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ABSTRACT In recent years, the rapid development of blockchain technology has attracted much attention
from people around the world. Scammers take advantage of the pseudo-anonymity of blockchain to
implement financial fraud. The Ponzi scheme, one of the main scam methods, has defrauded investors of
large amounts of money, thereby harming their interests and hindering the application of blockchain. Unfor-
tunately, the current detection technology typically largely relies on the source code of the contract or uses
a single feature which does not fully represent the contract characteristics. In such a case, the detection
of Ponzi schemes with high efficiency becomes urgent. In this paper, we propose an image-based scam
detection method using an attention capsule network (SE-CapsNet) focused on Ethereum. The sequence of
bytecode, the opcode frequency, and the application binary interface (ABI) call are extracted as features from
the contract bytecode and ABI, further converted into grayscale images, and then mapped into three color
channels to generate RGB images, which are used as the input of the model for detecting the Ponzi scheme
contract. In addition, we employ fancy PCA for data augmentation to reduce the impact of imbalanced data on
the detection results. Experimental results show that the image-based detection method using deep learning
models can effectively detect contracts before transactions occur. Among them, our proposed SE-CapsNet
obtains great detection results, with an F1 score of 98.38%.

INDEX TERMS Blockchain, capsule network, Ethereum, Ponzi scheme, smart contract.

I. INTRODUCTION

After decades of development, blockchain has emerged as
a technology with a wide range of applications, and it
has attracted extensive attention from both academia and
industry, especially in the field of cryptocurrency, where
market valuations such as Bitcoin and Ether are rising at
increasing rates. Under the lure of huge profits, due to
the pseudo-anonymity of blockchain technology, scammers
hidden behind pseudonymous accounts can easily complete
cryptocurrency transactions as normal traders without their
true intentions being identified [1]. Once a financial scam
occurs, it is difficult to track, let alone take countermeasures
or even recover property, and this hurts invertors heavily.

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu

33654

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Currently, the situation is worsening with increasing fraud
taking place in blockchains. According to the latest research
report published by Chainalysis [2], a blockchain analysis
company, the total value of defrauded cryptocurrency was
as high as 4.3 billion US dollars in 2019, and most of it
came from Ponzi schemes (up to 92%). The Ponzi scheme
is a typical well-known type of pyramid scheme that usually
promises high rates of return with little risk for investors
to create the illusion of making money [3]. However, most
investors are unable to identify scams, and once they invest,
the economic losses caused are generally irreversible. There-
fore, to some extent, we can say that the Ponzi scheme has
damaged the reputation of the whole blockchain ecosystem,
including Ethereum.

Ethereum is an open-source and blockchain-based decen-
tralized platform that enables programmers, as well as
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scammers, to create versatile smart contracts and decentral-
ized applications [4]. That is, scammers can easily create a
Ponzi scheme. In recent years, the number of Ponzi schemes
has increased daily. Many famous Ponzi schemes, such as
PlusToken, Forsage, and FairWin, can be found on Ethereum.
Investors have lost hundreds of millions of dollars to these
Ponzi schemes. Hence, it is an urgent task to detect Ponzi
schemes on Ethereum.

Early Ponzi schemes could be found in the investment
advertisements of the Ethereum community forum. Ethereum
uses an account-based model, which contains two types of
accounts. One is an externally owned account, and the other
is the so-called contract account, which will be shortened as
a contract in the following text. In this case, the behavior
of a scammer is often embodied by the externally owned
account and its related transactions. Therefore, corresponding
features can be extracted based on historical transactions to
detect Ponzi schemes. Nonetheless, this method cannot be
performed in real time, and it requires a large amount of
relevant transaction information, such as a full dataset.

Smart contracts are programs that execute autonomously
without a third party on Ethereum [5]. Over time, the imple-
mentation of Ponzi schemes as smart contracts has gradu-
ally become more popular. Scammers use this auto-executive
feature of smart contracts to publish a convincing project
plan, which shows that investors can obtain bonuses in time,
to gain investor trust. Therefore, we can detect Ponzi schemes
by analyzing the source codes of the smart contracts before
transactions occur, and this could prevent the widespread use
of such Ponzi schemes. However, the following challenges
regarding the analysis of Ponzi scheme contracts still exist.

1) Insufficient source code. According to Etherscan [6],
only approximately 1% of smart contracts have avail-
able Solidity source code [7]. In cases with insuffi-
cient contract source code, the selection of appropriate
features directly affects the performance of the detec-
tion method. In addition, how to express the selected
features also needs to be carefully considered.

2) Low accuracy. The existing research works have
proven that deep learning technology is a feasible
method in the field of smart contract classification [8].
Since the code length of a smart contract is short,
we need to choose an appropriate deep learning model
because it may directly affect the accuracy of our
experiments.

The purpose of this paper is to design a novel detection
method that can detect not only Ponzi schemes but also addi-
tional types of scams in the future. Therefore, we propose an
image-based scam detection method using an attention cap-
sule network (SE-CapsNet) based on Ethereum. First, based
on the contract address of the Ponzi scheme, the bytecode
and application binary interface (ABI) of the corresponding
contract are downloaded as basic features. Then, three types
of features are extracted and converted into grayscale images.
Next, they are merged into an RGB image as an input for
the model to complete the Ponzi scheme contract detection
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process. The main contributions of this detection task are
divided into the following four aspects.

