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ABSTRACT Convolutional neural networks (CNNs) can effectively handle grid-structured data but not
dynamic skeletons, which are usually expressed as graph structures. In this study, we first propose
a skeleton-based square grid (SSG) for transforming dynamic skeletons into three-dimensional (3D)
grid-structured data so that CNNs can be applied to such data. Each SSG contains a joint-based square
grid (JSG) and a rigid-based square grid (RSG) based on intrinsic and extrinsic dependencies of various
body parts, respectively. Next, to enhance the ability of deep features to capture the correlations among 3D
grid-structured data, a two-stream 3D CNN is constructed to learn spatiotemporal features using the JSG and
RSG sequences. Finally, we introduce a soft attention model that selectively focuses on the informative body
parts in the skeleton sequences. We validate our model in terms of action recognition using three datasets:
NTU RGB+D, Kinetics Motion, and SBUKinect Interaction datasets. Our experimental results demonstrate
the effectiveness of the proposed approach as well as its superior performance when compared with those of
state-of-the-art methods.

INDEX TERMS 3D convolutional neural networks, skeleton action recognition, neural network, attention
mechanism.

I. INTRODUCTION
Human action recognition has received significant atten-
tion in computer vision, owing to its wide application in
video surveillance, medical rehabilitation, animal behavior
analysis, virtual reality, and human-computer interactions.
However, owing to the influence of external environmental
factors such as changes in appearance, surrounding distrac-
tions, and variations in viewpoints, it is still a challenging task
to precisely represent human action features. With the advent
of cost-efficient depth sensors such as Kinect, the approaches
to obtaining human skeleton information have changed
significantly.

Deep learning techniques have achieved remarkable
progress in the field of computer vision. The success
of these techniques mostly relies on convolutional neural
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networks (CNNs) [1], [2] and recurrent neural networks
(RNNs) [3], [4]. RNNs with long short-term mem-
ory (LSTM) can learn temporal dependencies; however, it is
difficult to train a stacked LSTM in practice [5]. CNNs use
a standard convolution, which can be applied only to
grid-structured data. In [6]–[8], a skeleton sequence was
treated as a still image, and thus, spatiotemporal information
could be learned using CNNs. However, these approaches do
not consider the motion information encoded in multiple con-
tiguous frames; therefore, the dependencies between joints
and rigid bodies cannot be expressed fully.

A skeleton can be considered a graph structure, with
bone joints and rigid bodies representing the vertices and
edges of the graph, respectively. The recently proposed graph
convolutional networks (GCNs) [9], [10], which generalize
CNNs to arbitrary graphs, have been effective in learning
spatiotemporal information. Yan et al. [11] leveraged the spa-
tial connections between bone joints and connected the same
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FIGURE 1. General framework of the proposed approach. Two 3D CNN streams are used to process the intrinsic and extrinsic dependencies in a
skeleton.

joints over time to form a spatiotemporal graph (STG). Spa-
tiotemporal graph convolutional networks (ST-GCNs) apply
GCNs to model STGs. However, this approach is limited
to a heuristic design of the sampling function for the graph
convolutional operation and represents only physical depen-
dencies, rendering this approach unsuitable for human action
recognition. For example, the hand and the head are phys-
ically disconnected, but their dependency is important for
recognizing actions such as drinking water or answering the
telephone. To extract the global relationship, Ding et al. [12]
proposed STG-IN to perform long-range temporal modeling
over an STG.

To resolve these issues, we propose an effective method
for transforming each skeleton into a skeleton-based square
grid (SSG) containing a joint-based square grid (JSG) and
a rigid-based square grid (RSG). Both the horizontal and
vertical axes of the SSG are expressed as a chain order gen-
erated by traversing the skeleton tree based on a depth-first
order. The JSG preserves the intrinsic dependency (physical
connection) of the skeleton structure, as depicted in Fig. 3a.
The RSG enables the CNN to extract the extrinsic depen-
dency (physical disconnection) among various body parts in a
skeleton, as depicted in Fig. 3b. After the skeleton sequence is
transformed into a grid sequence, as depicted in Fig. 1, a two-
stream 3D CNN is introduced to extract dependency rela-
tionships and discriminative spatiotemporal features from the
JSG and RSG sequences, respectively. Furthermore, certain
body parts in the skeleton and crucial frames in the sequences
are more informative for recognizing actions, such as the
hands in the action of waving hands. Such body parts and
frames must have high importance when modeling dynamic
skeletons. Therefore, a soft attention model with LSTM is
incorporated into the two-stream 3D CNN to allocate atten-
tion masks to various body parts. Finally, the two-stream
3D CNN and the attention network are cascaded as an entire
network, which is trained in an end-to-end manner using the
input SSG data.

