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ABSTRACT As the rolling bearing is the most important part of rotating machinery, its fault diagnosis has
been a research hotspot. In order to diagnose the faults of rolling bearing under different noisy environments
and different load domains, a newmethod named one-dimensional dilated convolution network with residual
connection is proposed in this paper. The proposed method uses the one-dimensional time-domain signals
of rolling bearing as input. Zigzag dilated convolution is introduced into convolution neural network, which
can effectively improve the receptive field of the convolutional layer. A multi-level residual connection
structure with different weight coefficients is constructed, so that the lower layer features of convolution
neural network can be transferred to the upper layer, which improves the feature learning ability. Moreover,
in order to enhance the useful features and weaken the useless features, we add the attention module
Squeeze-and-Excitation (SE) block after each sub-residual structure. By using the rolling bearing datasets,
the experimental results show that the proposed method can effectively diagnose faults of rolling bearing
under different noisy environments and different load domains. Compared with other methods, the proposed
method has higher accuracy.

INDEX TERMS Different load domains, different noisy environments, dilated convolution, one-dimensional
convolution neural network, rolling bearing fault diagnosis, residual connection.

I. INTRODUCTION
As the most important part of rotating machinery, the health
status of rolling bearing could affect the performance, stabil-
ity and life cycle of thewhole rotatingmachinery. Because the
working environment of rolling bearing in rotating machin-
ery is generally complex, the rolling bearing has problems,
such as aging and damage during operation, which would
cause safety accidents and huge economic losses. Therefore,
many people have paid more and more attention to the fault
diagnosis of rolling bearing [1], [2]. In recent years, with the
rapid development of computer technology, a large amount
of condition monitoring data of mechanical equipment have
been stored and analyzed. The data-driven fault diagnosis
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methods can extract and detect useful fault information from
a large amount of monitoring data and do not need to establish
an accurate system model, and they are suitable for complex
systems that are difficult to establish an explicit model. There-
fore, the researches on data-driven fault diagnosis methods of
rolling bearing have been paid more and more attention[3].
For example, Yan and Jia [4] proposed an optimized SVM
fault classification algorithm based on multi-domain features
to improve the accuracy of fault classification of rolling
bearing. Lu et al. [5] used the genetic algorithm and empirical
mode decomposition (EMD) to extract features and then used
SVM to classify and identify faults. Zhang et al. [6] used
local mean decomposition to eliminate the noise in vibration
signals. Mao et al. [7] proposed a classification method com-
bining multi-hole permutation entropy and support vector
machine (SVM) to classify bearing fault types. Although the
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above-mentioned methods can extract fault features, they are
affected by human subjective factors in the process of fault
diagnosis. By relying on existing fault diagnosis experience,
they are very difficult to deal with fault problems under
complex working conditions [8], [9].

In recent years, with the development of artificial intelli-
gence, fault diagnosis methods based on deep learning have
received more and more attention [10], [11]. These methods
combine fault feature extraction and feature classification,
and automatically extract representative features from the
original signal data, thereby eliminating the influence of arti-
ficial experience on feature extraction.

In deep learning, commonly used methods include SAE
[12], CNN [13], DBN [14] and RNN [15], and then based
on Convolutional Neural Network (CNN), VGG [16], Resnet
[17], Inception-v4 [18], Capsule and many other neural net-
works are developed. Thesemethods have achieved great suc-
cess in the field of computer vision. In the field of mechanical
fault diagnosis, many experts and scholars have introduced
CNN and made progress. Zhang et al. [19] used short-
time Fourier Transform to transform one-dimensional time-
domain signals of rolling bearing into two-dimensional data
and used hierarchical regularization to enhance the training
results of CNN. Jiang et al. [20] proposed a new multi-scale
convolutional neural network (MSCNN), which could simul-
taneously extract and classify multi-scale features of gearbox
vibration signals. Chen et al. [21] used continuous wavelet
transforms to preprocess the original vibration signals, then
used a square pool architecture CNN to extract high level
features, finally used the Extreme Learning Machine (ELM)
classifier to implement fault classification. The above meth-
ods transform the original one-dimensional vibration data
into two-dimensional data, and then input them into convolu-
tion network for fault diagnosis. However, most of the rolling
bearing data are one-dimensional time series or frequency
series. Compared with using the original one-dimensional
data directly, transforming the original one-dimensional data
into two-dimensional data may cause poor fault diagnosis
results. The one-dimensional neural network directly uses
the original data, which is more convenient for fault diag-
nosis. Abdeljaber et al. [22] applied one-dimensional CNN
to the normalized vibration signals for damage detection and
real-time location of structural damage, which reduced the
dependence on manual feature extraction. Zhang et al. [23]
proposed a one-dimensional CNN with a wide convolutional
layer, which could effectively suppress high-frequency noise
interference in bearing signals. Li et al. [24] proposed a
method combining residual neural network (ResNet) with
one-dimensional separable convolution to effectively classify
gear pitting faults. Li et al. [25] applied the attention mecha-
nism to help the CNN locate fault information, which had a
high fault diagnosis accuracy rate under limited data samples.
Xue et al. [26] proposed a deep convolutional network to
extract frequency domain features, then used a support vector
machine to classify multiple faults, with an average accuracy
of 90.29%. Chen et al. [27] proposed a fault diagnosis method