1) Most contracts have bytecode and ABI. By analyzing
the bytecodes and ABIs of both Ponzi scheme contracts
and non-Ponzi contracts, the problem of the lack of
source code in practical applications can be solved.
Once the contract is deployed, we can check whether
the contract is a Ponzi scheme or not, hence the losses
incurred by investors can be reduced.

2) After years of research, malware detection combined
with code visualization has proven to be an efficient and
capable detection method. Based on the downloaded
bytecode and ABI, the bytecode sequence, the opcode
frequency sequence, and the ABI call sequence are
obtained, and the above three features are combined
to generate RGB images. In this way, we can improve
the problem that a single feature cannot comprehen-
sively represent the characteristics of a Ponzi scheme
contract.

3) We use fancy PCA to enhance the data of Ponzi scheme
images, and we obtain a total of 1,600 Ponzi scheme
images to form a relatively balanced dataset. By using
such a method, the impact of extremely imbalanced
data on the detection results can be reduced.

4) We combine the Squeeze-and-Excitation (SE) block
and capsule network to detect Ponzi schemes. The SE
block has a simple structure, and the accuracy of the
experiment can be improved by calculating the chan-
nel attention of the image. The capsule network can
capture additional information, is suitable for a small
dataset, and is proven to detect Ponzi scheme contracts
efficiently on Ethereum.

The remainder of this paper is organized as follows.
Section II introduces the research trends of related fields
from three viewpoints. In Section III, we emphatically elab-
orate on the image-based scam detection method using the
SE-CapsNet proposed in this paper; it is divided into three
modules and introduced in detail. We evaluate the proposed
method in Section IV and summarize the study in the last
section of the paper.

Il. RELATED WORK

A. SCAM ACCOUNT DETECTION

The ecosystem of Ethereum shows that the phenomenon of
scamming is becoming increasingly serious, and the detection
of scams is imminent. Existing research works [9], [10] have
focused on extracting features from the transaction history
information of externally owned accounts to detect scams.
For example, Wu et al. [11] proposed a novel algorithm
named trans2vec based on transaction amount and times-
tamp, was used to extract features, and it combined with
a one-class support vector machine to detect phishing on
Ethereum. Toyoda et al. [12] extracted the frequencies of
patterns as key features. The experimental results established
that approximately 83% of HYIP accounts (belonging to a
Ponzi scheme) can be correctly classified using the XGBoost
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algorithm. Bartoletti et al. [13] extracted a total of 32 features
from the transaction history of Bitcoin, used downsampling
to balance the dataset, and combined supervised machine
learning algorithms to detect Ponzi schemes. Subsequently,
Bartoletti et al. [14] identified a Ponzi scheme on Ethereum
by analyzing the number of transactions and transaction
amounts, and then they evaluated the impact of the Ponzi
scheme.

There are certain deficiencies in the current scam detec-
tion methods for externally owned accounts, because a
large amount of transaction data is required as the basis
for feature extraction, and real-time detection is inferior.
Therefore, related research based on contract codes has
gradually emerged. Torres et al. [15] employed a symbolic
execution approach, defined a heuristic method for automat-
ically detecting honeypot contracts, and analyzed honeypot
contracts from the perspectives of behavior, diversity, and
activity. Chen et al. [16] collected smart contracts to obtain
bytecode and built a control flow graph (CFG), which was
used to identify non-deployable contracts and help explore
contract transaction rules. Chen et al. [17] extracted features
from the transaction histories and opcodes of smart contracts,
and established a smart Ponzi scheme classification model.
Jung et al. [18] proposed full-feature model, which combined
the Gini time features based on transaction behaviors with the
opcode features of contract to detect Ponzi schemes.

In summary, by analyzing the opcode and other features
of a smart contract code, it is possible to analyze whether
the logic of the code is similar to those of Ponzi scheme
contracts, and this approach plays a positive role in improving
the detection results. So, we use the bytecodes and ABIs
owned by most contracts instead of source code to detect
Ponzi schemes.

B. CODE VISUALIZATION

In more recent years, code visualization has been widely
adopted in malware classification tasks, providing an end-
to-end detection method that can effectively process data
samples; this technique has obtained remarkable classifi-
cation results [19]. In 2011, Nataraj et al. [20] proposed
converting binary code to the values of pixels to generate
a grayscale image for the classification of malware. Since
then, code visualization has received widespread attention
from researchers. Cui et al. [21] converted malicious code
into grayscale images, and the problem of imbalanced data
was solved using the bat algorithm. Finally, the features of
the malware images were extracted automatically by a con-
volutional neural network, which classified the images with
accuracy reaching 94.5%. Cui et al. [22] further improved
upon their work by using the non-dominated sorting genetic
algorithm II (NSGA-II) to obtain a better classification effect.
Naeem et al. [23] designed a method to convert binary
malware files into grayscale images and used two patterns,
local and global, to classify malware. From the experi-
mental portion of their study, the classification accuracy
reached 98.4%.
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The conventional methods of code visualization select a
single feature, for example, binary data, which could not com-
pletely reflect the structural characteristics of code. Research
related to image enhancement has slowly emerged over time.
Sun et al. [24] enhanced malicious code images by filling
binary data, ASCII character information, and PE structure
information into three channels to form an RGB image.
This method increased the interpretability of the model and
improved the accuracy and robustness of code detection.
Fang et al. [25] mapped the entropy, bytecode and proportion
of sections in a DEX file to the red channel, green channel and
blue channel of an RGB image. Then, the color and texture
of the image and text were extracted as features. Eventually,
the F1 score of the familial malware classification was 96%.