The main contributions of this study are as follows:
1) An SSG is proposed so that the skeleton structure can
be adaptively learned, and the spatial relationships among

various body parts can be determined. 2) A soft attention
mechanism is introduced to learn the importance of human
body parts in a skeleton and the crucial frames in the action
sequences. Next, attention weights are used to refine the
output of the two-stream 3D CNN. 3) The proposed model
exceeded the performances of state-of-the-art methods by a
significant margin, based on the results on three datasets for
skeleton-based action recognition. The disadvantage of the
proposed method is that it does not have universal applica-
bility. The proposed grid can preserve only the adjacency
relationship for the human skeleton graph. For any other
graph, if there is no prior domain knowledge, the extracted
relationship is unknown after it is transformed into this type
of grid.

The remainder of this paper is organized as follows.
Section II presents related work. Section III describes
the SSG developed to adaptively learn the features of a
two-stream 3D CNN. A soft attention mechanism is then
introduced for feature refinement using attention weights.
Section IV presents the experimental results and discussion.
Section V concludes the paper.

II. RELATED WORK
Deep neural networks can realize automatic feature extraction
to replace hand-crafted features. CNNs have been proven
effective in extracting local-to-global features. In [6], [7],
it was proposed that skeleton sequences be represented as
2D grayscale images, called skeleton images. Subsequently,
a CNN was used to learn a spatiotemporal representation.
Each row of the skeleton images was typically arranged by
simply concatenating all joints in a predefined chain order,
and each column represented the temporal evolution of a
joint. It was demonstrated that the relations between adjacent
joints in a skeleton were not expressed in skeleton images.
Liu et al. [13] proposed skeleton images with ‘‘Skepxels’’ for
a better representation of joint correlations. Yang et al. [8]
designed skeleton images using depth-first traversal on
skeleton trees. In these approaches, the skeleton sequences
were treated as still images, and the motion information
encoded in multiple contiguous frames was not considered.
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To adapt the skeleton data to a suitable view, a view-adaptive
LSTM [14] was introduced for better action recognition.
Pham et al. [15] proposed building a compact image to
represent skeleton poses and their motions. Pham et al. [16]
designed a deep neural network and trained it to learn a direct
2D-to-3D mapping and predict human poses in 3D space.

3D CNNs with 3D convolution kernels and 3D pooling
can not only acquire the spatial features of each skeleton
but also express the change in adjacent joints over time.
Ji et al. [17] proposed a simple and efficient method for
automatic spatiotemporal feature learning using a 3D CNN.
Cao et al. [18] verified that 3D CNNs are more suitable for
spatiotemporal feature learning, and a 3× 3× 3 convolution
kernel is the best choice in convolutional layers. In general,
3D CNNs can automatically capture correlations in the spa-
tiotemporal information. Our SSG transforms dynamic skele-
tons into 3D grid-structured data. It differs from previous
approaches in that it can extract intrinsic and extrinsic depen-
dencies with temporal dynamics. It also differs from [19]
in that it harnesses the 3D CNNs whereas [19] uses the
growing grid neural networks. To consider time dependency,
another approach has investigated the combination of an
RNN and LSTM. Du et al. [20] proposed an end-to-end hier-
archical RNN to encode the relativemotion between the joints
in the skeleton. Shahroudy et al. [21] proposed a part-aware
LSTM with part-based memory sub-cells and a new gating
mechanism. To learn the co-occurrence features of the joints,
Zhu et al. [22] used an end-to-end fully connected deep
LSTM network. However, LSTM networks cannot memorize
all the information of an entire action sequence [23]; there-
fore, they cannot efficiently learn the structure of the human
skeleton.

Attention mechanisms simulate human perception and
focus more on certain parts of the information. All the joints
are not equally important in an action. It was demonstrated
in [24]–[27] that some actions are related to a certain set of
joint points, whereas some others are related to other joints.
For example, a telephone call is closely related to the joints of
the head, shoulder, elbow, and wrist. It has little relationship
with the joints of the leg. In contrast,walking can be identified
primarily through the observation of the joints of the leg.
Therefore, the importance of each posture is not the same in
action recognition.

The various attention models that have been proposed can
be classified into soft attention and hard attention models.
Soft attention is deterministic, and the importance (score) of
each body part in action sequences is measured and added
to form the final representation. Hard attention is stochastic,
and a single element is selected exclusively. Liu et al. [26]
proposed global context-aware attention LSTM to extract the
global contextual information by measuring the scores of the
new inputs at all steps and adjusting the attention weights
accordingly. Zang et al. [27] implemented an attention mech-
anism in a temporally weighted multi-stream CNN, focus-
ing on critical segments rather than processing all sampled
frames.