of deep capsule network based on random delta rule, which
had strong robustness for vibration signal noise interference.
Wang et al. [28] proposed a method of stacking multiple
separable convolution residual connection blocks to learn the
advanced features of data and provided accurate prediction
results of bearing residual life. Hao et al. [29] put forward
one-dimensional convolutional long short-term memory net-
work method, which had better adaptability to rolling bearing
data of different loads. Zhang et al. [30] proposed a fault
diagnosis method based on deep residual learning, which
could effectively process bearing vibration signals of differ-
ent sequence lengths.

In the abovementioned literatures, the fault diagnosismeth-
ods based on deep learning have advantages compared with
the traditional methods, and they have achieved satisfactory
results in the fault diagnosis task of rolling bearing [31], [32].
However, the network model of deep learning is complicated,
the network structure and parameter selection would affect
the fault diagnosis performance of suchmethods.Manymeth-
ods usually assume that the distributions of the training and
test datasets are same, but the actual loads always change,
the training data cannot show a good fitting effect in the
test data, resulting in poor performance of fault diagnosis.
Besides, due to the strong time-varying feature of vibration
signals, the network model is easy to fall into the trap of
local false features during training process. Therefore, it is
necessary to ingeniously design a deep learning method to
produce good fault diagnosis effects. In recent years, many
scholars have designed many excellent deep learning mod-
els for bearing data, which have made great progress in
bearing fault diagnosis under variable load conditions. For
example, Peng et al. [33] proposed a multi-branch and multi-
scale convolutional neural network model, which processed
bearing vibration signals into three different signals, and then
inputted them into the proposed model to diagnose the faults
of train bearing with variable load. Jiao et al. [34] proposed
a fault diagnosis method based on residual joint adversarial
network and introduced an adversarial adaptive discriminator
into the residual neural network, and achieved good diagnos-
tic results on planetary gearboxes and rolling bearings with
different load domains. Xu et al. [35] proposed a feature
fusion process with attention mechanism and combined this
process with deep learning model, finally achieved good
generalization performance in the actual bearing variable
load environment. Wang et al. [36] proposed a multi-scale
domain adaptive network model, which had good adaptabil-
ity to bearing data characteristics under different working
conditions. Dong et al. [37] used Fourier transform to con-
vert time-domain signals into frequency-domain signals and
inputted them into an autoencoder for adaptive feature extrac-
tion. Their methods improve the fault diagnosis effect under
variable working conditions.

Rolling bearings have complex fault characteristics under
variable working conditions, and it is difficult to make effec-
tive diagnosis. In order to improve the anti-noise and gen-
eralization ability of the fault diagnosis method, we propose
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a one-dimensional dilated convolution network with residual
connection for fault diagnosis of rolling bearing. Firstly, the
one-dimensional time-domain signals are used as the input.
Then we construct the wide convolution residual block and
the zigzag dilated residual block to learn feature information,
and use the global residual and sub-residual weight coeffi-
cient structure to transfer the features. Finally, the SE block is
added after each sub-residual structure. Experimental results
demonstrate that the proposed method has excellent anti-
noise and generalization ability.

The main contributions of this paper are as follows:
(1) A zigzag dilated residual connection block with opti-

mal dilation rate is proposed. The signals of rolling bearing
have strong time-varying characteristics. In order to extract
the characteristic information, we construct a zigzag dilated
residual connection block, which can not only expand the
receiving field of the convolutional layer, but also avoid the
grid effect. Thenwe analyze the influence of different dilation
rate combinations and determine the optimal dilation rate
combination. Finally, we apply this residual block in the
proposed method and obtain excellent experimental results.

(2) A residual connection structure with optimal weight
coefficients is proposed. In order to enhance the fault diag-
nosis effect of the proposed method, we construct the global
residual and sub-residual weight coefficient structure in the
network, so that the upper and lower convolutional layers
of the network transfer appropriate feature information, and
finally analyze the influence of different weight coefficients.

(3) A neural network fault diagnosis model with attention
mechanism is proposed. In order to improve the feature infor-
mation recognition ability of the proposed method, we add
an attention mechanism module (SE block) after each sub-
residual structure and use this module to learn the output of
useful information features by each sub-residual block and
suppress useless Information characteristics.

(4) The influences of different dilation rates and different
residual connection weight coefficients for the fault diagnosis
effect are analyzed through experiments, and experiments in
different noise environments and different load domains are
carried out. The results show that the proposed method has
higher fault diagnosis accuracy than other methods.

The rest of this article consists of the following. The dilated
convolution, residual connection and SE block are introduced
in Section 2. The method of one-dimensional dilated convo-
lution network with residual connection is proposed in detail
in Section 3. By analyzing the influence of different dilation
rates and residual connection weight coefficients, for noise
environment and different load domains, experiments verify
the effectiveness and superiority of the proposed method in
Section 4. The conclusion is given in Section 5.

