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ABSTRACT In the past decades, the internet has emerged as the fastest way to access information. However,
this revolutionary information age comes with its own set of challenges. The privacy of Internet users is at
increasing risk with the advances in surveillance techniques. Users’ online behavior, activities, and even
personal information are being tracked by ISPs and major tech companies. In response to the increasing
need for preserving and protecting the privacy of online users, anonymity networks were developed. Tor
anonymity network is a low-latency anonymity network that has gained quite a good reputation over the
past years and is being adopted by thousands of users. With the great attention Tor’s network is getting,
the original design of Tor was proven to have performance limiting issues.With the motivation for addressing
the performance limitation in Tor, we present QuicTor, a datagram-based design to solve Tor’s transport-layer
limiting issue. We evaluated the performance of QuicTor in comparison to vanilla Tor as well as other
performance-enhancing proposals. QuicTor achieved significant performance improvements for interactive
applications as well as streaming applications. Running Tor over a datagram-based protocol entails a careful
security analysis. In this article, we assess the behavior of QuicTor under side-channel attacks aiming to
de-anonymize Tor’s clients. We show that the performance improvements brought by QuicTor do not reduce
the anonymity of clients under the investigated types of attacks.

INDEX TERMS Privacy, anonymity, tor, transport protocols, QUIC.

I. INTRODUCTION
Since its introduction in the 1950s, the internet has revolu-
tionized the landscape of computers and communications on
a global scale and is nowadays an integral part of daily lives.
The World Wide Web is a client/server application running
over the Internet and TCP/IP intranets. Communication over
the Internet is highly vulnerable to many attacks threatening
the integrity, confidentiality, and authenticity of the traffic.
Many of the tasks performed in the digital world require
access to the users’ private information, which increases the
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effect of network threats on internet users. Users’ credentials
and private information are being stolen using Botnet or
phishing emails [1], [2]. Advertising agencies acquire users’
information from the Internet Service Providers (ISPs), vio-
lating users’ privacy to develop their marketing strategies.
Identity theft is another way of violating users’ privacy and
causing damage. Some governments monitor internet users to
identify and track their opponents, which can threaten their
security.

A famous example of the technologies developed to pro-
tect the confidentiality and privacy of the users’ informa-
tion, by encrypting the communication between a client
and a server, is Virtual Private Networks (VPNs). However,
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in this case, the VPN provider is actually in control of all
the traffic and can access it. Moreover, some services are
blocking VPNs and cannot be reached through them [3].
Anonymity networks were then introduced to preserve the
users’ online anonymity. Anonymity networks hide the links
between the online user’s IP address and his online activi-
ties. Many anonymity networks were developed to serve this
target, by using multiple proxies between the client and the
server. The earliest anonymity networks used based on the
technique introduced by Chaum [4] provided anonymity at
the expense of high latency to the network [5], [6]. Interactive
applications, on the other hand, can not bear such latency,
consequently, there was a need for low-latency anonymity
network.
Tor anonymity network is a low-latency anonymity net-

work that has gained quite a good reputation over the past
years and is being adopted by millions of users. Tor was
first introduced in 2003, and since then it has been grow-
ing in the number of running routers and supported users.
As per the statistics from Tor’s live network [7], in 2019 the
number of directly connected users, not including those con-
necting through bridges, exceeded 3 million users, the num-
ber of operating relays reached 6500 relays and more than
1000 bridge, and more than 60 thousands unique.onion
addresses for hidden services.

Tor anonymity network is designed based on the concept
of Onion Routing [8], [9], to hide the link between the
source and destination of TCP traffic. Onion routing provides
anonymization of TCP traffic for interactive applications by
distributing the traffic overmultiple hops as shown in figure 1.
The significant increase in the usage of the Tor anonymity
network brought to light the fact that, while Tor is powerful in
hiding user’s identities and protecting their privacy, it suffers
from performance issues introducing a delay that could be
unacceptable [10], [11].

Achieving an acceptable performance of Tor’s anonymity
network does not only affect the user’s experience, but also
the security and anonymity of the network in many ways.
Usability is known to be an important factor of security, and
the impact of usability on Tor’s anonymity was identified in
the work of Dingledine and Mathewson [12]. The growth of
Tor’s network resource, the volunteered relays, is affected by
how well it is utilized and how the load-balancing is handled.
The growth of Tor’s network resources can be directly related
to the level of anonymity provided by the network. Several
studies addressed the performance problems in Tor [13], [14].
The main goal of these studies was to identify the sources
of delay in the network. A clear understanding of the delay
causes would lead to a more informed design of Tor’s net-
work and help enhance the overall performance. A significant
result of these results was that the current design of Tor’s
transport layer is one of the major sources of delay in the
network. Motivated by this knowledge, the Tor community
started considering the use of datagram protocols as the base
for the transport layer.

FIGURE 1. Tor network overview.

Since its introduction by Google, the UDP-based proto-
col QUIC gained increasing attention and is being studied
as a possible replacement of TCP for much better perfor-
mance [15]. One of the motivating goals for designing QUIC
was to reduce the delay introduced by TCP’s congestion
control and flow control mechanisms as well as the delay
caused by the handshake process of TLS. The performance
gain anticipated by the use of QUIC motivated the idea of
running Tor over QUIC. Developers from Tor’s community
discussed the possibilities of using QUIC in the transport
layer of Tor instead of the current design and listed several
design decisions to be considered that are specific to the
case of Tor’s network [16]. In our work, we address the
existing problem in Tor’s transport layer and expand on the
proposed design for running Tor over QUIC in [17]. The work
contribution can be summarized as follows.

Our Contribution:

• We discuss in details the features of QUIC protocol that
make it a suitable candidate for Tor transport layer.

• We built a realistic test-bed that supports the use of
UDP-based protocols (e.g. QUIC) and calibrated our
environment using the performance of Tor’s live net-
work.

• We evaluated the performance gain of QuicTor over
vanilla Tor for different types of applications (web
browsing, bulk downloads, and video streaming).

• We present a comprehensive study of the security of
QuicTor by analyzing different categories of attacks on
the Tor network and highlighting the type of attacks that
can be affected by the transport protocol being used.
We implemented diverse types of attacks and assessed
their impact on QuicTor in comparison to vanilla Tor.