III. MODEL ARCHITECTURE
A. GRAPH REPRESENTATION OF SKELETON
The human skeleton is represented using a group of 3D spatial
joint coordinates. A non-grid graph S = (V, E) can model
the spatial relations of the joints in the skeleton. V = {vi}Ni=1
indicates the set of nodes representing the joints in the skele-
ton, where N is the number of joints. E = {ei}Mi=1 indicates
the set of edges, that is, oriented rigid bodies, where M =
N −1. Fig. 2a depicts an example skeleton with 20 joints and
19 rigid bodies. We define the signal of each joint vi using its
3D spatial coordinates Coor(vi) = (xvi , yvi , zvi ). Let eis and
eie denote the starting and ending points, respectively, of the
rigid body ei. We can construct a feature Rig(eis, eie) ∈ R9 as

Rig(eis, eie) = (Coor(eis),Coor(eie),Ori(eis, eie)). (1)

where the orientation vector of a rigid body is defined as
Ori(eis, eie) = (xeis − xeie , yeis − yeie , zeis − zeie ).

Thus, each rigid body ei is represented by Rig(eis, eie),
which can reflect the intrinsic dependency (i.e., physical con-
nection). The intrinsic dependency of the skeleton structure
can be preserved using a JSG.

To learn the relationships among various body parts,
we introduce the relative geometry of a pair of rigid bodies
em and en, which can be denoted as pm = Rm,npn +

−→
d m,nd

by obtaining the coordinates of point p from rigid bodies em
to en. Using rotationmatrixRm,n and translation vector

−→
d m,n,

a rigid-body transformation (rotation and translation) to align
one body part can be written as[

pm
1

]
=

[
Rn,m
−→
d n,m

0T 1

] [
pn
1

]
. (2)

In particular, the relative geometry of em and en can be
described as

P(em, en) =
[
Rm,n
−→
d m,n

0T 1

]
(3)

P(en, em) =
[
Rn,m
−→
d n,m

0T 1

]
. (4)

Note that both Pm,n and Pn,m do not change only when
both em and en undergo the same rotation or translation,
that is, only when there is no relative motion between them.
Therefore, we use both Pm,n and Pn,m to represent the relative
geometry of em and en.

This rigid-body geometrical transformation is in the form
of the matrix of the Lie group SE(3), which can be mapped
to its Lie algebra by a 6D vector representation using Equ. 5
the matrix logarithm [28]. Formally,

pv(em, en) = vec(log(P(em, en)))

= vec(


0 −ω3 ω2 d1
ω3 0 −ω1 d2
−ω2 ω1 0 d3
0 0 0 0

)
= [ω1, ω2, ω3, d1, d2, d3] ∈ R6 (5)
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FIGURE 2. (a) Example skeleton consisting of 20 joints and 19 rigid bodies. (b) Skeleton tree depicting joints in the human body vi and their physical
connections. (c) Skeleton tree depicting rigid bodies ei and their physical connections.

FIGURE 3. (a) JSG with intrinsic dependency. The size of JSG is 39× 39× 9, and the skeleton has 20 joints. (b) RSG with extrinsic dependency. The size of
RSG is 37× 37× 6, and the skeleton has 19 rigid bodies.

Thus, the rigid-body geometrical transformation is rep-
resented by a 6D vector pv(em, en), which can reflect the
extrinsic dependencies (i.e., physical disconnection) among
various body parts. An RSG is introduced to encode the
extrinsic dependency.

B. GRID REPRESENTATION OF SKELETON STRUCTURE
Given a dynamic skeleton sequence, actions can be repre-
sented by a set of bone joints or rigid bodies, as well as
their relationships in space and time. In this study, we call
the relationship between joints intrinsic dependency (i.e.,
physical connection) and that between rigid bodies extrinsic
dependency (i.e., physical disconnection). An important char-
acteristic is that each pair of connected joints moves together.
The intrinsic dependency is maintained during the movement
owing to the force imposed by the rigid bodies. The extrinsic
dependency is dependent on the movement of other joints
through ‘‘invisible’’ rigid bodies. For example, the hand and
the head are physically disconnected, but their dependency
is important for recognizing the action of drinking water or

answering the telephone. In this sense, extrinsic dependency
contributes as much as does intrinsic dependency to action
recognition.