The approach based on image enhancement not only
improve the accuracy of detection but also solve the problem
of insufficient information resulting from the use of a single
feature. Therefore, we extract various features based on byte-
codes and ABIs of smart contract and choose the method of
image enhancement to complete the detection task.

C. SE BLOCK AND CAPSULE NETWORK

This paper intends to combine the SE block with the capsule
network. In the related field of computer vision, attention
mechanisms are divided primarily into the spatial domain and
channel domain. The spatial domain is mainly used to extract
the key information of an image, while the channel domain
focuses on the weight of the new channel generated by the
image through the convolution kernel. The SE block [26]
belongs to the attention mechanism of the channel domain,
and it is mainly used to learn the relationships between chan-
nels with the goal of obtaining the channel attention weight.
Moreover, the SE block is simple and compact with respect to
the calculation, and it has also achieved outstanding perfor-
mance on the ImageNet classification task. Yu [27] combined
the SE block with the bottleneck layer for the classification
of retinal diseases. The experimental results showed that the
classification accuracy had been significantly improved with
a few network parameters.

The capsule network (CapsNet) was proposed by the
Hinton team in 2017 [28]. Although a convolutional neural
network has translation invariance, the pooling layer still
causes information loss. The capsule network is based on
structures called capsules and uses dynamic routing algo-
rithms between capsules. The relationships between low-
level features and high-level features can be well represented
by the capsule network, which can obtain a good classifica-
tion effect with a small amount of data. The capsule network
consists primarily of a convolutional layer, a PrimaryCaps
layer and a DigitCaps layer.

Research has shown that the capsule network performs
well in image classification tasks, especially when the dif-
ferences among classes are small [29]-[31]. However, the
capsule network is not suitable for the classification of com-
plex images. Given this situation, researchers have improved
the capsule network according to application requirements.
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FIGURE 1. The framework of Ponzi scheme contract detection.

Xiang et al. [32] proposed MS-CapsNet, which added multi-
scale capsule encoding units behind the convolutional layer.
These units can extract different levels of features and encode
them into primary capsules of different dimensions, and
the improved dropout can enhance the robustness of the
capsule network. Cheng et al. [33] proposed two struc-
tures, Cv-CapsNet and Cv-CapsNet++-, to obtain complex-
valued features and complex-valued capsules. At the same
time, the dynamic routing algorithm was extended to the
complex-valued domain. Compared to other existing meth-
ods, this method requires fewer trainable parameters and can
be adapted to complicated datasets.

It can be seen that improving the CapsNet for differ-
ent application requirements is a feasible research method.
Considering that the number of samples in this paper is
insufficient, the image structure is not too complicated; fur-
thermore, the accuracy needs to be improved, meanwhile
the detection speed should not be too slow, we employ the
SE block to improve the structure of the capsule network to
properly fit the detection objects in this paper.

llIl. PROPOSED METHOD

Fraud continues to increase year by year, especially with an
increasing number of Ponzi scheme contracts appearing on
Ethereum; thus, an image-based scam detection method using
SE-CapsNet is proposed. The detection samples in this paper
are Ponzi scheme contracts and non-Ponzi scheme contracts.
In the following, we refer to the Ponzi scheme and non-Ponzi
scheme as Ponzi and non-Ponzi. The method consists of three
modules, which are feature visualization, data balancing, and
model detection, respectively. The framework of the proposed
Ponzi scheme contract detection method is shown in Figure 1.
See the following Algorithm 1 for details.

A. FEATURE VISUALIZATION
Developers use the high-level programming language Solid-
ity [34] to write the code of smart contracts and compile smart
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contracts that include code logic through a compiler, while
at the same time obtaining bytecodes and ABIs. They then
deploy smart contracts on the Ethereum network. So, we can
easily get the bytecodes and ABIs of almost all contracts. The
existing scam contract detection methods mainly use a single
feature, which has limited ability to express the content of the
contract.

Feature visualization refers to the extraction of three types
of features based on bytecodes and ABIs, including byte-
code sequences, opcode frequency sequences and ABI call
sequences. The sequence of bytecodes usually used in static
analysis methods can reflect the semantic information of the
contract. The frequency sequence of opcodes can indicate the
most frequent operations of the contract. The sequence of
ABI calls can represent the context information of the calling
contract. Using these features will greatly help the accuracy
of detection. Then, the corresponding images are generated,
and these images are finally combined into RGB images.
The RGB images have three color channels, and these chan-
nels can store information and intuitively visualize contracts.
In addition, because the images generated by similar contracts
are also similar, so we can detect scam based on images.

1) BYTECODE SEQUENCE

A bytecode is composed of a string of hexadecimal digits,
and this makes it difficult to read and understand the bytecode
directly. Therefore, we use the code visualization method to
convert the bytecodes into pixels, which can reduce the fea-
ture extraction time. We convert the bytecode into a decimal
integer in order and employ the digit 255 to represent white
and O to represent black; therefore, a grayscale image can
be generated that shows the sequence of a given bytecode.
Figure 2 demonstrates the process of producing bytecode
sequence image.