The rest of the article is organized as follows; in
Section 2 we present the necessary background of Tor’s
anonymity network and QUIC protocol. We follow that by
reviewing the improvement techniques designed for Tor’s
network. We discuss QuicTor’s design and architecture in
section 3. The performance evaluation results are presented
and discussed in section 4. In section 5, we present QuicTor’s
security analysis and evaluation Finally, our conclusion and
the plan for future work are in section 6.
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II. BACKGROUND
In this section, we start by introducing the basic background
of how Tor works and the design of the QUIC protocol, and
how it reduces communication delay. Then we review the
research work done to enhance the performance and security
of the Tor network.

A. TOR
Tor’s overlay network consists of several interconnected
Onion Routers (ORs) over which the traffic is being dis-
tributed through circuits. On the client-side, the process run-
ning is called Onion Proxy (OP). An OP learns the required
details to establish a connection to the Tor network by con-
tacting the authority directory routers to obtain the router
descriptors. A router descriptor is a summary created for each
OR, which includes its encryption keys. OPs establish con-
nections to the first (entry)OR requesting the build of a circuit
to the destination. The entry OR then extends the circuit to
the next hop, until it reaches the exit OR. Figure 2 illustrates
how Tor builds its circuits until the client is connected to the
destination.

FIGURE 2. Tor’s circuit build.

The onion proxy accepts TCP requests ( TCP streams) and
then multiplexes them over the created circuits. The traffic
from the client is encrypted with three keys, one for each
hop on the circuit. At the exit OR, the destination address
is revealed so the exit OR can complete the connection.
The original Onion Routing design uses one circuit per TCP
stream. However, due to the latency cost of this approach, Tor
is multiplexing multiple TCP streams over the same circuit.
All communication between each two onion routers is done
over a TLS connection. The use of TLS adds one more level
of encryption and integrity protection to the communication.
Tor’s communications use a fixed size cell, the cell size is
512 byte. The idea of using a fixed cell size is to add some
resistance to some types of attacks, such as traffic analysis.
However, it was found to be inefficient and results in a distinc-
tive distribution of the packet-size in a specific stream [18].
Hence, control and padding cells are usedwith variable length
to limit the information leak. The typical structure of the cell

is shown in figure 3. The circuit ID and command fields are
not encrypted, hence it can be processed by all ORs along
the circuit to allocate the cell to the corresponding circuit
queue. The remaining fields of the cell are encrypted, and
can only be processed at the exit OR. The entire cell is then
encapsulated in the payload of the transport packet to be sent
over the Internet. [18]

FIGURE 3. Tor’s cell.

B. THE CURRENT PROBLEM
Currently, Tor suffers from many performance problems
related to network capacity, path selection, queuing, conges-
tion control, and others. While many of them are well-known
problems in the networking community, there is currently no
perfect solution. In this work, we specifically address issues
of Tor’s current transport layer design, such as head-of-line
blocking which is explained below.

1) HEAD-OF-LINE BLOCKING
The head-of-line blocking problem has been well studied
in the area of router design. In essence, this problem stems
from the conflicting requirements of multiplexing streams
onto a single connection and preserving the ordering of the
combined stream in case of failure or packet loss. Head-
of-line blocking is an issue related to the use of reliable
transport protocols such as TCP. As illustrated in figure 4,
this problem happens when a certain TCP flow loses a packet
and requires a re-transmission. All subsequent packet of this
flows as well as other flows over the same connection are
blocked until the lost packet is recovered. In the Tor context,
we can map each stream on the connection to a Tor stream
that is passing over a circuit, and the TCP connection is the
one maintained between two ORs on this circuit. As Tor
becomes more popular, we will likely observe similar situ-
ations where a file download stream happens to share a TCP
connection with a web browsing stream.Moreover, when net-
work links become more congested due to limited capacity,
we expect congestion-induced packet losses to become more
common, which will lead to more occurrences of the head-
of-line blocking problem. Reardon, et al. [19] measured the
effect of packet dropping on shared TCP Connection. Rear-
don’s experiments concluded that multiplexing circuits over

FIGURE 4. Head-of-line-blocking Problem Illustration.
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FIGURE 5. Tor’s protocol stack.

a single TCP connection adds unnecessary latency and
degrade the throughput significantly.

C. ENHANCING TOR’s PERFORMANCE
There is a considerable number of research proposals made
to improve the performance of the Tor network by address-
ing multiple design weaknesses. The research proposals of
interest for the presented work are the ones addressing the
transport layer design issues. For a better understanding of
the modifications introduced by researchers to achieve better
performance, we will adopt the protocol-stack-like descrip-
tion used by Murdoch [20]. As shown in figure 5, all nodes
on the path are relying on the host’s operating systems imple-
mentation of TCP/IP, which ensures reliable packet deliv-
ery between the two communicating parties. The TCP stack
provides congestion control and in-order delivery, from one
hop to the next. On top of TCP comes Tor’s built-in TLS
stack to provide data integrity, confidentiality, and authen-
ticity. An additional level of confidentiality is performed by
the cryptography process in Tor’s circuit. The circuit layer,
which is implemented at the application level within Tor,
provides de-multiplexing between different circuits using the
same TLS connection. On the client-side (Onion Proxy), all
requests go through SOCKS5 proxy bound to a specific port
number, and then passed to the TCP layer.

There is a considerable number of research works attempt-
ing to improve the performance of Tor [13]. Improve-
ment efforts concerning traffic management concentrated on
removing the source of delays in the network, either by
reducing network congestion, traffic overload, or transport
overhead. At its application layer, the lack of congestion
control in Tor was a major aspect considered by researchers
for possible improvements. Proposal for circuit scheduling
improvement was introduced by Tang and Goldberg [21].
Their method to schedule the packets based on the cir-
cuit activity is called Exponential Weighted Moving Average
(EWMA). In this method, each circuit keeps a state variable
to track the value of the weighted moving average, this
value is an indication of how active is this circuit, the less
active circuits are then given higher priority in scheduling.
Tschorsch and Scheuermann [22] noticed that Tor assigns
equal bandwidth for all connections opened between routers,
this leads to unfair queuing. They propose to re-allocate any
un-utilized bandwidth to a connection that needs more band-
width. Alsabah, et al. [23], introduced a congestion control

method for Tor (Tor N23). Tor N23 is based on the algorithm
used for Asynchronous Transfer Mode (ATM) Networks.