1) GRID REPRESENTATION OF INTRINSIC DEPENDENCY
To model the kinematic dependency among physically con-
nected joints, the skeleton is transformed into a tree struc-
ture, as depicted in Fig. 2b. In the simple joint chain model,
the joint visiting order is v1 → v2 → . . .→ vN , where N is
the number of joints in the skeleton. The skeleton tree can be
unfolded into a chain with a depth-first order, with the joint
visiting order being orderLJ : v1→ v2→ v3→ v2→ v4→
v5 → v6 → v7 → v6 → v5 → v4 → v2 → . . . → v19 →
v18→ v17→ v12→ v1, where LJ = 2∗N −1 is the number
of joints in the first order. With the proposed orderLJ , we map
the skeleton to a JSG ∈ RLJ×LJ×9, as depicted in Fig. 3a.
Each cell and the horizontal and vertical axes in JSG can be
identified with orderLJ . To model the intrinsic dependency
accurately, adjacency matrix AJ ∈ RLJ×LJ is constructed.
Here, we set aJij = 0 to discard not only self-connections but
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FIGURE 4. (a) Part of JSG depicting the intrinsic dependency among three joints {v1, v2, v12} and other joints in the human skeleton. (b) The three
joints {v1, v2, v12} correspond to the torso as indicated by the red marker. (c) Given a convolution operator with a kernel size of 3× 3, the neighboring
rigid bodies with respect to the torso can be automatically programmed. Various parts of the body centered on the trunk can be convoluted.

FIGURE 5. (a) Part of JSG depicting the intrinsic dependency among four joints {v1, v2, v3, v4} and other joints in the human skeleton. (b) and (c) depict
the 5× 5 convolution filter applied to joints {v1, v2, v3, v4}.

also physically disconnected joints. As depicted in Fig. 3a,
when aJij = 1, there is a black dot in the corresponding cell
JSG(i, j), indicating that the feature vector of a rigid body
Rig(orderLJ (i), orderLJ (j)) is computed using Eq. 1. When
aJij = 0, there is nothing in the corresponding cell JSG(i, j),
indicating that there is a vector whose values are all zero.
Formally,

JSG(i, j) =
{
Rig(orderLJ (i), orderLJ (j)), if aJij = 1
0, else.

(6)

The implementation of graph-based convolution is not as
straightforward as that of 2D or 3D convolution. The sam-
pling function of ST-GCN [11] is defined using only the
1-distance neighbor set of a joint. A partitioning strategy is
required to divide the adjacent sets of a joint into a fixed
number of subsets. This is empirically designed and dif-
ficult to generalize to various skeleton structures. In JSG,
each cell will have the same number of neighbors and the
same relationships to a neighbor in a given direction; thus,
a sampling function is not necessary. The values read by
the receptive fields are transformed into a linear layer and
fed into a convolutional architecture. The receptive fields
are not limited to the 1-distance neighbor set, as depicted
in Figs. 4 and 5.

2) GRID REPRESENTATION OF EXTRINSIC DEPENDENCY
As mentioned previously, the skeleton graph employed in
ST-GCN [11] merely represents the physical structure and
cannot be used to learn extrinsic dependencies. To resolve
this, we introduce RSG to learn the relations among various
body parts. First, based on the principle that each rigid body
in the skeleton is regarded as a vertex in a tree, the skeleton
is transformed into a tree structure, as depicted in Fig. 2c.
As mentioned previously, the skeleton tree can be unfolded
into a chain with a depth-first order orderLR : e1 → e2 →
e1 → e3 → e4 → e5 → e6 → e5 → e4 → e3 →
e1 → e7 → . . . → e17 → e16 → e11 → e1, where
LR = 2 ∗ (N − 1) − 1 is the number of rigid bodies in
the depth-first order. With the proposed order, we map the
skeleton to an RSG ∈ RLR×LR×6, as depicted in Fig. 3b.
The extrinsic dependency among various body parts can be
encoded using RSG. Similarly, to obtain further information
about extrinsic dependency, we construct adjacency matrix
AR ∈ RLR×LR . Here, we set aRij = 0 to discard not only
self-connections but also physically connected rigid bodies
with intrinsic dependency. As depicted in Fig. 3b, when
aRij = 1, there is a black dot in the corresponding
cell RSG(i, j), indicating that feature vector pv(orderLR (i),
orderLR (j)) in cell (i, j) representing the relative geometry
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of ei and ej will be given by Eq. 5. When aRij = 0, there is
nothing in the corresponding cell RSG(i, j), indicating that
there is a vector whose values are all zero. Formally,

RSG(i, j) =

{
pv(orderLR (i), orderLR (j)), if aRij = 1

0, else.
(7)

In RSG, the receptive field at any level can represent
the relative geometry of various parts of the human body.
As depicted in Fig. 6, {e4, e5, e6} can be expressed as a con-
nected set of rigid segments (right arm), and {e8, e9, e10} can
be considered the left arm. The red receptive field describes
the relative geometry from the right to the left arm. Similarly,
the blue receptive field describes the relative geometry from
the left to the right arm. Therefore, for an arbitrary body part
bi, we can completely and hierarchically learn the relative
geometry of bi and other body parts from this RSG.

FIGURE 6. Relative geometry of various body parts can be represented
using the relative geometry of all pairs of rigid bodies.