II. RELATED WORKS
A. ZIGZAG DILATED CONVOLUTION
Dilated convolution is a convolution method that can increase
the receptive field of the convolution layer. Proposed by
Yu and Koltun [38] in 2016, dilated convolution can obtain

data features by jumping step size and can output more
information and keep the parameter constant. Supposed that
x(a) represents the one-dimensional input, the feature length
is A, r represents the dilation rate, w(i)represents the one-
dimensional convolution kernel, y(a) represents the output
feature after the dilated convolution operation. The relation-
ship equation between them is as follows:

y(a) =
A∑
i=1

x(a+ r × i)× w(i) (1)

For normal convolution with a convolution kernel size K ,
after performing a dilated convolution operation with a dilate
rate of r , the convolution kernel size will be equal to K +
(K − 1)(r − 1). For example, after a dilated convolution
operation with a dilation rate of 2, a normal convolution
with a convolution kernel size of 3 is equivalent to a dilated
convolution kernel with a size of 5. The one-dimensional
dilated convolution process is shown in Fig.1.

Although dilated convolution can expand the recep-
tive field, simply stacking dilated convolution layers
with the same dilation rate would cause some problems.
Because the features of the dilated convolution obtain data by
jumping, the obtained feature information would be uneven,
that is, some feature locations are accessed frequently, and
some feature locations are not accessed. This kind of problem
is defined as the grid effect. However, the grid effect can be
effectively avoided by constructing zigzag dilated convolu-
tion. That is, different dilation rates are set for the dilated
convolution of each layer, and the superimposed dilation rates
have not a common divisor greater than 1, and the following
equation is

Mi = max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (2)

ri represents the dilation rate of the ith layer,Mi represents
the maximum dilation rate of the ith layer, assumed that
the number of convolutional layers is n, the default value is
Mn = rn.

B. RESIDUAL CONNECTION
To solve the problems of gradient disappearance and degra-
dation in the training process of deep convolution neural
network, He et al. [17] proposed the concept of residual con-
nection in 2016 and designed a residual block with residual
connection lines shown in Fig.2.

Assumed that the input of the residual block is x, {W i} rep-
resents the weight obtained when the input passes through the
ith convolutional layer, F(x) represents the residual mapping
function,H (x) represents the output of the residual block, and
the input x is directly connected to the output through the
identity connection line. The relationship equation between
them is as follows:

H (x) = F(x, {W i})+ x (3)

A simple deformation of Equation (1) is obtained as follows:

F(x, {W i}) = H (x)− x (4)
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FIGURE 1. One-dimensional dilated convolution.

The convolutional layer in the residual block only needs
to learn the difference between input and output. He et al.
proved that fitting the residual mapping function is easier than
fitting the identity mapping function through experiments,
and during the training processing of neural network, the
errors of the lower layer can be transmitted to the upper layer
through the identity connection line, which effectively solves
the disappearance of the network gradient with the increase
of depth.

C. SE BLOCK
Since CNN can generate a multi-channel feature map after
feature extraction, different channels of feature maps rep-
resent different feature information. The core point of SE
block [39] is to use the relationship among these feature
channels. SE block obtains the weight information of each
feature channel through network learning, and thenmultiplies
this weight information to the feature information of each
layer, so that the network can selectively enhance useful fea-
ture channels and suppress useless feature channels, thereby
realizing the feature channel self-adapt to calibration. The SE
block structure is shown in Fig.3.
X i represents the feature matrix of the corresponding layer,

H , W , C represent the three-dimensional information of the
feature matrix, Conv represents the normal convolution oper-
ation. Fsq represents the squeezing operation, the squeezing
operation can extract the information of C2 feature channels
by using the global average pool operation, and then a set of
weight information with a size of 1× 1× C2 is obtained. uc
represents the cth feature after convolutional transformation,
zc represents the cth feature map after the extrusion operation.
The relationship equation between them is as follows:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (5)

Fex represents the excitation operation, which refers to
the generation of corresponding weights for each feature
channel through the Sigmoid function.W1 andW2 represent
the weight information of the two fully connected layers,
δ represents the ReLU function, and σ represents the Sig-
moid function. The relationship equation between them is as
follows:

s = Fex(zc,W ) = σ (W2δ(W1zc)) (6)

FIGURE 2. Residual block structure.

Fscale represents the rescaling operation, which refers to mul-
tiplying the weight generated by each channel with each orig-
inal feature, sc represents the weight of the cth feature map
after the incentive operation, • represents a scalar and vector
multiplication. The relationship equation between them is as
follows:

X3 = Fscale(uc, sc) = sc • uc (7)

III. THE PROPOSED METHOD
A. RESIDUAL CONNECTION BLOCK
The residual connection blocks are constructed by using two
convolutional layers and a pooling layer, which are placed at
the front end of the network to extract advanced features from
the data. The structure is shown in Fig.4. The first convolu-
tional layer uses a wide convolution kernel of 64× 1, and the
second convolutional layer uses a large convolution kernel of
the size of 7×1. Activation functions BN (Batch Normaliza-
tion) and ReLU are used after each convolutional layer. Two
large convolutional layers can not only obtain longer time-
domain sequence information in convolution operation, but
also suppress false feature interference in the fault signals.
The two maximum pooling layers are responsible for reduc-
ing the dimensionality of features and parameter calculation.
The construction of the residual connection makes the input
features pass backward and avoids the problem of overfitting
in the training process.