2) OPCODE FREQUENCY SEQUENCE
Our work uses the Ethereum EVM bytecode disassem-
bler named ethereum-dasm [35] to convert bytecodes into
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Algorithm 1 Image-Based Scam Detection Method Using an

Attention Capsule Network

Input: Ponzi scheme dataset: download the bytecode (B;) and

ABI (A;) of each contract i,

Output: Detection results: accuracy, precision, recall, and

F1 score;

1: Step 1: Feature visualization

2 While (A; !=null) and (B; != null) do

3: bytecode sequence = bytearray (B;);

4: Image_BY; = visualization (bytecode
sequence); // This method means every
eight-bit binary number is converted to a
decimal number and then mapped into an

image

5: opcode sequence = disassembly (B;);

6: opcode weight = TF-IDF (opcode sequence);

7: opcode frequency sequence = Simhash
(opcode weight);

8: Image_OP; = visualization (opcode frequency
sequence);

: ABI call sequence = DFS (A;);

10: get binary file after PV-DM (ABI call
sequence);

11: Image_AB; = visualization (binary of ABI
call sequence);

12: Feature_image; = merge (Image_BY,
Image_OP;, Image_AB;);

13: End While

14: End Step 1
15: Step 2: Data balancing

16: New images = Fancy PCA(Feature_imageg);
/I K stands for Ponzi contracts
17: New dataset = Feature_image;+ New images;

18: End Step 2
19:  Step 3: Model detection

20: Add SE block after the convolutional layer of
CapsNet to build the SE-CapsNet;

21: Train the SE-CapsNet;

22: Input the test samples into the trained network to
detect;

23: End Step 3
24. Return the detection result.

Bytecode Sequence

6060604052691
52d02c7el4...

96,96,96,6
— 452105, T
FIGURE 2. The process of producing bytecode sequence.

opcodes. EVM uses single-byte opcodes, which means that
each byte represents an operation or instruction. Based on
the term frequency—inverse document frequency (TF-IDF)
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Opcode Frequency Sequence

PUSH1 PUSH1 —» TF-IDF
MSTORE CALLDATASIZE v
ISZERO PUSH2 SimHash
PUSH4 v
PUSH1 EXP 11001111,10011...

FIGURE 3. The process of generating opcode frequency sequence.

algorithm, we want to obtain opcodes that are frequently used
and helpful for the Ponzi contract detection task. To obtain
a square image, we select the 32 opcodes with the largest
TF-IDF weights from the disassembly results. The calcula-
tion formulas of TF-IDF are as shown in (1) - (3):

TF — IDF;; = TF;j % IDF; (1)
TF, = i 2)
i,j —
LY Ny
k
IDF; = lo 3
i g(Di+ 1) 3)

In this paper, we disassemble each contract to obtain the
corresponding opcode, thus forming an opcode document for
each contract. Here, TF stands for term frequency, the numer-
ator represents the number of occurrences of opcode i in
document j, and the denominator is the sum of occurrences
of all opcode k in document j. IDF stands for inverse docu-
ment frequency, D stands for the total number of all opcode
documents, and D; stands for the total number of documents
that contain opcode i.

SimHash is a locality sensitive hash algorithm [36], which
means that similar inputs yield similar outputs to maintain
data similarity. SimHash is used to extract the binary informa-
tion of the 32 opcodes by calculating the hash value of each
opcode through the hash function. Using this method, each
opcode can be encoded into binary code with a fixed length
of 64 bits. Then, all the binary codes representing the opcodes
are linked together in groups of eight binary numbers for
conversion to decimal numbers to generate the image of the
opcode frequency sequence. The image generation process
is the same as the steps for generating bytecode sequence
images. Figure 3 shows the process of generating an image
for the opcode frequency sequence.

3) ABI CALL SEQUENCE
The ABI is the standard way to interact with contracts in
the Ethereum ecosystem, and it is similar to the API of the
application. The calling relationship between functions and
events can be expressed effectively by the ABI, as we usually
believe that the ABI call sequences of the scam contract are
unlike with those of regular contracts. By extracting the ABI
call sequence from a smart contract, we can discover the
contextual relationships between ABIs. Therefore, we choose
the ABI call sequence as a feature in this paper.

First, we traverse the ABI of each contract with depth-first
searches and obtain the calling order between ABIs. Then, the
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ABI Call Sequence

DES 45,82,174,
Constant 163,101,23
‘;]:u:“ 0,153,147,
60,229...
Input... —» Doc2vec ’

FIGURE 4. The process of generating ABI call sequence.

606060405 Bytecode
269152402 Sequence
c7el4...
Bytecode R Channel ¢ ;
!
Opcode i
Frequency I
Sequence |
G has Chrnl Mering
[{"constan ABI Call
t:true,"inp) Sequence
uiSEE[
ABI B Channel

FIGURE 5. RGB image generation.

corresponding word segmentation task is performed. Next,
we select the distributed memory model of paragraph vectors
(PV-DM) [37] to generate paragraph vectors that can be used
as the feature. In particular, the model adds a paragraph
token that maps each paragraph to a unique vector. Each ABI
sequence after text processing is regarded as a paragraph, and
the paragraph vector of each ABI is obtained after training.
Considering that the generated image cannot be too small,
we aim to generate a 1024-dimensional paragraph vector for
each ABI sequence, store it as a. bin file, and then convert
the binary number to a decimal. After image visualization is
completed, the ABI call sequence composed process is shown
in Figure 4.

