Y (0), when there exists a positive constant
T (x0) satisfying

lim
x→T (x0)

ei(t) = lim
x→T (x0)

(yi(t)− xi(t)) = 0

and

ei(t) ≡ 0,∀t > T (x0).
Assumption 1: For ∀t, τ > 0, the delayed function Fi(·) is

bounded. There exist positive constants l1 = sup{|Fi(X , t −
τ )|}, l2 = sup{|Fi(Y , t−τ )|}. Then, choose a positive constant
L, such that

|Hi(ei(t − τ ))| ≤ |Fi(Y , t − τ )| + |Fi(X , t − τ )|

≤ l1 + l2 = L, ∀X (0),Y (0) ∈ Rn.
Remark 5: In the practical system, it is difficult to acquire

the accurate formula of the delayed function. However, it is
easy to exactly estimate the upper bound of delayed function.
The upper bound of the delayed function can be estimated by
using adaptive techniques in [44], [45]. Therefore, Assump-
tion 1 is reasonable.

Theorem 3: According to Definition 3 and Assumptions 1,
for achieving fixed-time stability of fractional-order time-
delayed system (3) and system (4), the controller will be
designed as following

ui(t) = σiei(t)− hi(ei(t))− sign(ei(t))L − Dα−1
( 2k−1

N 1−qk

·α1 sign(ei(t)) |ei(t)|qk + 2k−1λ1 sign(ei(t))
)

(12)

where α1, λ1, k are positive constants and qk > 1.
Proof: Choose following continuous function as

Lyapunov function

V1(t) =
n∑
i=1

|ei| . (13)

By applying Lemma 1-3 and taking the derivative of V1(t),
one can obtain that

V̇1(t) =
N∑
i=1

ėi(t) sign (ei(t))

=

N∑
i=1

(
D1−α (Dαei(t))) sign (ei(t))

=

N∑
i=1

sign(ei(t))
[
D1−α

(
− σei(t)+ hi(ei(t))

+Hi(ei(t − τ ))+ ui(t)
)]

=

N∑
i=1

sign(ei(t))
[
D1−α

(
Hi(ei(t − τ ))− sign(ei(t))L

−Dα−1
( 2k−1

N 1−qk · α1 sign(ei(t)) |ei(t)|
qk
+ 2k−1

· λ1 sign(ei(t))
))]

By exploiting Assumption 1, one can derived that

sign(ei(t))
(
Hi(ei(t − τ ))− sign(ei(t))L

)
= sign(ei(t))Hi(ei(t − τ ))−L

≤ |Hi(ei(t − τ ))|−L ≤ 0,

thus

V̇1(t) ≤
N∑
i=1

sign(ei(t))
[
D1−α

(
− Dα−1

( 2k−1

N 1−qk

·α1 sign(ei(t)) |ei(t)|qk + 2k−1λ1 sign(ei(t))
))]

= −

N∑
i=1

sign(ei(t)) ·
[ 2k−1

N 1−qk α1 sign(ei(t)) |ei(t)|
qk

+ 2k−1λ1 sign (ei(t))
]

= −

N∑
i=1

(
2k−1

N 1−qk α1 |ei(t)|
qk
+ 2k−1λ1

)
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Combined with Lemma 5, V̇1(t) can be described as

V̇1(t) ≤ −N 1−qk 2k−1

N 1−qk α1

(
N∑
i=1

|ei(t)|

)qk
− 2k−1Nλ1

= −2k−1α1V
qk
1 − 2k−1Nλ1

≤ −(α
1
k
1 V

q
1 +

N
N 1−qk λ

1
k )k . (14)

Simplifying (14), one has that

V̇1(t) = −(αV
q
1 + b)

k (15)

where α = α
1
k
1 and b = N

N 1−qk λ
1
k . According to Theorem 1

and Remark 1, the drive system (3) and response system (4)
can achieve fixed-time synchronization. The upper bound of
the settling time is

T1 ≤
1

( N
N 1−qk λ

1
k )k

(
( N
N 1−qk λ

1
k )

α
1
k
1

)
1
q (

1
qk − 1

). (16)

�
Remark 6: From the relationship between fixed time Tc

and system parameters b, k, q, α above, it can be seen
that in order to achieve stability or synchronization of the
systems within a given time, it needs to be obtained through
complex calculation. To overcome the above, predefined-time
stability has been studied. The upper bound of the settling
time appears explicitly in their tuning gains Tc, and can be
conveniently adjusted according to the practical engineering
application.