B. DILATED RESIDUAL CONNECTION BLOCK
The dilated residual connection blocks are constructed by
using three consecutive zigzag dilated convolutional layers
and are used to effectively learn feature information. The
structure is shown in Fig.5. The convolution kernel size of
the three empty convolutional layers is set as 3×3, activation
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FIGURE 3. SE block structure.

FIGURE 4. Residual connection block.

functions BN (Batch Normalization) and ReLU are used after
each layer. Besides, we construct residual connections for
dilated convolution to transfer features. Then, in order to
avoid the grid effect, different combinations of dilation rates
are set up to construct the zigzag dilated convolutional layer.
We analyze the effects of different combinations through
experiments and then obtain the optimal dilation rate combi-
nation. In addition, as the pooling layer enlarges the receptive
field, it also changes the feature size and causes partial infor-
mation loss. However, dilated convolution can overcome this
shortcoming. During the downsampling operation, the fea-
ture size of each layer remains unchanged, and the receptive
field of the convolutional layer can be effectively expanded.
Therefore, the maximum pooling layer is only used after the
dilated convolutional layer and is not used between the dilated
convolutional layers.

C. THE NETWORK STRUCTURE OF THE PROPOSED
METHOD
Due to the load change in the working environment of rolling
bearing, noise interference and other factors are inevitable,
which lead to poor generalization ability and noise resis-
tance. To solve this problem, a one-dimensional dilated con-
volutional neural network with residual connection method

FIGURE 5. Dilated residual connection block.

is proposed. It uses the original bearing time-domain data
as input, and its network structure is mainly composed of
residual connection block, dilated residual connection block,
SE block, residual connection and full connection layer (FC),
which shows as Fig.6.

First of all, the feature information of input data can be
extracted and learned effectively through the residual con-
nection block and the void residual connection block. Then,
the SE block is added to the end of the two residual blocks,
the beneficial output features of each residual block are
adaptively selected and passed to the next residual block or
subsequent processing layer. In addition, in order to trans-
fer the feature information between the top layer and the
bottom layer, the global residual connection is constructed
between the feature input and the last pool layer. The residual
connection can improve the learning efficiency of neural
network. When the feature information is transmitted to the
bottom layer through the residual connection, the default
weight coefficient of the feature is 1. However, for neural
network with fewer layers, reducing the residual connection
feature weight can make the residual block learn more feature
information, which is easy to be ignored. Therefore, the
proposed method adds λ times of the weight coefficient to
each residual connection line and analyzes the influence of
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FIGURE 6. Network structure of the proposed method.

FIGURE 7. Rolling bearing test bench.

different weight coefficients through experiments, thus the
best weight coefficient is obtained. Finally, through the full
connection layer and softmax classifier, the fault diagnosis
results are output.

IV. EXPERIMENTAL VERIFICATION
A. DATA DESCRIPTION
1) CWRU DATASET
The bearing dataset based on Case Western Reserve Uni-
versity (CWRU) [40] is used in the experiment. The dataset
is widely used for bearing fault diagnosis experiments. The
rolling bearing test bench is shown in Fig.7. From left to
right, there are the electric motor, torque transducer and
dynamometer. The bearing of the motor drive end SKF6205
is selected as the experimental bearing, and the fault is caused
by the electric spark discharge method. The faults are located
at the rolling body, inner ring, outer ring 3, 6 and 12 o’clock,
respectively, and the fault diameters are 0.007, 0.014, 0.021
and 0.028in, so as to simulate pitting faults of different
degrees of rolling bearing. According to the faults with differ-
ent damage diameters in different positions, there are 16 kinds
of vibration signals.

16 kinds of vibration signals of rolling bearing are detected
by an acceleration sensor and collected by a data recorder.
The sampling frequency of the data recorder is 12kHz and

FIGURE 8. DDS test bench.

there are 16 sampling channels. For the vibration signals,
a moving time window with a step length of 784 points is
used to intercept them without overlap. The step length of
the moving window determines the input length of the deep
learning fault diagnosis method. Some scholars choose the
step length of the moving window of 1024 or 2048, but the
above two lengths are larger than 784, which would generate
more calculations. In addition, a smaller step length would
also get more data samples, so we choose 784 as the moving
window step size. Dataset A, B and C represent the bearing
data under three loads at the motor drive end. The three loads
are 1, 2 and 3hp, respectively. The corresponding speeds of
the electric shock drive end are 1772, 1750 and 1730r/min.
Set the ratio of training samples to test samples be 5:1. The
specific components of the bearing dataset are shown in
Table 1.