Each skeleton sequence has a different duration. To nor-
malize the temporal length of gestures, we first resam-
pled each gesture sequence to T frames using the nearest
neighbor interpolation by dropping or repeating frames.
Therefore, for a dynamic skeleton of length T , we can
formulate an action sequence as a stream of grids
SSG = (SSG1, SSG2, . . . , SSGt , . . . , SSGT ), where SSGt =
〈JSGt ,RSGt 〉 denotes the skeleton at the t-th time slice.

C. 3D CONVOLUTIONAL NEURAL NETWORKS
CNNs are generally composed of convolutional, pooling, and
fully connected layers. In conventional CNNs, 2D convolu-
tion extracts 2D feature blocks from local neighborhoods,
which correspond to a 2D convolutional kernel. In 3D con-
volutional layers, a 3D convolution kernel is used to extract
a 3D feature block into a cube composed of a group of
neurons. Different 3D convolution kernels are used to process
different feature input blocks, each of which corresponds to
a convolution kernel. On an input 3D cube with the same 3D
convolution kernel, the 3D feature map is obtained by over-
lapping convolution. Compared with 2D CNNs, 3D CNNs
can simultaneously learn features from both spatiotemporal
dimensions by capturing correlations among 3D signals.

We present the proposed strategy of adopting a two-stream
3D CNN architecture to capture spatiotemporal infor-
mation by performing 3D convolutions, thereby captur-
ing the motion information encoded in multiple adjacent
human postures [17]. As depicted in Fig. 1, the architec-
ture of the JSG stream is the same as that of the RSG

stream. For an individual stream, each 3D CNN consists
of two layers of 3D convolution followed by max-pooling.
We extract the output of the last convolutional layer by feed-
ing (JSG1, JSG2, . . . , JSGT ) and (RSG1,RSG2, . . . ,RSGT )
to the corresponding 3D CNN. There are two sets of
grids X JSG = {X JSG1 , . . . ,X JSGs , . . . ,X JSGS } and XRSG =
{XRSG1 , . . . ,XRSGs , . . . ,XRSGS }. For example, XRSG is a 4D
cube of the form K ×K ×D×S, as depicted in Fig. 7, where
K = 5, S = 4, and D = 48. Therefore, on each grid of
X JSGs and XRSGs , we extract K 2 D1-dimensional and K 2 D2-
dimensional vectors, respectively. We refer to these vectors
as feature slices in a video snippet.

X JSGs = [X JSGs,1 ,X
JSG
s,2 , . . . ,X

JSG
s,K2 ], XRSGs,i ∈ RD1 ,

XRSGs = [XRSGs,1 ,XRSGs,2 , . . . ,XRSGs,K2 ], XRSGs,i ∈ RD2 (8)

where X JSGs and XRSGs are the feature cubes of the s-th grid.
These represent a subsequence of an action, and each element
XRSGs,i is the feature of a body part in this video snippet.
TheK 2 vectors in each grid correspond toK 2 body parts in

a subsequence, which essentially encode not only the spatial
structure but also the temporal information. For action recog-
nition over a period of time, not every body part is relevant.
The proposed model focuses on those K 2 body parts where
the action occurs. For better readability, Xs represents the
feature vectors X JSGs and XRSGs as the input to the attention
model.

D. ATTENTION MECHANISM
LSTM [22], [29] can preserve sequence information over
time and capture long-term dependencies. We follow the
LSTM implementation in [27], that is,

it
ft
ot
gt

 =


σ

σ

σ

tanh

Td+D,4d

(
ht−1
xt

)
,

ct = ft � ct−1 + it � gtht = ot � tanh(ct ) (9)

where it , ft , and ot are the input, forget, and output gates,
respectively. ct is the cell (memory) state, and ht is the hidden
state. T : Rd+D

→ R4d is an affine transformation with
trainable parameters, where d is the dimensionality of it , ft ,
ot , gt , ct , and ht . σ (· ) is the sigmoid function, and� denotes
the Hadmard product.

Therefore, it is natural to design an LSTM subnetwork
that assigns attention masks Ms to various body parts of the
skeleton based on the content of the video snippet, as depicted
in Fig. 8a. Because video frames are sequential, different
video snippets have strong dependencies. We can use the
encoded Xs−1 to predict the attention masks Ms at Xs, and
then use the attention masks to refine the input to the LSTM,
as depicted in Fig. 8b. In particular, we use a location softmax
function over K ×K locations with tanh activation to predict
the importance of the K 2 locations in the frame, which can be
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FIGURE 7. 3D CNN architecture to capture spatiotemporal information of RSG by performing 3D convolutions and max-pooling, considering
20 joints of the human skeleton as an example.