At the circuit-level, a different approach to enhancing
the performance of Tor’s network by changing its transport
design addresses the multiplexing of several circuits over a
single TCP channel. Alsabah and Goldberg [24] proposed
the use of a single TCP connection per-circuit. To provide
security, they used IPsec and its Encapsulation Security Pay-
load protocol. Although the performance enhancement of
PCTCP was significant, the use of IPsec with Tor faces
many challenges. Gopal and Heninger [25] in their Torchestra
proposed to use two separate TCP connections between each
pair of communicating relays. One connection is dedicated to
light-weight traffic, the other connection is used for bulk traf-
fic. Torchestra was not tested on a large enough network to get
a better understanding of how it improved Tor’s performance.
It was pointed out by Geddes, et al. [26], that PCTCP and
Torchestra were subject to socket exhaustion attacks, hence
they introduced their IMUX design. IMUX uses a manager
and scheduler for the connections.

Aside from that, the process of circuit building and
path selection is another rich field for improvements.
Barton, et al. [27] presented a path-selection algorithm that
avoids highly congested relays dynamically while building
the circuits. Their algorithm uses a Random Forest classifier
to predict the performance of the path and only choose relays
with high performance. The authors of [28] propose an exten-
sion to Tor’s path selection algorithm. They use the latency as
a measure of congestion and infer the congestion status of the
relays. Based on the congestion information of the network
relays, Tor selects the circuit relays that are less congested.

Using datagram protocols for Tor’s transport layer was
first proposed by Liberatore [29]. Liberatore proposed an
extension for the basic specifications of Tor by building the
circuits on top of DTLS/UDP. The proposed approach did
not offer an alternative to the reliability and in-order delivery
functionalities of TCP. The lack of reliability raised two main
problems in Liberatore’s design. First, the encryption done
by Tor at the level of relays was done using the counter
mode, in which each block being encrypted depended on the
previous and next ones. Hence, in the case of a lost packet,
the decryption process would not be successful. Second,
the integrity check at both ends of Tor’s communication is
based on the assumption that no packet will be lost. The
extension was meant to be used in parallel to the original
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design of Tor. The control cells are sent over the TCP
connection, only the UDP payload cells are sent over the
UDP connection. Eventually, Liberatore’s extension did not
go any further due to its problems.

Later on, Reardon and Goldberg [19] proposed an
improved design using TCP over DTLS. In this design,
TCP is moved to the user-level while using Datagram Trans-
port Security Layer (DTLS) to secure the communication
between ORs only. Each circuit is assigned a separate
user-level TCP connection. The reliability and congestion
control are done hop-by-hop. However, the use of user-level
TCP suffers from several limitations such as CPU cost.
UDP-OR is another approach to improve Tor’s performance
was proposed by Viecco [30]. Viecco used UDP for the com-
munication between the ORs only, while the end connections
at the OP and exit are using TCP. Viecco’s design simplifies
the processing of packets at intermediate routers, however,
it does not provide reliability and in-order delivery function-
alities at the routers, which will affect Tor’s cryptography
and integrity validation. The head-of-line blocking problem
rises from the fact that if one packet is lost on one TCP
streams all other streams are blocked until this lost packet
is being resent. To address this problem Nowlan, et al. [31],
introduced uTor. In uTor, Un-ordered TCP (uTCP) is used
for communication between Tor’s node and is protected by
Un-ordered TLS (uTLS). This allowed TCP to send any
available data regardless of the lost packet event. This design
adds to the application layer the additional cost of processing
the packets, which affects the overall performance of the net-
work. The evaluation of this design showed an insignificant
improvement in the performance. Another approach to use
datagram protocol as a base for Tor’s transport layer was
proposed by Loesing, et al. [32], using a modified version of
libutp library of Bittorrent. However, the implementation was
not mature enough to be evaluated against the performance of
vanilla Tor.

D. TOR SECURITY
Performance is closely related to the security and anonymity
of Tor. Some attacks such as traffic correlation attacks use the
network latency and throughput to reduce the anonymity of
the network. The possible impacts of datagram proposals for
Tor on its security and anonymity were discussed thoroughly
in [33]. Therefore, we are presenting here an analysis of dif-
ferent types of de-anonymization attacks that aim to infer the
identity of internet users, even if anonymization techniques
are applied. In the following, we review Tor’s threat model
and techniques proposed to exploit Tor’s design flows to
launch de-anonymization attacks.

1) TOR ADVERSARY MODEL
Most of the de-anonymization attacks assume that the
attacker is controlling at least one of the circuit hops, entry
or exit guard, or both of them [34], [35]. Furthermore,
an attacker can present a compromised client or a malicious
destination. An attacker can either passively monitor the

traffic, or actively manipulate it. A global attacker can mon-
itor the traffic end-to-end, Tor does not provide security
against this type of attackers. A different assumption for
an attacker is based on traffic monitoring. The attacker in
this model can sniff the network packets and extract their
features, train a model, and classify the traffic to identify
it. The attacker can also manipulate the packets in a certain
way [13], [36], [37]. In Fingerprinting Attacks, the adversary
is assumed to be able to monitor the traffic between the client
and the entry point to the anonymity network. The adversary
then extracts certain features from the traffic, such as packet
count, flow direction, the time between consecutive packets.
The next step is to match these features to indicative patterns
of certain websites, using machine learning techniques. The
effectiveness of these attacks depends on the selected features
and the machine learning classifier used.

One of the earliest attempts to evaluate the effect of this
type of attack on Tor’s anonymity network was done by
Herrmann, et al. [38]. The features they used were the fre-
quency distribution of the size of IP packets, and the clas-
sifier used was multinomial Naive Bayes. Herrmann’s clas-
sifier did not perform well on Tor since it only depended
on the packet size, and Tor’s cells have fixed size. Later,
Panchenko, et al. [39], worked on an enhanced version of fin-
gerprinting attack on Tor by choosing different features based
on the traffic volume, timing, and direction. Panchenko’s
classifier reached disturbing results raising red flags for Tor’s
community. Experimental defenses were recently developed
against website fingerprinting attacks on Tor’s anonymity
network [40]. The AS-level attack is a traffic analysis attack
enabled by the presence of the same AS network between the
client and the entry guard and between the exit and desti-
nation. In their research, Edman and Syverson [41] provide
an evaluation of the impact of the AS-level adversary on
Tor network security. Their experiment showed that there is
a probability of 20% that a single AS appears at the two
ends of a circuit. This probability can be reduced by using
a different path selection algorithm that is designed to avoid
this problem.