2) SU DATASET
SU dataset of rolling bearing is from Southeast Univer-
sity (SU) in China. Drivetrain Dynamic Simulator (DDS)
is shown in Fig.8. The test bench is mainly composed of
motor, motor controller, planetary gearbox, parallel gearbox,
brake and brake controller. The dataset includes bearing data
and gearbox data. The speed-load condition is 20HZ-0V or
30HZ-0V. We use bearing data as the experimental dataset
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TABLE 1. Description of rolling bearing dataset.

and merge the data under the two conditions into a composite
dataset. The composite dataset includes 5 condition labels,
namely health, ball failure, inner failure, outer failure, com-
bined inner and outer failure. 600 samples are selected for
each type of failure, and there are 3000 samples in total. The
ratio of training set and testing set is 4:1.

B. PARAMETERS OF THE PROPOSED METHOD
The structure of the proposed method is mainly composed
of residual connection block and dilated residual connection
block. The residual connection block consists of two normal
convolution layers and the maximum pooling layer, in which
the convolution Kernel size of the normal convolution layer
is 64 × 1 and 7 × 1, the stride is 8 × 1 and 1 × 1, the
number of Kernel channels is 16 and 32, and the kernel size
and stride of the maximum pooling layer are both 2 × 1.
The dilated residual connection block consists of three dilated
convolution layers, in which the Kernel size of the dilated
convolution layer is 3× 1, the stride is 1× 1 and the number
of Kernel channels is 64. Detailed parameter descriptions are
shown in Table 2. In addition, when the feature sizes and
channels of the input and output of the residual block are
inconsistent, the residual connection needs to use a 1 × 1
convolutional layer for matching. For example, the first sub-
residual line uses a 1×1 convolution, the number of channels
is 32, and the stride size is 16. The global residual connection
line uses a 1 × 1 convolution, the number of channels is 64,
and the stride size is 32.

The deep learning framework used in the simulation exper-
iment is TensorFlow, the programming language is Python,
the computer operating system is Ubuntu, the CPU is I9-
9900K and the GPU is RTX2080Ti. During the experiment,
the Adam optimization algorithm is used to update the net-
work training parameters, the number of iteration batches is
2000, and the number of samples in each batch is 64. The
network is trained with a dynamic learning rate, the initial
learning rate is set to 0.001, the decay rate is 0.9, and the

decay is performed every 1000 iterations. To prevent overfit-
ting, the dropout abstention value is set to 0.5. The average
of 10 experimental results is selected as the final result.

C. THE EFFECT OF DILATION RATE AND RESIDUAL
CONNECTION WEIGHT COEFFICIENT
1) THE EFFECT OF DILATION RATE
Compared with normal convolution, dilated convolution has
a larger receptive field. However, stack dilated convolution
with the same dilation rate would lead to grid effect and affect
the ability of network feature learning. Therefore, a zigzag
dilated convolutional layer is constructed, that is, different
combinations of dilation rates are set for three continuous
dilated convolutional layers. Assumed that the combination
of dilation rate is expressed as (A, B, C), according to Equa-
tion (7), there are the following four combinations (1, 2, 2),
(1, 2, 3), (1, 2, 5) and (1, 2, 7). When both dilation rates
are 1, dilated convolution is equivalent to normal convolution,
so a group of normal convolutions is selected for experimen-
tal comparison, and its combination is (1,1,1). In order to
more intuitively analyze the experimental results, the residual
connection weight coefficient is set as 1, and the training
samples in dataset A and testing samples in dataset B are
selected to verify the influence of different dilation rate com-
binations. The experimental results are shown in Fig.9. It can
be seen from Fig.9 that the fault diagnosis accuracy of the
dilated convolution experiment group is higher than that of
the normal convolution experiment group, which indicates
that the dilated convolution can expand the receiving field
and improve the generalization ability. In addition, under the
premise that all four groups of dilation rate combinations sat-
isfy Equation (2), the fault diagnosis accuracy of the (1,2,3)
combination is 95.33%, which is higher than the results of
the other three groups. This means that the (1,2,3) combi-
nation can maximize the fault diagnosis performance of the
proposed method. Therefore, in the subsequent experiments,
the combination of (1,2,3) is used as the optimal combination
of zigzag dilated convolution.
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TABLE 2. Parameters of the proposed method.

FIGURE 9. Diagnosis results using different dilation rate combinations.