B. PREDEFINED-TIME SYNCHRONIZATION
Definition 4 ( [46]): By adjusting the parameter Tc,

the settling time T (x0) of fixed-time synchronization can be
preset in advance. Then the drive system (3) and response
system (4) can achieve globally predefined-time synchroniza-
tion, i.e.,

T (x0) ≤ Tc,∀x0 ∈ Rn

Remark 7: Obviously, achieving predefined-time synchro-
nization of the drive system (3) and response system (4)
is equal to research the synchronization of dynamic error
system (9). Hence, we will design an appropriate controller
ui(t) to force the error system (9) convergence in the desired
time.
Theorem 4: For achieving predefined-time synchroniza-

tion, based on Assumptions 1, Definition 4 and Theorem 3,
the control law will be designed as following:

ui(t) = −hi(ei(t))+ σiei(t)− sign(ei(t))L − Dα−1
[Cv
Tc

·

(
β2 sign(ei(t)) |ei(t)|qk + λ2 sign(ei(t))

)]
(17)

where Tc represents the tunable predefined-time; Cv is pos-
itive constant determined by other parameters; β2, λ2, q, k
are positive constants.

Proof: Choose following continuous function as
Lyapunov function

V2(t) = ‖e(t)‖1 =
n∑
i=1

|ei| .

Taking the derivative of V2(t), one can attain that

V̇2(t) =
N∑
i=1

ėi(t) sign (ei(t))

=

N∑
i=1

(
D1−α (Dαei(t))) sign (ei(t))

=

N∑
i=1

sign(ei(t))
[
D1−α

(
− σei(t)+ hi(ei(t))

+Hi(ei(t − τ ))+ ui(t)
)]

=

N∑
i=1

sign(ei(t))
[
D1−α

(
Hi(ei(t − τ ))− L

· sign(ei(t))− Dα−1
(Cv
Tc

(
β2 sign(ei(t)) |ei(t)|qk

+ λ2 sign (ei(t))
)))]

≤ −
Cv
Tc

N∑
i=1

sign(ei(t))
[
D1−α

(
Dα−1

(
β2 sign(ei(t))

· |ei(t)|qk + λ2 sign (ei(t))
))]

= −
Cv
Tc

N∑
i=1

sign(ei(t))
(
β2 sign(ei(t)) |ei(t)|qk

+ λ2 sign (ei(t))
)

= −
Cv
Tc

N∑
i=1

(
β2 |ei(t)|qk + λ2

)
.

Combined with Lemma 5, V̇2(t) becomes:

V̇2(t) ≤ −
Cv
Tc

N 1−qkβ2

(
N∑
i=1

|ei(t)|

)qk
+ Nλ2


= −

Cv
Tc

(
N 1−qkβ2V

qk
2 + Nλ2

)
≤ −

Cv
Tc

(β
1
k
2 V

q
2 + λ

1
k
2 )

k

= −
Cv
Tc

(α̃V q
2 + b̃)

k

where α̃ = β
1
k
2 , b̃ = λ

1
k
2 . According to Theorem 1 and

Corollary 1, the Cv can be obtained as following:

Cv =



1

β
1
qk
2

·
1

qk − 1
· λ

1−qk
qk

2 if 0 < q ≤ 1,

1

β
1
qk
2

·
2(q−1)

q− 1
· λ

1−q
qk
2 if q > 1.
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Then, for ∀t > Tc, we can obtain V2(t) = 0. The
dynamic error system (9) is synchronized within predefined-
time Tc. �

VI. SIMULATION RESULTS
In this section, via two illustrative examples, we demonstrate
the effectiveness of predefined-time theorem in Section IV.
We present the numerical simulation results when the con-
trollers ui(t) is designed based on Theorem 3 and Theorem 4
respectively. Besides, some analysis results are listed.
Example 2: We choose the fractional-order time-delayed

system (5) as drive system and the system (6) as response
system. Then, the following dynamic error system can be
derived

Dαei(t) = −σiei(t)+hi(ei(t))+Hi(ei(t−τ ))+ui(t). (18)