2) SIDE CHANNEL ATTACKS
Side-channel attacks are the type of attacks based on some
information acquired about the network. In the context of
Tor, side-channel attacks can be the first step to launch one
of the previously discussed attacks by identifying ORs on
the circuit. Throughput Fingerprinting is one of the attacks
used for this purpose, it depends on the diverse nature of the
volunteered routers and their unique behavior while building
the circuit to identify the ORs.

Another type of side-channel attack aims to decrease the
anonymity of the communication directly, such as Network
Latency. Two network latency attacks were introduced by
Hopper [42], the goal of the first attack was to identify the
user initiating the traffic by analyzing the latency distribution
of two exit nodes. The second attack aims to locate, approx-
imately, the client by controlling a malicious server that

VOLUME 9, 2021 28773



L. Basyoni et al.: QuicTor: Enhancing Tor for Real-Time Communication Using QUIC Transport Protocol

collects any leaked information about the client’s network
every time the client tries to access the server.

With proposals being made to use datagram-based pro-
tocols for Tor’s transport layer to improve its performance,
an alarming security concern rises on how this type of proto-
col would affect the security and anonymity of Tor. The study
was done byMathewson and Perry [33] discussed thoroughly
the different types of attacks, and specifically the attacks
that are more likely to affect Tor over a datagram-based
protocol. The described attacks in this study can be viewed as
two main types. First, attacks exploiting protocol behavioral
differences such as re-transmissions, congestion, and flow
control. Second, attacks exploiting the reduced communica-
tion latency, such as timing correlations, and timing water-
marking.

Various attacks were developed aiming to reduce the
degree of Tor’s network anonymity using different network
performance metrics such as latency and throughput [43].

III. QuicTor
A. QUIC
For decades, TCP has been the key protocol for reliable data
transfer over IP networks. However, with the rapid growth
of the Internet, many recent applications were designed for
interactive use, in which delay is not tolerable. For such
applications, TCP was found to be limiting because of its
strict in-order-delivery process. TCP is a stream-based pro-
tocol, which is suitable for activities carried over a long
duration with data that need to be preserved. On the other
hand, UDP is more convenient for transactions that need to
be executed quickly and independently. For applications that
use both short and long transactions, it is difficult to come
up with a suitable trade-off that will result in an acceptable
performance. In recent years, new transport protocols were
designed to provide proper support to different network appli-
cations. One possible design approach is to use unordered
version of TCP (uTCP) as a base component and build
application-level libraries on top of it [44]. A different design
approach is to replace TCP with UDP and implement, at the
application level, the required level of reliability. DCCP [45]
is a protocol that followed this approach and was designed
to provide only the congestion control mechanism to a data-
gram transport. However, most of these approaches were not
widely deployed or used so far.

One recent protocol following the same design approach
and is being deployed and used by an increasing number of
applications recently is Google’s new protocol called QUIC.
Quick UDP Internet Protocol (QUIC) uses UDP as the trans-
port protocol to avoid the limitations of TCP, and implements
at the user-level the congestion and flow control mechanisms.

QUIC was designed with the motivation of reducing com-
munication delay introduced by the handshaking process
and by the head-of-line blocking while providing an accept-
able level of security and deployability. QUIC is deployed
at the user-space to enable its deployment across differ-
ent platforms. To eliminate the head-of-line blocking issue,

QUIC uses an abstracted data structure called streams and
multiplexes multiple streams within the same connection.
QUIC streams represent a reliable bidirectional commu-
nication byte-stream. Streams are uniquely identified by
stream ID, and the units sent over streams are called frames.
A QUIC packet, as illustrated in figure 6 is composed of a
header and one or more frames. After the early handshaking
packet exchange, all QUIC packets are fully authenticated
and encrypted except for the header parts required for routing
and decryption. QUIC implements loss recovery, flow con-
trol, and congestion control mechanisms on top of the UDP
implementation to ensure reliable transmission.

FIGURE 6. QUIC’s packet structure.

QUIC avoids the head-of-line blocking problem allowing
multiple streams to be transferred over the same connection
while ensuring that a lost UDP packet only affects the stream
to which it belongs, while other streams can continue to
deliver their subsequent packets. Moreover, QUIC limits the
buffer space assigned to each specific stream.

1) SECURITY CONCERNS
TCP protocol uses TLS for securing its traffic, which has
been proven to provide solid authentication and confidential-
ity. On the other hand, QUIC protocol is using a different
security library, which we discuss in the following. We will
explain how QUIC is providing authentication and confiden-
tiality to its traffic. In QUIC all packets are authenticated
and encrypted, except for the early negotiation packets and
the retry packets. The receiver is always authenticated while
the initiator authentication is optional. The authenticating
certificate of the receiver party is sent in a server-config-
seg at the initial handshake phase. The initiator stores the
server-config-seg received at the connection setup, and use it
for later communication. The encryption keys are computed
using Diffie-Hellman(DH) and are based on the information
exchanged during the handshake phase. Tampering with the
initial handshaking packets will lead to wrong values of the
keys, a reset packet will be sent, unauthenticated and unen-
crypted, to indicate the failure of the connection [15].

TLS has multiple combination methods of authentication
and encryption, the method that was found the most robust
is encrypt-then-authenticate. In this method, the data is first
encrypted then an authentication MAC is computed over the
ciphertext. QUIC’s data are placed in frames, which are also
encrypted and then authenticatedwithin the packets, as shown
in figure 6, ensuring a similar level of robustness. TLS is vul-
nerable to denial-of-service (DoS) attacks, where the attacker
imitates a large number of TCP connections and exhaust-
ing the server with a large number of handshake requests.
By neglecting unauthenticated traffic, QUIC reduces the risks
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FIGURE 7. QuicTor protocol stack.

for DoS attacks. Both protocols are susceptible to the attacks
targeting specific cryptographic standard implemented on the
receiver party, such as Bleichenbacher’s attack on RSA [46].