FIGURE 8. Structure of soft attention network.

expressed as

Ms,i =
exp(wTi hs−1)∑K2

j=1 exp(w
T
j hs−1)

, i ∈ 1 . . .K 2 (10)

where Ms,i is the importance weight of the i-th body part
of the s-th grid, and W = {w1,w2, . . . ,wK2} ∈ R2D×K2

are the weights of the softmax function [30]. Note that we
compute two attention weights MJSG

s,i and MRSG
s,i separately.

JSG and RSG capture the intrinsic dependency among joints
and extrinsic dependency among rigid bodies, respectively.
Therefore, two sets of attention masks for X JSGs and XRSGs
must be calculated separately.With the aforementioned atten-
tion masks, the inputs to the two LSTMs are the weighted
averages of the various locations as

xJSGs =

K2∑
i=1

MJSG
s,i X

JSG
s,i and xRSGs =

K2∑
i=1

MRSG
s,i XRSGs,i (11)

E. ACTION RECOGNITION
The output xJSGs and xRSGs of the attention layer encode
complementary information from the intrinsic and extrinsic
dependencies among joints or rigid bodies. xJSGs and xRSGs are
fed to two fully connected layers with 512 and 256 neurons,
respectively. Therefore, the action classifier consists of two
networks: a joint grid network and a rigid-body grid network,
with network parameters WJ and WR, respectively. Given
the action sequence SSG, we multiply the class membership
probabilities P(C|x,WJ )∗P(C|x,WR) from the two networks
for the action classifier, and the class label is predicted as
c∗ = argmaxP(C|x,WJ ) ∗ P(C|x,WR).
The negative log-likelihood loss function [31] for dataset

D is used to measure the difference between the true label c
and the predicted result c∗ as follows:

L(WJ ,WR,D) = −
1
|D|

|D|∑
i=0

log(P(C (i)
|x(i),WJ ,WR). (12)
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The entire model is differentiable with the embedded atten-
tion mechanism; therefore, back-propagation can be used to
minimize the loss function, and the entire framework can be
trained end-to-end.

IV. EXPERIMENTS AND RESULTS
The skeleton sequences under various perspectives are sig-
nificantly different, even for the same action. Therefore,
the skeleton sequences are transformed by placing the coor-
dinates of the hip center at the origin (0, 0). Motivated by
the recent work [14], skeleton sequences are transformed into
a suitable view for better action recognition. With the new
origin of the hip center, the skeleton rotates parallel to the
horizontal axis X. Moreover, the lengths of all body parts are
normalized with respect to a reference skeleton.

The proposed method was evaluated on three action recog-
nition datasets: NTU RGB+D [21], SBU Kinect Interac-
tion [32], and Kinetics [33]. To evaluate the effectiveness
of the proposed model, we performed extensive experiments
using four different configurations as follows:
• JSG is the baseline, and the physical structure without
extrinsic dependency is considered. The input data con-
tain nine channels.

• RSG considers only extrinsic dependency using the
rigid-body geometrical transformation. The input data
contain six channels.

• SSG (JSG+RSG) is a network considering both intrinsic
and extrinsic dependencies. To combine the two types of
input information, we model them using two 3D CNNs.
The outputs of the softmax layer in the CNNs are added
to obtain the final score, as depicted in Fig. 1.

• SSG+attention is a network where the attention mecha-
nism is added.

A. IMPLEMENTATION
The model takes an SSG (JSG and RSG) sequence as the
input, which is a 4D tensor. The architecture of the network
consists mainly of a 3D CNN, an attention mechanism, and
fully connected layers. Finally, the output is fed to a softmax
classifier [34].

As depicted in Fig. 7, the human body comprises 20 major
joints. Therefore, each action sequence can be represented as
a 39 × 39 × 9 × 32 tensor for JSG (intrinsic dependency)
and 37× 37× 6× 32 tensor for RSG (extrinsic dependency).
Considering RSG as an example, the 37×37×6×32 tensor
was fed to a 3D CNN with two convolutional layers, H1 and
H2. First, we applied 3D convolutions with a kernel size of
8×8×7 (8×8 in the spatial dimension and 7 in the temporal
dimension) on each channel separately. In the subsequent
max-pooling, we applied 2 × 2 × 2 subsampling. The next
convolution and max-pooling were obtained by applying a
kernel size of 6 × 6 × 6 and max pooling 2 × 2 × 2. After
the two layers of convolution and max-pooling, the 32 frames
were converted into a 4D cube of the form 5 × 5 × 48 × 4.
Finally, we extracted 52 48-dimensional vectors to evaluate
the importance weight of the body part.

In this study, the 3DCNNarchitecture consisted of two lay-
ers of 3D convolution followed by max-pooling. The reason
for using these two layers for the 3D CNN architecture is as
follows: for each training action, we generated a 4D cube of
a form beyond a feature vector encoding the long-term action
information. In this design, it is desirable to selectively focus
on the information of the body parts by introducing a soft
attention model.