2) THE EFFECT OF RESIDUAL CONNECTION WEIGHT
COEFFICIENT
The residual connection can transfer feature information
between the upper and lower layers of neural network.
In order to make the residual block learn more feature infor-
mation, the proposed method adds a weight coefficient of λ
times to each residual connection line, and λ = 0 means
that the method does not include residual connection. Fur-
thermore, we select training samples in dataset A and the test
samples in dataset B as experimental data. The influence of
different residual connection weight coefficients is shown in
Fig.10. It can be seen from Fig.10 (a) that the fault diagnosis
accuracy of the first group is significantly lower than that of
the other four groups, so this means that the residual con-
nection can effectively improve the feature learning ability.
In addition, it can be seen from the other four experiments
that the fault diagnosis accuracy increases with the reduction
of the residual connection weight. When λ = 1, the fault
diagnosis accuracy is the lowest, which is 95.33%, and when
λ = 0.2, the fault diagnosis accuracy is the highest, which
is 96.74%. We can see that as the value of λ decreases,
the accuracy is gradually increasing. In order to obtain the
optimal parameter, the value of λ is respectively selected as
0.05, 0.1, 0.15, 0.2 and 0.3 for experiments, and the results are
shown in Fig.10 (b). It can be seen that when λ is between

0.05 and 0.2, the accuracy increases gradually, and when λ
is 0.3, the accuracy decreases. Therefore, we can draw the
following conclusion that the effect of the proposed method
can be improved by appropriately reducing the weight of
residual connection, but when the weight is too low, residual
connection plays a small role and does not improve the effect
of the proposed method. In the residual connection weight
coefficient experiment, the global residual connection and
the sub-residual connection use the same weight coefficient,
which can reduce the complexity of the network and facilitate
the adjustment of network parameters. In addition, although
the optimization algorithm can find the optimal parameter,
it also increases the algorithm complexity of the proposed
method. It can be seen from Fig.10 (b) that the accuracy
difference between 0.15, 0.2 and 0.3 is small and is in an
acceptable range, so we set λ = 0.2 as the optimal residual
connection coefficient in our method.
Through the experiments in this section, we confirm the

optimal dilation rate and residual connection weight coef-
ficient. The function of the dilation rate is to increase the
receptive field of the convolutional layer and avoid the grid
effect. The residual connection weight coefficient can reduce
the feature weight of the residual connection, so these two
parameters are not directly related. In addition, these two
parameters are simultaneously optimized in the experiment,
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FIGURE 10. Diagnosis results using different residual connection weight coefficients.

the effect of optimizing these two parameters at the same time
is the same as optimizing the dilation rate first, and then opti-
mizing the residual connection weight coefficient. Therefore,
the adopted optimization method is to first assume that the
residual connection weight coefficient is 1, the dilation rate
is analyzed, and after the optimal dilation rate is determined,
the optimal weight coefficient is analyzed and determined.
For other parameters of the proposed method, according to
a large number of references, the approximate ranges of the
parameters are determined, so the parameters are determined
by using the enumeration method.

D. PERFORMANCE UNDER DIFFERENT EXPERIMENT
ENVIRONMENTS
1) CONTRAST METHODS
In order to verify the effectiveness of the proposed method,
we select SVM-EMD envelope spectrum and BPNN-EMD

envelope spectrum methods based on artificial filtering [41],
LeNet-5 [13], ResNet [42] and WDCNN [23] methods based
on deep learning as comparison methods. Among them, the
first 5 IMFS Hilbert envelope spectra decomposed by EMD
algorithm are used as the input of the methods based on
artificial filtering. SVMuses the "one-to-many" classification
method, and the kernel function adopts the "Gaussian kernel
function", BPNN uses 3920 dimensions and 3920-300-16
structures. Based on the deep learning method, the inputs
of LeNet-5 and ResNet are the two-dimensional gray map
after the transformation of one-dimensional bearing data by
matrix. LeNet-5 adopts the classical structure, the convolu-
tion kernel size is 5 × 5, the pooling step size is 2, and the
parameter of the full connection layer is 120. The network
structure of ResNet is composed of 5 residual blocks, two
pooling layers and a full connection layer. In the residual
block, the convolution kernel size is 3 × 3, the pooling step
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FIGURE 11. Original signals and Noisy signals.

size is 2, and the parameter of the full connection layer is
1024. The input ofWDCNN is one-dimensional bearing data.
The network structure is composed of 5 convolutional layers
and 5 maximum pooling layers, and BN is added after each
convolution layer. The size of the convolution kernel of the
first layer is 64× 1, the size of the convolution kernel of the
last four layers is 3× 1, the pooling step is 2, and the number
of parameters of the full connection layer is 100. Among the
above methods, SVM-EMD and BPNN-EMD represent tra-
ditional machine learning fault diagnosis methods. LeNet-5
represents the classic convolutional neural network. ResNet
is generated by constructing residual connections in con-
volutional neural networks, and it represents an important
development of convolutional neural network. WDCNN rep-
resents a rolling bearing fault diagnosis method based on one-
dimensional convolutional neural network. So we consider
that these methods chosen as the comparison methods in this
paper are convincing.

2) PERFORMANCE UNDER DIFFERENT NOISY
ENVIRONMENTS
In the working process of rolling bearing, the vibration and
friction of parts would produce noise, which not only affects
the health state of bearing, but also contaminates the collected
vibration data and covers the fault information in vibration
data. Therefore, it is required that the fault diagnosis method
of rolling bearing can overcome the interference of noise.
In this paper, Gaussian white noise with different SNR is
added to the original signals to construct different composite
noise signals, so as to simulate different noise environments,
which show in Fig.11, the left side is the original signals, and
the right side is the noisy signals, which is Gaussian white
noise with the SNR of 1dB added to the original signals.