4) IMAGE MERGING

The three types of sequences reflect features of three different
states. By mapping the bytecode sequence on the R channel,
the opcode frequency sequence on the G channel, the ABI
call sequence on the B channel, and finally merging the
three channels together to form an RGB image, our method
not only combines multiple features reasonably and orderly
but also compensates for the shortcomings of single features
to some extent. Figure 5 illustrates how an RGB image is
merged.

B. DATA BALANCING

The data of scam contracts are usually extremely unbalanced.
In most cases, contracts are normal. Therefore, the number
of Ponzi contracts is very small compared to the number of
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normal contracts. Thus, there is a data imbalance problem
between the Ponzi images and the non-Ponzi images gener-
ated in this paper. Unlike in the field of image recognition,
the images produced in this paper must have their integrity
ensured. Fancy PCA (PCA jittering) has the advantages of
simplicity and efficient operation [38], so it is suitable for the
rapid augmentation of Ponzi contracts.

Fancy PCA performs principal component analysis on the
pixel values of RGB images to obtain a 3 % 3 covariance
matrix, calculates the corresponding eigenvalues and eigen-
vectors, and then arranges them in descending order. The
augmented image is composed of the pixel value of the
original RGB image plus the result of the following formula.
The calculation formula is shown as (4):

[P1, P2, P3][a1h1, @aha, a3hs]” 4

where Pp, P>, P3 are the eigenvectors, A1, A2, A3 represent
the eigenvalues, and «; is a random variable drawn from a
Gaussian with mean 0 and standard deviation 0.1 in the orig-
inal paper. The new Ponzi images are generated by adjusting
the standard deviation parameters together with the original
sample of Ponzi images to form a new Ponzi dataset, further
achieve the effect of data balancing, and finally improve the
detection effect of the proposed method.

C. MODEL DETECTION

The applications of deep learning in the related field of
malware detection have achieved excellent research achieve-
ments; in particular, the capsule network considers the
relationships between features, and this approach has advan-
tages when applied to small samples. This paper combines a
channel attention mechanism, called the SE block, with the
capsule network to form the SE-CapsNet model, which is
mainly composed of the following four layers.

1) CONVOLUTIONAL LAYER

The first layer is a simple convolutional layer designed to
extract local features using 3 x 3 convolution kernels with
a step size of 1 in combination with the ReLU activation
function.

2) SE LAYER

The SE block is simple to use, it can improve the feature
extraction ability of the model, and it is conducive to clas-
sification, which consists of two operations: squeeze and
excitation. The purpose of squeeze operation is to obtain
the global features of a given channel. uc represents the
C-th feature map, which is output by the convolutional layer.
Through global average pooling, we can obtain channel-wise
statistics zc. Excitation operation is the process of learning
channel weights, where o represents the sigmoid activation
function, § denotes the ReLU function, and Wy and W, are
the dimensionality-reducing and dimensionality-increasing
actions, respectively. Through the excitation operation, we
can quickly learn a nonlinear interaction between channels
and finally obtain the learned channel weights s. Finally,
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— e

Uuq =
Ui — Squashing —
N v:
J
U;
) Wi

PrimaryCaps DigitCaps

FIGURE 6. Connection process between capsule layers.

through a scale operation, the learned channel weights are
multiplied with the original feature maps to obtain the atten-
tion feature maps as the output of the SE block. The calcula-
tion formulas are shown in (5) - (7):

1 H w
0 =Foqluo) = D D el )
s=Fe(@W) =0 (8@ W) =0 (W28 (W12) (6)

x’\é = Fseale (uc, sc) = sc - uc )

3) PRIMARYCAPS LAYER

After the SE block, we take each feature map with its corre-
sponding attention weight as the input of PrimaryCaps. The
PrimaryCaps layer is different from the ordinary convolution
layer. According to its definition, after this layer, we can
obtain capsules, and the capsules can also be called vectors,
which can store much information.

4) DIGITCAPS LAYER

The DigitCaps layer is used to store Ponzi and non-Ponzi
capsules. The final output is represented by the vector.
A squashing function is used by the capsule network. While
maintaining the direction of the vector, the length of the
output vector is used as the probability of the presence of
an entity. The calculation formulas between capsule i and
capsule j are shown in (8) - (10):

ftj|i = Wijui )
5= D . il ©
2
= Isil™ s a0)
L+ [l sl

where W;; represents the weight matrix, representing the
relationship between capsule i and capsule j, and it;; means
the prediction that the i-th low-level capsule constitutes the
Jj-th high-level capsule. ¢;; is the coupling coefficient obtained
through dynamic routing. The output v; is judged by the result
of the final squashing function. The process between capsule
layers is shown in Figure 6.