The implementation details are based on those of the orig-
inal CNN, as described in [38] and [39]. We trained the
network from scratch. All the model parameters were ran-
domly initialized as in [38] and learned using the stochastic
gradient descent algorithm [39]. The applied dropout prob-
ability was 0.5 to avoid over-fitting. All experiments were
performed in the PyTorch deep learning framework [40] on
two Nvidia GTX 1080i GPUs with a batch size of 16. The
initial learning rate was set to 0.1 and reduced by multiplying
it by 0.1 every 20 epochs. The training process ended at
the 80th epoch. In the attention mechanism layer, the classic
LSTM unit was employed to model the dependency among
various video snippets, where the dimension of the hidden
units was set to 256.

In the network, the most important parameters (k and t)
are the sizes of the receptive fields. k and t are the sizes
in the spatial and temporal domains, respectively. As k and
t increase, the local filtering region becomes larger. Note that
when k = 1 and t > 1, only temporal filtering is performed,
and the convolution on a grid is only in the cell itself (with no
neighbors). When t = 1 and k > 1, only spatial filtering
is performed. By considering the impact of various values
of k and t in different datasets, we conclude that spatial and
temporal filtering together can improve the action recognition
performance.

B. EXPERIMENTS ON NTU RGB+D DATASET
NTU RGB+D dataset. The NTU RGB+D dataset [21] is a
large-scale RGBD dataset for skeleton-based action recog-
nition. It contains 56880 action sequences and four million
frames. The dataset is based on 40 human subjects and
has 60 action classes, including 50 single-person actions
and 10 actions performed by two people. The dataset was
obtained using Kinect. Each human body is represented by
25 major joints. Each action was captured by three cameras at
the same height simultaneously but from different horizontal
angles:−45◦, 0◦, and 45◦. Every action was performed twice,
with the performer facing the left or right sensor. Moreover,
the height of the sensors and their distances to the action per-
former were adjusted to obtain further viewpoint variations.
We applied a normalization preprocessing step, as in [21],
for position and view invariance [21]. To avoid affecting the
continuity of a sequence, no temporal down-sampling was
performed.

We evaluated the proposed model using two standard
evaluation protocols proposed in [21]: cross-subject (X-Sub)
and cross-view (X-View). In the cross-subject evaluation,
40320 action sequences from 20 subjects were used for
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FIGURE 9. Confusion matrix on the NTU RGB+D dataset with the cross-subject evaluation protocol.

training, and the remaining 16560 action sequences were
used for testing. In the cross-view evaluation, 37920 action
sequences captured from cameras 2 and 3 were used for
training, and the other 18960 action sequences from camera 1
were used for testing.

Each human body skeleton is represented by the 3D spatial
coordinates of 25 major body joints. Therefore, each action
sequence can be represented as a 49× 49× 9× 32 tensor for
intrinsic dependency and a 47×47×6×32 tensor for extrinsic
dependency. These two tensors were fed to a 3D CNN with
two convolutional layers. The temporal kernel size t was
selected between 1 and 10, and the spatial kernel size k
was selected from {1, 2, 4, 6}. Cross-comparison results are
depicted in Fig. 10. The number of channels was four or eight.
We adopted two max-pooling layers of size 2 × 2 × 2 after
each convolution layer.

FIGURE 10. Comparison of the sizes of various convolutional kernels on
the NTU RGB+D dataset with the cross-subject protocol.

Table 1 lists the performances of various methods on
NTU RGB+D. It is evident that the performance of deep
learning approaches is generally better than those of the
hand-crafted feature methods. This demonstrates that JSG
and RSG streams are complementary, as their fusion signif-
icantly improves on each of them (4.2% over JSG and 2.6%
over RSG).

TABLE 1. Recognition rates (%) with state-of-the-art approaches on the
NTU RGB+D dataset with cross-subject and cross-view settings.

Based on the data listed in Table 1, it is evident that the
proposed network performs poorly when compared with the
performances of the VA-fusion models [14]. This is because
action recognition with a view adaptation subnetwork [14]
extracts the features of action sequences after determining
the virtual observation viewpoints. Adding this subnetwork
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FIGURE 11. Confusion matrices for five-fold cross validation using (a) SSG+attention and (b) baseline method (JSG) on the SBU Kinect Interaction
dataset.

to the SSG+attention model leads to a 3.8% increase for
the cross-view evaluation protocol, even better than that of
VA-fusion (0.7%).

The confusion matrix on the NTU RGB+D dataset with
the cross-subject setting is depicted in Fig. 9. It is evident
that the proposed model makes a good distinction between
an action involving one person and an interaction between
two persons. Single-person actions are still confused because
of the similarity of two actions in motion patterns, such as
reading and writing.