B. QuicTor DESIGN
In our work, we built on the direction of using datagram
protocol for Tor’s transport layer, and we considered the
problems faced by previous attempts. QUIC is a UDP-based
multiplexed and secure transport protocol designed for
bandwidth-hungry and latency-sensitive applications. It was
designed by Google and now going through the standardiza-
tion process in IETF standard track [47]. The main reason
QUIC was proposed as a standard way to address head of
line blocking at the transport layer in support of HTTP-2.
We believe the same issues of the head of line blocking are
affecting the performance of TOR. While research propos-
als such as PCTCP, IMUX, and Torchestra tried to solve
the problem at the application level by proposing different
methods to de-multiplex Tor’s circuits, the use of UDP-based
transport protocol, such as QUIC, would provide a solution at
the transport-layer level which will also avoid the increasing
probability of socket exhausting attacks. Moreover, the use of
QUIC protocol for the transport design on Tor’s network was
considered by Tor’s community, as a promising direction to
improve the performance of Tor [48]. We believe that QUIC
is well-suited to address the two problems mentioned above.
First of all, QUIC has native support formultiplexingmultiple
application-layer streams. This allows QUIC to avoid the
head-of-line blocking problem. Besides, QUIC has a plug-
gable congestion control module whose behavior is specific
to each application-layer stream. This means that we can
easily change its congestion control behavior for different cir-
cuits sharing the same connection in the Tor network. Figure 7
shows QuicTor’s protocol stack implementation at each node
along the path from the client to the destination. In QuicTor,
all communication with onion routers is using QUIC, includ-
ing the connection from the OP to the entry OR. To explain
this design decision, we need to highlight some facts about
QUIC and Tor traffic. Since QUIC traffic represents almost
7% of the overall Internet traffic [15], and it is never guar-
anteed that the destination server will be supporting QUIC
protocol, as it is being adopted so far mainly by Google’s
services. Therefore, we kept the connection between the exit
and the destination as it is. It can be seen that the TLS

security layer in vanilla tor was replaced by QUIC’s security
layer QuicCrypto. QuicCrypto is part of QUIC that provides
transport layer security to a connection. The negotiation of
used cryptographic suites is done during the cryptographic
handshake which QUIC combines with the transport hand-
shake to reduce initial RTTs. Currently, QUIC is being drafted
by IETF and efforts are beingmade tomove the cryptographic
handshake implementation to be similar to TLS 1.3 [47]. Two
important works have analyzed the security of QUIC [49],
[50]. Both confirm it has reasonable security guarantees.
QUIC/HTTP-2 was an inspiration work for TLS 1.3. Current
versions of the QUIC standard uses TLS 1.3 using creative
designs to maintain QUIC performance advantages.

To explain the QUIC communication process, we will refer
to the two communicating ORs as initiator OR and receiv-
ing OR. As previously mentioned, QUIC’s functionalities are
implemented in user-space, includingmechanisms tomonitor
events on UDP sockets, and timeout alerts. This introduced a
considerable challenge for our QuicTor API implementation
to maintain an accurate timing method that would trigger
QUIC’s callbacks while dealingwith the asynchronous events
for the UDP sockets at user-space. QuicTor’s API was pack-
aged as a UNIX socket, which means that using a pooling
loop to wait for socket events was not possible. To over-
come this obstacle without significant re-writing of the code,
a dedicated thread was generated for each UDP socket to pro-
cess its events using libevent, while handling QUIC’s alerts
using libevent as well. The main thread communicates with
each generated thread using a regular UNIX file descriptor
(eventfd), which can be treated by the user as an actual
socket.

When the initiator OR opens a connection, it starts a
blocking operation to create a UDP socket and complete the
handshaking with the receiving OR. Once the handshaking
is complete the main thread on the initiator OR generates a
separate thread for this UDP socket to maintain the QUIC
states’ updates and the socket events. The generated thread
will return eventfd that will be used to trigger the thread in
case of pending reads. The generated thread will be responsi-
ble for processing received packets without halting the main
thread. On the receiving OR’s end, the main thread will be
listening for an incoming connection, creates a UDP socket,
and generates a thread dedicated for this socket to handle its
events.

VOLUME 9, 2021 28775



L. Basyoni et al.: QuicTor: Enhancing Tor for Real-Time Communication Using QUIC Transport Protocol

One advantage of this design is that, since all libevent
operations and QUIC states are handled in one thread, there
will be no need for synchronizing multiple threads, which
reduces the complexity of the implementation. For the few
shared data structures, fine-grained locking is being used.
A second advantage is that we provide a TCP-like usage by
moving all asynchronous events to a background thread away
from the main thread, in the same way, the kernel is handling
them for TCP. Finally, the interface for the API is a standard
UNIX socket interface, which reduces the code changes to
port existing Tor implementation.

C. QUIC’s DEPLOYMENT AND IMPLEMENTATION
IN TOR’s NETWORK
Tor’s original design layers the network communications as
follows, connections and channels describing the communi-
cation between two nodes only. Circuits and streams, on the
other hand, are end-to-end connections. A stream is main-
tained between the client and the server and is running on top
of a circuit. At each hop, the circuit is mapped to a connection.
To use the QUIC API within Tor, we decided to limit the
modifications to the connection layer while keeping other
layers unchanged. Therefore, we added a flag to indicate
whether the connection is using quic or it is a regular TCP
connection. To allow incremental deployment and giving the
option of falling back to TCP at any point, we added a new
QUIC socket to be used by quic connections along with the
TCP socket created by Tor. The architecture of QuicTor is
illustrated in figure 8 in which the different layers of QuicTor
compared to the existing Vanilla Tor is shown. In QuicTor,
the transport protocol used at the kernel layer is UDP. At user-
space-level, the QUIC protocol implements its reliability and
flow and congestion control functionalities.

FIGURE 8. QuicTor Architecture.