IV. EXPERIMENTAL EVALUATION

A. DATASET

This paper uses the public Ponzi scheme dataset [17], which
has manually-checked code logic to determine if the contract
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is a Ponzi scheme. The creators marked 3590 non-Ponzi
contracts and 200 Ponzi contracts. The bytecodes and ABIs of
contracts are obtained through the API interface provided by
Etherscan [6], and a contract is removed if its bytecode or ABI
is null. There are 27 abnormal non-Ponzi contracts, and
finally 3563 non-Ponzi contracts are selected as the data for
this paper. Then, the features of the downloaded bytecodes
and ABIs are extracted and processed, and they are visualized
and converted into RGB images to obtain a relatively imbal-
anced dataset. After the augmentation of image data, Ponzi
images are obtained, forming a more balanced dataset. For
this experiment, 70% of the data are selected randomly as the
training set, 10% of the data are selected as the validation set,
and the remainder of the data are used as the test set.

B. METRICS

For single-label image classification problems, accuracy, pre-
cision, recall, F1 score, ROC and AUC are usually cho-
sen as evaluation metrics. Comprehensively considering the
experimental data, this paper selects the first four metrics
for measuring the effectiveness of the proposed method. The
specific calculation formulas are as shown in (11) - (14):

TP + TN
Accuracy = (11)
TP+ TN + FP + FN
. P
Precision = —— (12)
TP + FP
TP
Recall = ——— (13)
TP + FN
Fl— 2 % precision x recall (14)

precision + recall

Among them, TP stands for a Ponzi contract that is actually
judged as a Ponzi contract; FN denotes a real Ponzi contract
that is judged as a non-Ponzi contract; FP stands for a non-
Ponzi contract that is misjudged as a Ponzi contract; TN
means that a non-Ponzi contract is correctly judged as a non-
Ponzi contract.

C. EXPERIMENTAL SETUP

This paper incorporates the SE block and capsule network to
complete the task of detecting Ponzi contracts on Ethereum.
The image widths of the model inputs may affect the results
of the experiments. According to the image width recommen-
dations for the various file sizes proposed in the paper in [20],
the image width for files less than 10 KB is generally selected
as 32. Therefore, we uniformly use 32 x 32 RGB images as
the input of the model.

In terms of experimental settings, we use the Python
language to build our method. For feature visualization,
we employ NumPy, Pandas, OpenCV and other Python pack-
ages for image feature extraction and processing. The mod-
els are built by using Keras and TensorFlow. During the
experiment, the parameters of the model affect the training
results. Considering the actual situation regarding the type of
detection task, the number of samples, the memory size of
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TABLE 1. The parameters in the proposed method.

Parameter Value
Batch Size 64
Epoch 15
Learning Rate 0.001
Weight Decay 0.0005
Routing Iterations 3
Skewing
. Fl1
Shearing Recall
Rotating Precision
B Accuracy
Cropping
Mirroring
Fancy PCA

0.75 0.8 0.85 0.9 0.95 1 1.05

FIGURE 7. Comparison with different data augmentation methods.

the CPU and the time consumption of the training process,
we select appropriate parameters, as shown in Table 1.

D. EXPERIMENTAL RESULTS AND ANALYSIS

1) COMPARISON WITH DIFFERENT DATA

AUGMENTATION METHODS

Imbalanced data is the primary problem that needs to be
resolved. After data screening, the ratio of Ponzi contracts
to non-Ponzi contracts is approximately 1:18, and there is
a serious data imbalance. Existing data augmentation meth-
ods include perspective skewing, elastic distortions, rotating,
shearing, cropping, mirroring, etc. The fancy PCA method
mainly realizes image augmentation by changing the inten-
sity of the RGB channel in the training image. The following
figure shows the experimental results of image augmentation
using skewing, shearing, rotating, cropping, mirroring, and
fancy PCA methods.

As shown in Figure 7, the recall of fancy PCA is lower
those that of cropping and skewing, but the best results
are obtained for other metrics. The F1 score is increased
by 4.30% and 4.14% compared to those of cropping and
skewing, respectively. The accuracy is approximately 2%
higher than those of the other five methods. After analyz-
ing the experimental results and performing comprehensive
measurements, we select the fancy PCA method for data
augmentation, as it can achieve the best effect and has a
positive influence on the classification results.

2) PERFORMANCE EVALUATION OF DATASETS WITH
DIFFERENT RATIOS

When the number of Ponzi contracts is insufficient, this seri-
ously affects the classification effect of the model, resulting
in large classification errors and an extremely low detection
rate with respect to Ponzi contracts. By changing the value
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TABLE 2. Performance evaluation of datasets with different ratios.

Ponzi: Non-ponzi Precision Recall F1 score
1:18 (Original Dataset) 0.5000 0.4736 0.4865
1:5 0.6785 0.8535 0.7180

1:2 0.9779 0.9898 0.9838

TABLE 3. Experimental results obtained by different models.

Model Accuracy  Precision Recall F1 score
Random Forest 0.9346 0.9643 0.7671 0.8544
XGBoost 0.9776 0.9957 0.9200 0.9563
AdaBoost 0.8945 0.9809 0.6160 0.7568
LightGBM 0.9289 0.9505 0.8617 0.8956
VGGNet 0.9826 0.9782 0.9662 0.9721
ResNet 0.9642 0.9747 0.9496 0.9605
MiniGoogLeNet 0.9768 0.9829 0.9664 0.9739
MobileNet 0.9502 0.9645 09113 0.9337
DenseNet 0.9361 0.9541 0.9132 0.9284
SE-CapsNet 0.9897 0.9779 0.9898 0.9838

of the standard deviation «¢; in fancy PCA, we can obtain
many new Ponzi contract images. In real life, the number of
non-Ponzi contracts is generally greater than that of Ponzi
contracts. Under the assumption that this condition is met,
we explore the impact of different ratios of non-Ponzi con-
tracts to Ponzi contracts on the experimental results. The
experimental results are shown in Table 2.