According to Theorem 3, the fractional-order fixed-time syn-
chronization controller ui(t)(i = 1, 2, 3, 4) is designed as

ui(t) = −Dα−1
[ 2k−1

N 1−qk α1 sign(ei(t)) |ei(t)|
qk
+ 2k−1λ1

· sign(ei(t))
]
− hi(ei(t))+ σiei(t)− sign(ei(t))L

(19)

Combing formula (5), (6) and (18), the controllers are
designed as following

u1(t) = σ1e1(t)− a1 (y2(t)− y1(t))− y4(t)+ a(x2(t)

−x1(t))− Dα−1
[ 2k−1

N 1−qk α1 sign(e1(t))

· |e1(t)|qk + 2k−1λ1 sign(e1(t))
]
− sign(e1(t))L

u2(t) = σ2e2(t)− b1y1(t)+ y2(t)+ y1(t)y3(t)+ bx1(t)

−kx1(t)x3(t)+ x4(t)− Dα−1
[ 2k−1

N 1−qk α1

· sign(e2(t)) |e2(t)|qk + 2k−1λ1 sign(e2(t))
]

− sign(e2(t))L
u3(t) = σ3e3(t)− y1(t)y2(t)+ c1y3(t)+ h(x1(t))2

−cx3(t)+ x4(t)− Dα−1
[ 2k−1

N 1−qk α1 sign(e3(t))

· |e3(t)|qk + 2k−1λ1 sign(e3(t))
]
− sign(e3(t))L

u4(t) = σ4e4(t)+ y2(t)y3(t)+ r1y4(t)− rx2(t)

−Dα−1
[ 2k−1

N 1−qk α1 sign(e4(t)) |e4(t)|
qk
+ 2k−1

·λ1 sign(e4(t))
]
− sign(e4(t))L

(20)

where α = 0.82, N = 4, i = 1, 2, 3, 4, σi = 0.1, q =
0.5, k = 5.2, α1 = 0.764. Because the function tanh(·)
is bounded, then we can get |Fi(·)| ≤ 0.1. According to
Assumption 1, we choose L = 0.2 > |Hi(·)|.
From Theorem 3, Remark 1 and Definition 3, two different

fraction-order time-delayed chaotic system (5) and (6) can
achieve fixed-time synchronization. And different parame-
ter λ1 and diverse initial values X (0),Y (0) are offered to

FIGURE 3. (a)When λ1 = 0.598, the fixed-time synchronization error of
drive-response systems with different initial values under the
controller (19). (b)When λ1 = 1.05, the fixed-time synchronization error
of drive-response systems with different initial values under the
controller (19).

illustrate the veracity of fixed-time stability theory. Fig. 3(a)
shows the synchronization errors of the drive-response sys-
tems with the parameter λ1 = 0.598, and the settling time
estimation can be obtain that T 2

max = 0.5294. Fig.3(b) shows
the synchronization errors of the drive-response systems with
the parameter λ1 = 1.05, and the settling time estimation
can be obtain that T 2

max = 0.593. As can be seen from Fig.3,
under different initial values, drive-response systems are able
to achieve synchronization within the settling time T 2

max .
According to the Lemma 4, when the parameter λ1 = 0.598,
one can obtain the T 1

max = 1.3764 > T 2
max = 0.5294. When

the parameter λ1 = 1.05, the T 1
max = 1.5418 > T 2

max =

0.593. Hence, the Theorem 2 is effectiveness. Compared with
the convergence time in Fig.3 and the upper bound of the
settling time estimation, it can be seen that the fixed-time
synchronization controller (19) and the Theorem 3 are effec-
tiveness and irrelevant of the initial values.
Example 3: Considering predefined-time synchronization

of drive system (5) and response system (6), according to
Theorem 4, the controller ui(t)(i = 1, 2, 3, 4) is chosen as
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following

ui(t) = σiei(t)− Dα−1
[Cv
Tc

(
µ sign(ei(t)) |ei(t)|qk + ω

· sign(ei(t))
)]
− hi(ei(t))− sign(ei(t))L (21)

Based on system (5) and (6), we can obtain the
predefined-time synchronization controller as follows

u1(t) = σ1e1(t)− a1 (y2(t)− y1(t))− y4(t)+ a(x2(t)

−x1(t))− Dα−1
[Cv
Tc

(
µ sign(e1(t)) |e1(t)|qk

+ω sign(e1(t))
)]
− sign(e1(t))L

u2(t) = σ2e2(t)− b1y1(t)+ y2(t)+ y1(t)y3(t)+ bx1(t)