The definition of SNR is as follows:

SNRdB = 10 log10(
Psignal
Pnoise

) (8)

where Psignal is represents signal power, and Pnoise is repre-
sents noise power. Among them, the lower the SNR is, the
more complex the composite noise signals are. The experi-
mental data for fault diagnosis in different noise environments
select the training samples and test samples in dataset A, and
add Gaussian white noise with SNR of −1, 0, 1, 3, 5, 7, 9,
11dB to the test samples, thereby constructing 6 kinds of
compound noise test samples. These samples are used to test

the noise immunity of each method. The experimental results
are shown in Table 3. It can be seen fromTable 3 that the accu-
racies of the proposed method in the six noise environments
are higher than other methods, and all have reachedmore than
82%. The two methods, SVM-EMD envelope spectrum and
BPNN-EMD envelope spectrum based on artificial filtering,
both have the problem of EMD’s end effect, which limits the
ability of these two methods to process noise data. Based on
the methods of deep learning LeNet-5 and ResNet, the accu-
racy is more than 98% in the environment with the SNR of 9,
11 dB, but in the environment with the SNR of−1, 0, 1, 3 dB,
the accuracy is lower than 90%, because these two methods
use two-dimensional bearing data as input, they are difficult
to effectively extract feature information from the original
data of bearing, so they cannot effectively process strong
noise data. Although the fault diagnosis accuracy ofWDCNN
method is relatively high, when the SNR is 3 dB, the accuracy
drops significantly, when the SNR is 1 dB, the accuracy is
only 91.68%, which shows that the anti-noise capability of
this method has certain limitations. When the SNR is 1 dB,
the accuracy of the proposed method is 93.30%, and when
the SNR is 7, 9, 11 dB, the accuracies reach more than 99%,
and the average accuracy is 94.99%, which is significantly
higher than other methods. Because the proposed method
constructs the wide convolution kernel residual connection
which can maximize to extraction the feature information of
the noise data, the zigzag dilated residual connection block
can deeply learn the effective feature information. At the
same time, we insert SE block after each residual block to
enhance the feature recognition ability, so that our method
has better anti-noise ability in different noise environments.
In addition, when the SNR is 0, −1dB, the accuracies of the
six methods are all lower than 90%. Although the accuracy of
the proposed method is relatively high, the highest accuracy
is only 89.25%. It can be seen that the proposed method
has a strong anti-noise ability, but the performance would be
limited when the noise is strong. Therefore, when the SNR
range is 3-11dB, it is the reliable SNR range for the four deep
learning methods, when the SNR range is 1-11dB, it is the
reliable SNR range for the proposed method.

3) PERFORMANCE ACROSS DIFFERENT LOAD DOMAINS
The loading domain of rolling bearing would inevitably
change in the actual working condition, so that the fault diag-
nosismethodmust have a good generalization ability. In order
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FIGURE 12. Fault diagnosis results of 6 methods in different load domains.

TABLE 3. The accuracy of six methods under different noisy environments.

to verify the generalization ability of our method under differ-
ent load domain conditions, experiments are carried out under
the conditions of different load domain, and a comparative
analysis is carried out with the five selected fault diagnosis
methods. The load domain change means that in the 3 dif-
ferent load domain data of dataset A, B, C, one of the load
domain data is used as the training sample, and the other two
load domain data are used as the test samples. In the experi-
ment, A→B and A→C represent the training set of dataset A
as the training sample, the test set of dataset B andC as the test
sample for two groups of experiments, respectively, and other
groups of experiments are the same way. The fault diagnosis
results of 6 methods in different load domains are shown in
Fig.12. It can be seen that in each group of different load
domain experiments, the accuracy of the proposed method is
higher than the other five methods. Taken C→A and C→B
as examples: Due to envelope errors and modal confusion,
fault diagnosis accuracy in different load domains is below
80% based on artificial filtering SVM-EMD envelope spec-
trum and BPNN-EMD envelope spectrum. The LeNet-5 and
ResNet methods based on deep learning use two-dimensional
data as input, because the original one-dimensional data is
converted into two-dimensional data, there could be loss of
feature information, resulting in the highest accuracies of the
different load domains of the two methods are only 93.51%
and 93.70%, which is the experimental result of the C→B

group. Although the accuracies of the two groups of exper-
iments based on WDCNN reach 96.34% and 98.37%, due
to its relatively simple structure, the data features could not
be fully extracted, resulting in the failure diagnosis effect of
different load domains is not as good as the proposed method.
The fault diagnosis accuracies of the proposed method in
C→A and C→B group experiments reach more than 96%,
in addition, the average accuracy of all groups of experi-
ments is 97.67%. This is because the global residual and sub-
residual connections increase the learning process, and then
we set the residual connection weight coefficients to make
the transfer of features more efficient. Moreover, the zigzag
dilated convolution makes the perception range of the dilated
residual connection block wider, so as to deeply dig out
the internal feature information in the data of different load
domains, which make the proposed method have advantages
in the aspect of feature learning. Therefore, although the
features of test samples and training samples in different load
domains are quite different, this method can still well adapt to
the negative effects of data feature differences and has better
generalization ability.