On the nodes that support the use of QUIC, all OR
connections are being done using the QUIC socket, which
includes OR-to-OR connections and OR-to-OP connec-
tion. We also simplified the connection layer read and
write callbacks by transferring the TLS handshake process
to QUIC, which makes it unnecessary to use the hand-
shake code in Tor’s callbacks. Other minor modifications,
that are not at the connection-level, were required to sup-
port the use of QUIC. We needed to add a streamID

field for the packed_cell structure to be used by QUIC
to differentiate user streams. We used the packed_cell
structure since it’s the only one used by ORs for relaying the
user streams. The streamID is used whenever Tor calls send to
flush some packets to associate these packets with the correct
stream. To avoid major modifications in Tor, we designed the
QUIC library to provide a similar interface as TCP from Tor’s
perspective. The API functions connect, send, and recv are
following the blocking behavior of TCPwhile other functions
are non-blocking. Moreover, in standard Tor, when a relay
is about to send a cell, it will format the cell, copy it to the
connection’s output buffer, and add a pending write event to
the event base. Then in the future when the socket associated
with the connection becomes writable, libevent will trigger
the write event and run a callback function to send the data
out. It is important to note that theoretically, QUIC has no
notion of being writable as it uses a non-blocking UDP
socket. This means that Tor does not have to wait for buffer
space since the buffers are all maintained by QUIC. However,
to follow the TCP semantics, we decided to maintain this
blocking behavior because we want to make sure that any
performance gain comes from QUIC instead of changes in
the semantics of TCP.

IV. QuicTor PERFORMANCE EVALUATION
To show the performance gain achieved by the proposed
design, we compare the presented work to two other proposed
approaches that address the problem of circuit multiplex-
ing over a single TCP connection, namely, we compare our
QuicTor to PCTCP [24] and IMUX [26]. However, PCTCP
and IMUX address the head-of-line blocking problem at the
application layer, by de-multiplexing the circuits and use an
appropriate scheduler, while QuicTor addresses the problem
at the transport layer. Figure 9 depicts the details of theOR-to-
OR connections in QuicTor compared to Vanilla Tor, PCTCP,
and IMUX. It can be perceived that QuicTor introduced
minimum changes To Tor’s architecture by merely adding
a different socket identifier to be used for all OR-to-OR
connections.

Tor, as a low-latency anonymity network, aims to provide
anonymity for the users of interactive web applications such
as web browsing. Files downloading, e.g. using BitTorrent,
is a commonly used application over the web that consumes
plenty of its bandwidth [51]. We consider both types of
applications in our evaluation of how QuicTor is performing
compared to vanilla Tor as well as different enhancement
approaches, namely PCTCP and IMUX. In recent years,
video streaming has been the top internet application type
in terms of traffic percentage. According to the report by
Sandvin [51], video streaming reaches 58% of the global
downstream traffic. Considering its importance, we evaluate
the performance of video streaming over QuicTor compared
to vanilla Tor. We implemented our design for QuicTor on
Tor’s source code version (0.3.3.5-rc).1 For a fair comparison,

1QuicTor’s source code is available upon request.

28776 VOLUME 9, 2021



L. Basyoni et al.: QuicTor: Enhancing Tor for Real-Time Communication Using QUIC Transport Protocol

FIGURE 9. OR-to-OR connections in the different approaches.

we ported the implementation of PCTCP and IMUX to the
same version. We use a configuration flag to indicate which
version of Tor is being used.

We set up our experiments using NetMirage [52] network
emulator. NetMirage is a platform designed to allow testing
IP-based network applications. The feature required in the
tested application is the ability to bind to a specific IP address.
We had to modify our code to pass the IP provided by
NetMirage to the QUIC API for binding instead of using the
localhost by default.

To ensure a fair comparison, we ported the implementation
of both methods to the same version of Tor used in our
experiment (0.3.3.5-rc).

A. EXPERIMENT SETUP
NetMirage emulates the network on its code node using a
GraphML file describing the topology of the network. Net-
Mirage then generates IP addresses for the network nodes on
its edge node(s) to be assigned to the tested applications. Traf-
fic and communications between applications on the edge
node(s) are routed through the core node. The network topol-
ogy used for NetMirage configuration is in GraphML format,
similar to the topologies used by other network simulators
such as Shadow [53]. GraphML allows defining network
parameters such as latency, jitters, and drop rate. In our
experiments, we configure NetMirage’s core node using the
model described by Jansen, et al. [54]. NetMirage requires
machines to run a Linux-based operating system. We used
a machine with Intel Core i7 and 64 GB RAM that runs
Ubuntu 16.4 for the NetMirage edge machine. For the core

machine, we used an Intel Core i7 powered machine with
8 GB RAM running Ubuntu 16.4 OS. We used a connected
graph with each vertex represent a network node to config-
ure the core machine of NetMirage. To simulate real internet
behavior, we added latency to the edges that are randomly
generated in the range of (50ms - 100ms), and drop rate in the
range of (1% - 2.5%). The network configuration runs on the
edge machine consists of 50 relays and 350 clients. 10% of
the clients performed bulk downloads (files of size 5 MB),
while the rest of the clients were sending regular HTTP
requests representing web browsing activity. Conventionally,
the web browsing activity is represented by the download
of 320 KB files [24], [26], [55], [56], [25]. However, recently
the average size of a web page increased drastically to reach
more than 2 MB [57]. Hence, we used files of 2 MB in our
experiment to represent web clients. For the video stream-
ing applications performance, we used a 5 minutes video
uploaded on a separate server and dedicated one client for
video streaming. To validate the realism of our network,
we used the performance metrics of Tor’s live metrics [7]
for 5 MB files, measured over the period starting from
01-11-2019 until 31-01-2020 to calibrate our configuration.
The results of Vanilla Tor running on NetMirage’s emulated
network compared to Tor metrics are shown in figure 10. Tor
metrics is an important tool developed by The Tor Project
to collect data of the live Tor network. The collected data is
then aggregated, analyzed, and presented on the Tor metrics
website [7]. Tor’s relay performance is one of the metrics
provided that is used by researchers as a reference for their
experiments [56], [58], [59] [24]. The emulated network
using NetMirage achieved a performance that is very close
to the performance of Tor’s live network with an average
download time of 10 seconds for 5 MB files, which shows
that our emulated network is realistic. We used this network
for all of the performance evaluation experiments.

FIGURE 10. Tor network validation.

B. EVALUATION METRICS
For an application like web browsing and file download-
ing, the time required to complete the action, display the
web content, or completely download the file, is the key
player in the user’s experience, we refer to this metric as
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FIGURE 11. Downloading 2 MB files.

Download Time. In Tor’s experiments, the time required to
establish the circuit and start receiving the first byte is a
considerable factor in its performance evaluation, it will be
referred to later as Time To First Byte. We use both metrics to
evaluate the performance gain of using QuicTor compared to
Vanilla Tor.