C. EXPERIMENTS ON SBU KINECT INTERACTION DATASET
SBU Kinect Interaction dataset. The SBU Kinect Interac-
tion dataset [32] is an interaction dataset with each action
performed by two experimental subjects in the same lab-
oratory environment, such as approaching and depart-
ing and shaking hands and changing objects. A total
of 282 skeleton sequences are performed by seven experimen-
tal subjects, corresponding to 6822 frames, with an average
of 25 frames per skeleton sequence. It contains eight action
classes: approaching, departing, pushing, kicking, punch-
ing, exchanging objects, hugging, and shaking hands. The
evaluation was performed using a five-fold cross-validation
protocol (i.e., four used for training and one for testing).

Each human body skeleton is represented by the 3D spatial
coordinates of 15 major body joints. Each action sequence
can be represented as a 29 × 29 × 9 × 24 tensor for JSG
(intrinsic dependency) and 27 × 27 × 6 × 24 tensor for
RSG (extrinsic dependency). When there are two people in
the action recognition task, two skeleton trees are unfolded
into two chains in the depth-first order. Each action sequence
of the two-person interaction can be represented as a 58 ×
58 × 9 × 24 tensor for JSG (intrinsic dependency) and a
54 × 54 × 6 × 24 tensor for RSG (extrinsic dependency).
The corresponding convolution kernel size t is 9× 9× 3 and
8× 8× 3, respectively. We adopted two max-pooling layers
of size 2× 2× 2 after each convolution layer.
Fig. 11 depicts the comparison of the confusion matrices

for SSG+attention and the baseline method on the SBU

Kinect Interaction dataset. It is clear that when two persons
have relatively simple body interactions, such as approaching
or departing, both methods are effective. However, when the
interaction is more complex, such as hugging or punching,
the proposed method is more effective than the joint feature
method. It is evident that both models are effective when
there is relatively simple body interaction between two per-
sons, such as leaving and approaching. However, when there
are more complex interactions, such as kicking, punching,
or hugging, SSG+attention ismore effective than the baseline
method, which considers only the intrinsic dependency.

A comparison of the proposed network with state-of-
the-art methods is presented in Table 2. The proposed
SSG+attention framework exhibits consistently high recog-
nition performance on the SBU Kinect Interaction dataset.
It achieves a 2.9% improvement over the baseline method.

TABLE 2. Recognition rates (%) on the SBU Kinect Interaction dataset.

D. EXPERIMENTS ON Kinetics–Motion DATASET
Kinetics–Motion dataset The Kinetics dataset [33] is one of
the largest human action datasets. It contains 300,000 video
clips, each of approximately 10 s duration. To cover as
many real occasions as possible, Kinetics comprises action
sequences from YouTube, and 400 human action classes are
covered. The dataset provides only raw video clips without
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skeleton data. To perform joint-based action recognition,
we used the pre-calculated estimated poses provided in [44].

The Kinetics–Motion dataset is proposed for a better eval-
uation of skeleton-based methods on estimated joints, which
is a 30-class subset of Kinetics with action labels strongly
related to body motion. Each human body skeleton is rep-
resented by the 3D spatial coordinates of 18 major body
joints. The 30 selected classes are as follows: belly dancing,
punching bag, capoeira, squat , windsurfing, skipping rope,
swimming backstroke, hammer throw, throwing discus,
tobogganing, hopscotch, hitting baseball, roller skating, arm
wrestling, snatch weight lifting, tai chi, riding mechanical
bull, salsa dancing, hurling (sport), lunge, skateboarding,
country line dancing, juggling balls, surfing crowd , dead
lifting, clean and jerk , crawling baby, push up, front raises,
and pullups.
We evaluated the proposedmethod on the Kinetics–Motion

dataset containing 266440 samples. The samples were
divided into the training set (246534 clips) and validation
set (19906 clips). Following the evaluation method in [33],
we trained the models on the training set and reported both
the top-1 and top-5 accuracies on the validation set. The data
listed in Table 3 indicate that the proposed network achieved
superior performance to that of existing skeleton-based
methods.

TABLE 3. Comparison with state-of-the-art methods on the Kinetics
dataset.

V. CONCLUSION AND FUTURE WORK
Weproposed a two-stream 3DCNN for skeleton-based action
recognition. To extract the dependencies among various body
parts, we transformed the skeleton data into JSG and RSG,
and then performed 3D convolution and 3D max-pooling on
the JSG and RSG streams, respectively. To detect the salient
action units crucial for identifying motions, we introduced
an attention mechanism to learn masks on JSG and RSG.
The output of the action attention layer was finally fed to
a fully connected layer and a softmax layer to predict the
class label. Extensive experiments and analyses indicated that
the modules of the 3D CNN and attention masks can further
improve the recognition performance. In the future, we will
focus on various methods for encoding skeleton data to adapt
the CNN more effectively.
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