−kx1(t)x3(t)+ x4(t)− Dα−1
[Cv
Tc

(
µ sign(e2(t))

· |e2(t)|qk + ω sign(e2(t))
)]
− sign(e2(t))L

u3(t) = σ3e3(t)− y1(t)y2(t)+ c1y3(t)+ h(x1(t))2

−cx3(t)+ x4(t)− Dα−1
[Cv
Tc

(
µ sign(e3(t))

· |e3(t)|qk + ω sign(e3(t))
)]
− sign(e3(t))L

u4(t) = σ4e4(t)+ y2(t)y3(t)+ r1y4(t)− rx2(t)

−Dα−1
[Cv
Tc

(
µ sign(e4(t)) |e4(t)|qk

+ sign(e4(t)) · ω
)]
− sign(e4(t))L

(22)

where α = 0.82, i = 1, 2, 3, 4, σi = 0.1, k = 5.2, µ = 12.9,
ω = 11. According to Assumption 1, we choose L = 0.2.
Case 1: When 0 < q ≤ 1, we can select q = 0.5. Through

Theorem 1, we can get Cv = 0.0534.
From Theorem 4, the fractional-order time-delayed

systems (5) and (6) can achieve predefined-time synchroniza-
tion. To account for the effectiveness of the predefined-time
synchronization theorem, we design the controller ui(t)
(i = 1, 2, 3, 4) by using different Tc. By definition 4 and
Theorem 1, it can be seen that the settling time of
predefined-time stability is independent of the initial values
X (0) and Y (0). By choosing different Tc, system (5) and (6)
can synchronize within the given predefined-tiem Tc. The
simulation results are shown in Fig.4(a) with Tc = 1 and
Fig.5(b) with Tc = 1.5. Further, the time response of x1, y1
and x3, y3 under controller (22) shown in Fig.5. The Fig.5
demonstrates the excellent tracking performance between
drive system (5) state variates xi and response system (6) state
variates yi.
Case 2: When q > 1, to verify the validity of Corollary 1,

we select q = 2 and the other parameters in (22) remain
the same as Example 3. According to Corollary 1, we can
obtain Cv = 1.242. Based on predefined-time synchroniza-
tion controller (21), the simulation results are shown in Fig.6.
The time response of drive system (5) and response system
(6) shown in Fig.7. The Fig.7 exhibits the eminent synchro-
nization between drive-response systems state vector xi and
yi. The results in Fig.4-7 confirm that the predefined-time

FIGURE 4. (a)When q = 0.5, Tc = 1, the error system realizes
predefined-time synchronization under controller (21) and diverse
X (0),Y (0). (b)When q = 0.5, Tc = 1.5, the error system realizes
predefined-time synchronization under controller (21) and
diverse X (0),Y (0).

FIGURE 5. Time response of x1, y1 and x3, y3 under controller (21) with
q = 0.5, Tc = 1.

stability Theorem 3 and Theorem 4 are trustworthy and effec-
tiveness.
Remark 8: According to Definition 4, the drive-response

system can achieve synchronization within the predefined-
time. Besides, Theorem 4 provides a tunable parameter Tc
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FIGURE 6. When q = 2 and Tc = 1, the synchronization error trajectories
under controller (22).

FIGURE 7. When q = 2 and Tc = 1, the time response of drive system and
response system under controller (22).

in advance, which can tune the settling time according to the
needs of practical application.
Remark 9: The method in Section V is feasible. The chat-

tering phenomenon can be reduced by selecting appropriate
parameters, but if the parameters are not selected rationally,
more obvious chattering phenomenonmay occur. In the future
work, we will focus on the design of the controller to achieve
higher precision predefined-time synchronization.
Example 4: Considering the situation that time-delay

of fractional-order drive system and response system
is non-negative time-varying variable. Supposing the
time-dependent delayed function is denoted as

τ (t) =
et

(1+ et )
.