4) PERFORMANCE UNDER NOISE AND DIFFERENT LOAD
DOMAINS ENVIRONMENTS
Since the working environment of rolling bearing is often
accompanied by noise and load domain changes, we add
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FIGURE 13. Fault diagnosis results under noise and different load domains environments.

TABLE 4. Calculation time of the four methods.

Gaussian white noise with an SNR of 3dB in the test set
and set the load domain change. It is used to verify that
the proposed method has both anti-noise and generalization
ability. Compared with WDCNN method, the experimental
results are shown in Fig.13. The highest fault diagnosis accu-
racy of WDCNN method is 92.30%, the lowest accuracy is
87.23%, and the average accuracy is 90.84%. The highest
fault diagnosis accuracy of the proposed method is 94.73%,
the lowest accuracy is 89.06%, and the average accuracy is
92.47%. In addition, the accuracy of the proposed method
in each experiment is higher than that of WDCNN method.
It can be seen that the proposed method has better fault
diagnosis results than WDCNN, and can still maintain better
noise resistance and generalization ability in complex work-
ing conditions.

5) CALCULATION TIME
The calculation times of the four deep learning methods are
shown in Table 4. It can be seen that WDCNN has the least
calculation time. The calculation time of the proposedmethod
is higher than that of WDCNN, but lower than LeNet-5 and
ResNet, because the proposed method uses more convolu-
tional layers than WDCNN, and the structure is more com-
plex. In the future, the proposed method should be optimized
to reduce the calculation time.

6) CROSS-VALIDATION SCHEME
The cross-validation algorithm of machine learning is an
evaluation algorithm used to verify model parameters and
evaluate model classifier. Since the ratio of training set and
test set is 5:1, we divide dataset A into 6 parts, and take
turns to use 5 parts as training set and 1 part as test set. After

FIGURE 14. Cross-validation results of the four deep learning methods.

TABLE 5. Error of the four deep learning methods.

repeated verification and testing, the performance evaluation
results of the model are finally obtained.

The cross-validation results of the four deep learningmeth-
ods are shown in Fig.14, and the error is shown in Table 5.
It can be seen from the figure and table that the accuracy
of WDCNN and the proposed method reached 99.3%, the
classification accuracy of the proposed method is higher,
and the error is smaller, only about 0.23%. Therefore, the
proposed method has the advantages of high classification
accuracy, stable calculation results, small errors, and no over-
fitting or under-fitting.

E. FAULT DIAGNOSIS PERFORMANCE UNDER THE SU
DATASET
We conduct a fault diagnosis experiment under the SU dataset
and compare with LeNet-5, ResNet, and WDCNN. The
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FIGURE 15. Fault diagnosis results under the SU dataset.

results are shown in Fig.15. From Fig.15, we can see that
the fault classification accuracy of the proposed method is
significantly higher than the other three methods, the classifi-
cation accuracy of WDCNN is 98.55%, and the classification
accuracy of the proposed method is 98.83%, which is 0.28%
higher than the former. The experimental result verifies the
effectiveness of the zigzag dilated residual block and residual
weight coefficient structure. Therefore, the proposed method
can effectively learn the feature information in the data, has
better generalization ability, and has excellent fault diagnosis
effect for different datasets. Both the CWRU data set and
the SU data set are collected through the rolling bearing test
bench. The characteristics of the two data sets are similar.
In addition, we found in experiments that λ = 0.2 is also
the optimal value in the SU data set.

V. CONCLUSION
In order to improve the anti-noise performance and gener-
alization ability of fault diagnosis method of rolling bearing
in different load domains and noise environments, a one-
dimensional dilated convolution network with residual con-
nection method is proposed. In this paper, we construct a
zigzag dilated convolution, which has a larger receptive field
and can obtain more feature information in data samples. The
fault features are transmitted in the upper and lower layers
of the network through global residual connection and sub-
residual connection, which can effectively avoid the risk of
overfitting. After each sub-residual structure is obtained, the
SE block module is inserted to adaptively select beneficial
features, so that the proposed method can efficiently obtain
the feature information in data. CWRU and SU datasets are
used for the simulation experiments. In the experiment of the
noise environment, the average fault diagnosis accuracy of
the proposed method is higher than other methods, which
verifies that the proposed method has satisfactory anti-noise
capability. In experiments of different load domains, the fault
diagnosis accuracy of the proposed method in each group

experiment is higher than that of WDCNN method, which
verifies that the proposed method has better generalization
performance. In the noise and different load domain envi-
ronment experiment, the proposed method has a higher fault
diagnosis accuracy than that of WDCNN method, which
verifies the superiority of the proposed method. In the future,
to further improve diagnostic performance, how to determine
the optimal parameters will be studied. The experimental data
set used in our current work is manually processed data set.
The data features of bearings in real work are more complex,
so the proposed method has limitations for bearing failures in
real work.
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