For imbalanced data, the accuracy metric is not applica-
ble, because the model may be biased towards the majority
class, it can easily achieve a high accuracy. In this part,
we use weighted average to calculate the precision, recall,
and F1 score of extremely imbalanced data. From the table,
we can see that without image augmentation, the original
dataset is used for Ponzi contract detection, and the model
almost predicts most of the test set data as non-Ponzi con-
tracts, resulting in very low precision, recall and F1 score.
When the ratio between the two contract types is approxi-
mately 1:5. At this time, the F1 score rise steadily, reaching
71.80%. In the end, when the ratio of Ponzi contracts to
non-Ponzi contracts is 1:2, all evaluation metrics achieve
relatively good results. At the same time, it’s consistent with
the fact that there are more non-Ponzi contracts than Ponzi
contracts. From this, we can see that the expansion of the
dataset to achieve balanced data and the selection of an
appropriate data ratio are critical to the effectiveness of the
experimental results.

3) COMPARISON WITH EXPERIMENTAL RESULTS OBTAINED
BY DIFFERENT MODELS

Next, we consider how to verify whether different mod-
els have an impact on the detection of Ponzi schemes.
Nine models, Random Forest, XGBoost, AdaBoost,
LightGBM, VGGNet, ResNet, MiniGoogLeNet, MobileNet,
and DenseNet, are selected. We can see the detection results
obtained by different models in the comparative experiment
in Table 3.
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TABLE 4. The SE-CapsNet model compared with the CapsNet.

Model Accuracy Precision Recall F1 score
CapsNet 0.9843 0.9898 0.9686 0.9787
SE-CapsNet 0.9897 0.9779 0.9898 0.9838

As seen from the above table, the image-based scam detec-
tion method has achieved good results in both machine learn-
ing and deep learning methods. The XGBoost performs better
in machine learning models. The detection method based on
deep learning can obtain a higher F1 score, and this means
that deep learning can be applied to Ponzi contract detection.

However, due to the complex structures of models such
as DenseNet and MobileNet, under the same training
conditions, the results are not yet optimal. In particular,
SE-CapsNet yields good experimental results in most eval-
uation metrics. The accuracy is 0.71% higher than that of
VGGNet, while the F1 score is also improved by 0.99%
compared to that of MiniGoogleNet. The performance
improvement is probably due to the architecture of the
SE-CapsNet. The SE-CapsNet model can not only retain a
large amount of information such as position, but can also
highlight the key point of channel information through the
SE block. To verify whether the introduction of the SE block
has an impact on the effectiveness of the model, in the next
step, we would like to compare the SE-CapsNet model with
only CapsNet to verify its detection effect. Table 4 shows the
results of this experiment.

An analysis of the experimental results shows that the accu-
racy of the SE-CapsNet model in the experiment is 98.97%,
and the F1 score reaches 98.38%. SE-CapsNet obtains desir-
able classification results. Compared with the CapsNet model
alone, the accuracy is improved by 0.54%, while the F1 score
is increased by 0.51%. Therefore, we can conclude that the
introduction of the SE block has a certain role in promoting
the classification performance of the proposed method for
detecting Ponzi schemes contracts.

4) COMPARISON BETWEEN DIFFERENT

DETECTION METHODS

Based on the research of the paper in [17], this paper proposes
a variety of features based on contract information. In recent
years, the amount of related research has gradually increased.
However, some researchers use both contract and transaction
features for detecting. The use of transaction features cannot
achieve the purpose of discovering the Ponzi contracts in
time. Below, we only use contract information to compare
our proposed method with the corresponding methods in prior
work.

As shown in Table 5, our method can be used to
detect Ponzi contracts as soon as they are deployed to the
blockchain. It has an F1 score of 98%, which is improved
from 82%, 95% and 96% in prior works. Through exper-
iments, we can see that our proposed method is not only
effective for early Ponzi scheme detection but also improves
the accuracy of detection.
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TABLE 5. Performance comparison only based on contract information.

Method Precision Recall F1 score
[17] 0.94 0.73 0.82
[18] 0.98 0.94 0.96
[39] 0.98 0.93 0.95
Ours 0.98 0.99 0.98
20
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FIGURE 8. The time consumption of each step.
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FIGURE 9. Performance comparison with different features.

5) TIME CONSUMPTION

To further explore the efficiency of the experiment,
we recorded the time consumption of each step: feature
visualization, data balancing and model detection. The exper-
imental results are shown in Figure 8.

Through the above figure, we can see that blue, yellow
and green bars represent the time consumption of feature
visualization, data balancing and model detection, respec-
tively. The processing time of the data balancing module is
the shortest, while the feature visualization component takes
up a large amount of time. Among them, the time needed
to extract the opcodes and convert them into the opcode fre-
quency sequences is about 16 minutes. We know from further
calculations that the time consumption of processing each
contract is approximately 0.39 s, among which the feature
visualization portion takes 0.27 s.