Then, the drive system is described by

Dαx1 = −σ1x1(t)+ a (x2(t)− x1(t))
+0.1 tanh(x1(t − τ (t)))
Dαx2 = −σ2x2(t)+ bx1(t)− kx1(t)x3(t)+ x4(t)
+0.1 tanh(x2(t − τ (t)))
Dαx3 = −σ3x3(t)+ h(x1(t))2 − cx3(t)+ x4(t)
+0.1 tanh(x3(t − τ (t)))
Dαx4 = −σ4x4(t)− rx2(t)+ 0.1 tanh(x4(t − τ (t)))

(23)

Corresponding response system can be designed as

Dαy1 = −σ1y1(t)+ a1 (y2(t)− y1(t))+ y4(t)
+0.1 tanh(y1(t − τ (t)))+ u1(t)
Dαy2 = −σ2y2(t)+ b1y1(t)− y2(t)− y1(t)y3(t)
+0.1 tanh(y2(t − τ (t)))+ u2(t)
Dαy3 = −σ3y3(t)+ y1(t)y2(t)− c1y3(t)
+0.1 tanh(y3(t − τ (t)))+ u3(t)
Dαy4 = −σ4y4(t)− y2(t)y3(t)− r1y4(t)
+0.1 tanh(y4(t − τ (t)))+ u4(t)

(24)

The other parameters in (23) and (24) stay the same as
system (5) and (6).When time-delay τ (t) is variable, the drive
system chaotic behavior and phase portraits between different
variables are shown in Fig.8. The results of synchronization
error are presented in Fig.9 under the controller (21) and the
parameters q = 0.5, Tc = 1.5. The error system convergence
time T = 1.32 < Tc, therefore, it can be obtained that
Theorem 4 can still handle the case where the time-delay is
variable.

FIGURE 8. Phase portraits of drive system when time-varying is τ (t).

Remark 10: The time-varying input delay τ (t) is bounded
such that 0 ≤ τ (t) ≤ 1. Besides, the time-delay is slow
varied, and the rate of change of the delay satisfies |τ̇ (t)| < 1.
Although the time-delay is varied, the upper bound of τ (t) and
delayed function Fi(·) still exist. That is, Assumption 1 holds,
which resulting in the controller (21) appropriate in this case.
Remark 11: Theoretically, the time-delay in this paper can

be set arbitrarily large. This paper mainly considers the case
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FIGURE 9. When q = 0.5, Tc = 1.5 and the time-varying τ (t), the error
trajectories under controller (21).

that the time-delay is less than the predefined-time Tc, so that
the influence of time-delay can be fully considered when
choosing Tc. If the time-delay is greater than Tc, then the
time-delay does not act before the drive-response systems
synchronization, and when the time-delay acts, a small jitter
may occur.
Remark 12: To show the effectiveness of the designed con-

troller, numerical simulations at Example 2-4 have been
offered by different values of p, Tc, X (0) and Y (0). Further,
the effectiveness of fixed-time synchronization Theorem 3 and
predefined-time synchronization Theorem 4 are verified. Evi-
dently, the fractional-order drive system (3) and response sys-
tem (4) can achieve predefined-time synchronization, by pre-
supposing tunable parameter Tc. Then, the effectiveness of
synchronization theorems have been verified.

VII. CONCLUSION
In this paper, two novel different fractional-order time-
delayed chaotic systems have been investigated. On the basis
of fixed-time synchronization theory and non-negative Lya-
punov function, the globally predefined-time stability theo-
rem of fractional-order chaotic system has been proposed.
Even now, it has few been found that the references related
to the adaptive predefined-time stability of fractional-order
time-delayed system. For predefined-time stability, by setting
the tunable parameter Tc in advance, the designed controller
can achieve synchronization of drive system and correspond-
ing response system within the upper bounded of settling
time. And there are four advantages of predefined-time as
follows:

(1) The convergence time is independent of the con-
troller parameters and drive-response system param-
eters, which only affect by the certain tunable
parameter Tc.

(2) The predefined-time stability has a direct relationship
between the tunable parameter and the settling time,
which appears explicitly in Tc.

(3) The upper bound of predefined-time is not a conser-
vatively estimated value but a true minimum, which is
more accurate than the settling time of Lemma 4.

(4) By selecting the value of the tunable parameter Tc, two
different chaotic systems can synchronize at different
times.

It can be discovered that the predefined-time stability is reli-
able under different conditions. The simulation results of two
different fractional-order chaotic systems synchronization
have been shown that the convergence time of Theorem 3 is
more accurate than Lemma 4. The proposed predefined-time
theory and the designed synchronization controller can be
applied to other fractional-order time-delayed chaotic sys-
tems. In the future research work, we will continue to study
the predefined-time synchronization under the influence of
disturbances.
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