On the other hand, the user experience of different types
of applications such as video streaming is measured by
different metrics. In a study of how the quality of experi-
ence (QoE) affects the user engagement in video streaming by
Dobrian, et al. [60], a set ofmetrics were described to evaluate
the QoE for the video streaming applications. Out of the
defined metrics, the following metrics are related to network
performance.

• Join Time: The time required for the player to establish
a connection, initialize the playing buffer, and fill the
buffer to be able to start playing.

• Buffering Ratio: The buffering time as a percent of the
total session time. Buffering time is the total time spent
filling the playing buffer while the player is frozen.

• Rate of Buffering Events: The number of re-buffering
events / total session time.

The session time is calculated as the total time since the client
hits play until the end of the stream. We use these three
metrics to evaluate the performance of streaming applications
over QuicTor compared to vanilla Tor.

C. RESULTS
The main performance gain from the use of QUIC protocol
instead of TLS/TCP lies in reducing handshaking time and
overcoming the head-of-line blocking problem. The number
of round trips required for handshaking is the main source of
pain for light-weight and short traffic such as web browsing.
However, the actual performance gain, in this case, is mini-
mal, equals to two RTTs, and this can be shown by the Time
to First Byte results, figure 11-a. In figure 11-b, it can be seen
that the average download time of a 2 MB file is reduced

by 80% by using QuicTor compared to vanilla Tor. The aver-
age download time for PCTCP and IMUX is almost the same
as QuicTor, however, The overall performance using Quic-
Tor is improved by 40% compared to PCTCP and IMUX.
File sharing applications on the other side last for longer,
hence, they can benefit from the improved design of QUIC
that eliminated the head-of-line blocking problem. In this
case, the actual performance gain of QUIC can be noticed.
Figure 12-a shows that 100% of QuicTor requests success-
fully established the connection in almost 1 second, while
only 50% of Tor’s connections were established within the
same period. For the total time required to complete bulk
file download, The average for QuicTor is 3 seconds, and for
vanilla, Tor is 15 seconds. QuicTor enhanced the performance
for this type of application by almost 80%.

Video streaming applications also benefit from the reduced
connection establishment latency of QUIC, which is reflected
in the join time (initial buffering duration). It can be seen
in figure 13-a that the average initial buffering duration in
QuicTor is below 20 seconds, while for vanilla Tor it exceeds
45 seconds. Figure 13-c and 13-b show two ratios that reflect
the QoE presented to the user. The rate of buffering events
represents how frequent the user will face a frozen player,
the less this rate is the better experience the user is getting.
The rate of buffering events over QuicTor is 25% less than
it is over vanilla Tor. The second ratio is the buffering ratio,
which represents the percentage of the session time spent on
buffering. QuicTor enhances this metric by 40% compared to
vanilla Tor.

V. SECURITY ANALYSIS
From the aforementioned discussion, we concluded that the
category of attacks called side-channel attacks use some
information gathered from the network traffic, such as delay,
and circuit lifetime. The use of different transport protocols
could have an impact on the nature of such information,
which in turn would either facilitate or impede the launch of

28778 VOLUME 9, 2021



L. Basyoni et al.: QuicTor: Enhancing Tor for Real-Time Communication Using QUIC Transport Protocol

FIGURE 12. Downloading 5MB files.

FIGURE 13. Video Streaming Performance Results.

a side-channel attack on Tor’s network. The attacks of this
category can be traffic correlation attacks, or traffic classi-
fication attacks. In traffic correlation attacks, the adversary
monitors the traffic at one end of the connection (entry/exit
traffic) as well as at one or more nodes within Tor’s network.

The target of the adversary is to correlate the entry/exit
traffic to the traffic monitored at one or more of Tor’s relay
to reduce the anonymity of the network. To evaluate the
security of QuicTor against side-channel attacks, we imple-
mented two attacks, a timing-based attack described by
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FIGURE 14. Probing Results of Vanilla Tor Relays.

Murdoch and Danezis [61] and a correlation attack described
by Mittal, et al. [62].

A. LOW-COST TRAFFIC ANALYSIS OF TOR
In this attack, [61] Murdoch and Danezis explained how
an attacker can launch a traffic correlation attack despite
the anonymity property that hides the direct link between
communicating parties. Murdoch’s attack is based on timing
information that the adversary can acquire while staying
within the threat model of Tor. The attack depends on the
idea that traffic streams over Tor’s network have certain
characteristics, and that a change in one stream can affect
other streams passing through the same node. The adversary
assumed in this attack is not global, he cannot observe the tim-
ing characteristics of the network. However, the adversary can
inject his delay pattern into the network traffic and observe
the network streams. The adversary is also assumed to be able
to control a corrupted Tor node, which is still within the threat
model of Tor. To determine if the injected stream is passing
through a specific Tor node, the adversary uses the corrupted
node to send a stream to the targeted Tor node and measures
the latency of this stream. The adversary then tries to spot
the delay pattern injected by the corrupt server in the traffic
of the probed relays, and calculate a correlation percentage
according to the formula:

c =

∑
S(t) ∗ L ′(t)∑

S(t)
(1)

where, S = 1 if the server is sending traffic at time t, and
S = 0 otherwise. L’(t) is the normalized latency of the
probed Tor relay. In a successful test, the correlation for a
true positive (the injected traffic passes through the probed
relay) should be higher than the correlation in the case of a
true negative (the injected traffic does not pass through the
probed relay).

We replicated the experiment described by the authors and
tested for vanilla Tor to validate the original implementation.
Then, we tried to launch the attack on the QuicTor network to
evaluate its behavior against the attack. We created a network
topology of 13 relays and 50 clients. One client, the one
considered to be the victim, establishes a connection to the

malicious server by creating a normal circuit of 3 relays.
The malicious server keeps sending for a random period of
15-25 seconds followed by a silent period of 20-40 seconds.
For each of the probed relays, a dedicated client is used and
configured to allow a single hop.We bind a server to the same
IP used for the probed relay and start sending through the
client to that server and measure the latency. The rest of the
clients are performing regular downloads over the network
(web browsing applications). To validate our attack setup,
we launched the attack against vanilla Tor and calculated the
correlation value for both cases where the probed relay is and
is not on the path between the victim client and the malicious
server. Figure 14 shows the results from launching the attack
on vanilla Tor. In 14-a the probing results of a relay that does
not carry the injected traffic by the attacker, while in 14-b
the probed relay is on the path from the corrupted server to
the victim client. It can be seen from these results that the
correlation value is higher in the case of true positive, this
indicates a successful test and validates our setup.