6) INFLUENCES OF DIFFERENT FEATURES ON THE
EXPERIMENTAL RESULTS

To clarify the effects of the bytecode sequence, the opcode
frequency sequence and the ABI call sequence on the per-
formance of the experiment, we set the pixels of the above
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Non-ponzi

Ponzi

(a) Bytecode Sequence

(b) Opcode Frequency Sequence

(c) ABI Call Sequence

FIGURE 10. The Ponzi and non-Ponzi images obtained by Grad-CAM calculation.

three types of feature images to O respectively to obtain
all-black images. And then combine the black images with the
remaining feature images to form the input of the SE-CapsNet
model. Next, we determine which feature is most important to
the experimental results. The following is a comparison graph
of the experiments using different features.

As shown in Figure 9, Ponzi contracts detection without the
opcode frequency sequence feature achieves poor experimen-
tal results. The F1 score is 86.78%, and the accuracy reaches
90.71%. It can be shown that the opcode frequency sequence
can effectively enhance the experimental performance of the
model. Subsequently, we can see that there is not much
difference between the results of the experiments without
the bytecode sequence and without the ABI call sequence.
Their accuracy rates still exceed 95%, and although these
two features are not the most important features affecting the
performance of the model, they are still an indispensable part
of the method proposed in this paper.

7) FEATURE INTERPRETABILITY ANALYSIS

As the research on interpretability deepened, numerous inter-
pretable models have emerged, making the mysterious black
box of neural networks easy for humans to understand to
some extent. Grad-CAM [40], which is a technology that
can provide the visual interpretation, is mainly adopted in
this paper. Using this method, the pixels that influence the
category can be obtained and highlighted on the original
image.

To analyze the extracted features clearly, this paper uses
a neural network (CNN) to train the images of the byte-
code sequence, the opcode frequency sequence and the ABI
call sequence then carries out Grad-CAM calculations, visu-
ally displaying the differences between Ponzi contracts and
non-Ponzi contracts. The above figures show the graphs of
the Ponzi contract and the non-Ponzi contract obtained by
Grad-CAM calculations.

From Figure 10, we know that although the three features
selected are different, the images generated by the Ponzi
contract and the non-Ponzi contract have regularity. From
the perspective of the bytecode sequence features, the pixels
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TABLE 6. Analysis on the detection results of honeypot contract.

Model Accuracy  Precision Recall F1 score
CapsNet 0.9629 0.8805 0.9614 0.9192
SE-CapsNet 0.9767 0.9078 0.9842 0.9444

that affect the classification results of the Ponzi images are
mainly concentrated in the right and middle areas, showing
an overall sporadic distribution trend. Grad-CAM calculates
that the highlighted pixels of non-Ponzi images are mostly
concentrated in the tail line. We can see that the main pixels
determined using the opcode frequency sequence and the ABI
call sequence features are similar. The calculation result of the
non-Ponzi images is highlighted in the left area, with regular
intervals. Highlighted pixels of Ponzi images can be clearly
observed in the first row and the right area. One can see that
there are obvious logical differences between Ponzi contracts
and non-Ponzi contracts. In a case where a given contract has
a source code, it is possible to analyze the end of the source
code, the most frequent opcode sequence, and the front part
of the ABI call sequence, thereby enabling highly efficient
smart contract scam detection.

8) CASE STUDY
To demonstrate whether the proposed method can be used
to detect other fraudulent accounts, next, we detect a new
type of smart contract called ‘“honeypot’ in Ethereum. Scam-
mers deliberately design contracts with a flaw to entice
some greedy users to exploit that flaw, thereby draining the
funds of users and leading to irreparable losses [41]. This
paper examines the 1124 honeypot contract accounts from
the HONEYBADGER project [15] as the fraud dataset for
the case study. Combined with 3563 benign accounts, after
feature visualization, the SE-CapsNet model is used to detect
honeypot contracts. The results of the case study are shown
in Table 6.

From the experimental results, we can see that the accuracy
of the SE-CapsNet model reaches 97.67%, and the F1 score
reaches 94.44%. It can be seen from the case study that the

33663



IEEE Access

L. Bian et al.: Image-Based Scam Detection Method Using an Attention Capsule Network

method proposed in this paper can detect not only Ponzi con-
tracts with imbalanced samples but also relatively balanced
honeypot contracts, and this has certain research value for the
detection of other scam accounts in Ethereum.

V. CONCLUSION

The trend towards using smart contracts to execute scams is
becoming increasingly severe. A Ponzi scheme is a typical
scam method in Ethereum. It is difficult to detect Ponzi
schemes in real time with traditional transaction-based meth-
ods. Therefore, this paper only uses contract information
for Ponzi schemes detection. The proposed method uses the
bytecode and ABI of the contract for detection and analysis
to improve upon the limitation resulting from only using
the source code of the contract. After feature visualization,
SE-CapsNet is used to detect Ponzi schemes in Ethereum.
The detection results are enhanced over those of other detec-
tion methods. However, there are two shortcomings to the
method in this paper. One is that the training time required for
the model is relatively long, and the other is that the number
of available Ponzi contracts is insufficient. In the future,
we may consider continuing to improve the experiment, col-
lecting additionally Ponzi samples, appropriately increasing
the mapping relationships between features to enrich the fea-
ture space, and optimizing the detection process in this paper
(for example, using a two-sample test for detection [42]).
At the same time, we can extend the applicability of the
proposed method to other types of fraud detection, such as
ransomware and fake token sales.
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