The next step was to try launching the attack on Quic-
Tor. Following the same process described for vanilla Tor,
we obtained the results shown in figure 15. It was not possible
to spot the injected delay pattern in the traffic from all probed
relays, whether the relay is on the victim circuit or not. Using
logs on QuicTor nodes, we identified the relays on the victim
circuit and the relays that are not, the calculated correlation
values were almost the same for both cases. The correlation
value can be used as an indicator of the impact of the attack
on the anonymity of the network. The value of the correla-
tion between the probe data and the victim flow is higher
in the cases where the pattern is present in the prob data.
Using this information the attacker can significantly reduce
the anonymity set by considering the relays with correlation
value ≥ a certain threshold T . In figure 16, we show the
cumulative correlation measured for all probed relays. With
correlation threshold T = 0.4 [62], it can be seen that the
attacker can reduce the anonymity set of the Vanilla Tor
network to almost 25% of the total number of relays. On the
other hand, the anonymity set of the QuicTor network was not
affected. Using the entropy measures defined for measuring
anonymity by [63], the attacker can reduce the entropy of the
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FIGURE 15. Probing Results of QuicTor Relays.

FIGURE 16. Correlation Measured.

vanilla Tor network by 89%, while for the same correlation
threshold the attacker cannot confidently identify any of the
relays on the circuits path.

QUIC protocol uses a separate stream for every
request/response sent to/from the server. Introducing delay
in a certain server response will only affect the stream
assigned to this response. Other streams for different
requests/responses will not be affected by the introduced
delay. When the attacker initiates a connection to probe the
delay pattern of the relay in question, a new stream is created.
The attacker stream in this case does not experience any
additional delay. This makes it harder for the attacker to
identify whether or not the examined relay is on the circuit
path of the victim flow. Based on this, we can claim that
timing-based attacks depending on tracking injected delay
into the network can not successfully reduce the anonymity
of QuicTor. A different attack that also depends on injecting
time gapes to be used as a watermark was described by
Iacovazzi, et al. [64]. Iacovazzi’s attack is a flow water-
marking attack that aims to de-anonymize Tor’s hidden
services. Another flow watermarking attack that uses an
inter-packet delay pattern as a watermark was introduced
by Wang, et al. [65].

B. STEALTHY TRAFFIC ANALYSIS USING THROUGHPUT
FINGERPRINTING
Mittal’s attack [62] is a passive attack that does not require
any altering or manipulation of the traffic, instead the attack

use the Tor flow’s throughput as a fingerprint. The described
attacker appears to be like any other Tor user which makes
it harder to detect that an attack is being launched. The
authors described multiple scenarios to reduce the anonymity
of Tor’s network by implementing two types of fingerprint-
ing, stream-based fingerprinting and circuit-based finger-
printing. Circuit-based fingerprinting is used to identify Tor
relays, guard relays, and relays offering location hidden
services. Mittal’s work shows the correlation between the
throughput of two circuits in different cases where the cir-
cuits share all three relays on the circuit path, two relays
shared, and only one relay is common. A conclusion is
drawn from these experiments that two circuits with highly
correlated throughput have common Tor relay(s). To identify
Tor relay(s) along the circuit path of the targeted (victim)
flow, the attacker is assumed to be able to monitor the victim
flow’s throughput. Monitoring the flow can be achieved by
compromising the exit relay, the destinationweb server, or the
ISP carrying the data. The attacker then probes the throughput
of other relays in the network and tries to find a correlation
with the throughput measured of the victim flow. To start
probing the network relays, the attacker builds a one-hop
circuit to these relays. The higher the correlation between the
probe flow and the victim the flow, the more probable it is
that both flows are traversing through a common relay.

We recreatedMittal’s experiments, using 25 relays selected
from the network topologywe used to configureNetMirage in
our previous experiments. We allow our attacker to observe
the victim flow for an observing window (OW) of 300 sec-
onds, 400 seconds, and 600 seconds, the observing window
represents the lifetime of a client’s circuit. In Mittal’s experi-
ments, they used a correlation threshold (T) of 0.4 that reflects
the moderate confidence of the attacker. However, with Quic-
Tor none of the observed flows correlated higher than 0.3.
Using this value as a threshold adds to the uncertainty of
the attacker, which further weakens the attack. To quantify
the degree of a system’s anonymity, entropy is used as a
measure [63], [66]. Entropy is the level of uncertainty the
attacker has about Tor relays in a circuit. After running the
attack, the less the entropy is the higher the probability of the
attacker being able to identify the circuit relays. In Mittals’
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FIGURE 17. Entropy Set Reduction Results.

experiment, they were able to reduce the entropy to less than
2.5 bits in 50% of the cases. Given that the maximum entropy
for 25 relays is 4.6, the attack was able to reduce the attacker’s
uncertainty by 40%. Figure 17 depicts the measured entropy
after running the experiment for different observation win-
dows. Only 10% of the cases were reduced to 2.5 bits, while
50% of the cases has entropy ≥ 3 bits. In 100% of the cases,
the degree of the system’s anonymity was ≥ 0.55.

VI. CONCLUSION AND FUTURE WORK
In this work, we presented an assessment of the performance
of different applications over QuicTor using a realistic net-
work setup. The results show a significant improvement in the
performance of file sharing applications. The performance
improvement for video streaming applications would lead
to a promising quality of experience for the users. We pre-
sented an analysis of the security and anonymity of QuicTor.
We found that the basic security guaranteed by TLS/TCP was
met by QUIC. The effect of attacks against Tor’s anonymity
has also been discussed, we reviewed the categories of attacks
that are most likely to be affected by the change of the
under-laying transport protocol. We implemented two differ-
ent attacks, evaluated QuicTor’s behavior under these attacks,
and the results showed that QuicTor’s maintained the basic
anonymity requirements, and proven better resistance in some
cases. The next step in our research is to conduct a study
of traffic classification attacks and how they can affect the
anonymity of QuicTor. We also plan to address other aspects
discussed by Tor’s developer Mike Perry in his post [16]
regarding the use of Tor over QUIC.
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