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ABSTRACT Most of the prosumers nowadays are constrained to trade only with the supplier under a flat
tariff or dynamic time-of-use price signals. This paper models and discusses the cost-saving benefits of
flexible prosumers as members of energy communities who can exchange electricity among peers and on the
wholesale markets through a community manager. Authors propose a novel centralized post-process sharing
method by introducing a two-stage mechanism which, unlike the existing methods, guarantees benefits for
prosumers joining the energy community. The first stage assesses internal price calculation in three different
methods: Bill Sharing Method Net (BSMN), Mid-Market Rate Net (MMRN), and Supply-Demand Ratio
Net (SDRN). In their original form, prices are calculated in a single stage and the comprehensive analyses in
the paper show that some members face increased cost. To solve this issue, the paper improves the methods
by introducing the second stage in which the compensation methodology is defined for the distribution of
savings which ensures that all community members gain benefits. Results investigate the value of inner
technical flexibility of the prosumer (flexible preferences of the final consumer can reduce the cost from
3% up to 20 %). Moreover, incentives/penalties encourage the utilization of a flexible behavior to adjust the
real-time consumption of prosumers’ appliances to a predefined day-ahead schedule. This type of pricing
results in a lower amount of benefits sharing in the community (the reduction of 18-47% in MMRN and
49-114% in SDRN compared to existing pricing) which makes this incentives/penalties pricing more
preferable. The paper concludes that prosumers with an excess PV production would not benefit from the
internal energy exchange in the community under BSMN due to free energy exchange between members.

INDEX TERMS Cost-sharing, day-ahead market, demand response, energy community, peer-to-peer
trading.

I. NOMENCLATURE
Stochastic and non-stochastic parameters are presented as
bold text, while variables are a regular type of text. Where
augmented with the subscripts s and t , they refer to the
values they take on in scenario s and time period t , while
the subscript d stands for a household and ap for a different
uninterruptible flexible appliance. If not stated differently,
variables and parameters are positive.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaosong Hu .

Indices and Sets
ap∈ A Uninterruptible flexible appliances
d ∈ D Households
d ∈ D+ Community members with decreased cost in

the first stage
d ∈ D− Community members with increased cost in

the first stage
t ∈ T Time steps
s ∈ S Scenarios
Parameters

π s Probability of scenario s
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λ
DAB/S
t Day-ahead (DA) buying/selling price

[DKK/kWh]
Ed Minimum state of energy of EV at the end of

a charging cycle [kWh]
Ed The battery capacity of EV [kWh]
Pd Maximum charging power of EV [kW]
Puniap Power of uninterruptible appliance [kW]
Lap Cycle length of uninterruptible appliance [h]
Ha/l
d The hour when a car arrives/leaves at home

[h]
1t Time interval [1h]
λ
DOWN/UP
t Down/up incentive price [DKK/kWh]
λBALB/S Balancing cost for bought and sold energy

[DKK/kWh]
λNET Network charges [DKK/kWh]

Stochastic parameters

Pmsd,s,t Must-serve load [kW]
PVd,s,t PV production [kW]

Variables
costpens,t penalization cost [DKK]
C ind
d Individual cost under supplier [DKK]

Ccomm
d Cost of a communitymember in the first stage

under cost-sharing mechanism m [DKK]
Cnew+
d Cost of a community member in the second

stage who was better off in the community in
the first stage [DKK]

Cnew−
d Cost of a community member in the second

stage who was worst off in the community in
the first stage [DKK]

C+ Sum of the cost reduction of community
members compared to individual trading with
supplier [DKK]

C− Sum of the cost increase of community mem-
bers compared to individual trading with sup-
plier [DKK]

min bound The minimum value of benefits for sharing
among community members

PHDd,s,t Power imported (positive) /exported (nega-
tive) from/to supplier by household [kW]

PGRIDs,t Power imported (positive) /exported (nega-
tive) by the energy community [kW]

PHDB/Sd,s,t Imported/exported power of each household
[kW]

PUP/DOWNs,t The community’s up/down regulation [kW]
PHDB/Sd,s,t Buying/selling power of household [kW]

PDAB/St DA community’s contracted buying/selling
power [kW]

Pnetd,s,t Net-load (negative if PV production excesses
load) [kW]

Puniapd,s,t Consumption of uninterruptable appliance
[kW]

PEVd,s,t EV charging power [kW]
Pthd,s,t Thermal load [kW]

Pch/disd,s,t Battery charging/discharging [kW]

Pnetpos/negs,t Sum of positive/negative net-load in the com-
munity [kW]

λ
mB/S
s,t Internal buying/selling price under

cost-sharing mechanism m
λs,t Compensation rate under SDRN [DKK/kWh]
λunits,t The average cost of energy [DKK/kWh]
SDRs,t Supply-demand ratio
1d Difference between individual cost and com-

munity member cost in the first stage

Binary variables

xdefd,s,t 1 if EV is being charged and 0 otherwise

xuniapd,s,t 1 if the uninterruptable load starts the cycle
and 0 otherwise

II. INTRODUCTION
A. MOTIVATION
The latest package of measures in the European Union (EU)
for a clean energy transition, ‘Clean Energy for all Euro-
peans’, puts the end-user into the focus by requiring,
among other things, integration of more renewable energy
sources (RES) and the market empowerment of final con-
sumers [1]. To achieve this, new models and tools for
end-consumers are needed, to give them the chance to find an
alternative business model in order to reduce their electricity
bill [2]. This is important since the survey conducted in [3]
suggests there was a significant increase in the electricity
retail price despite market liberalization. Moreover, many EU
member states still regulate end-user electricity prices and
have a single dominant supplier [4]. To enable the transi-
tion and utilize demand-side flexibility, it is crucial to have
a retail-level competition and to offer market participation
through innovative business models [5], [6]. In this context,
energy communities have emerged as new entities providing
the end-users novel platforms to invest into low carbon assets,
but also as operational market entities with capabilities to
exchange the surplus (deficit) of energy among their peers.
Their main goal is to incentivize consumers to produce and
consume energy locally, reducing the electricity cost and
increasing the self-consumption of RES.

B. LITERATURE REVIEW
The community manager (CM) is a newmarket entity partici-
pating in the wholesale markets on behalf of its members, but
it also coordinates the electricity trade and transactions within
the community [7]. Different aspects and benefits of this
concept have been researched, such as adjusting peak-hour
load, reducing the grid losses [8] and congestions [9], and
improving self-balancing to enable further integration of
RES [10]. In general, the CM optimizes flexible assets of
the community in order to achieve a better market position
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by incentivizing its members to trade within the community
or with the market whenever more convenient. The savings
are shared among community members and the challenge is
to find a cost-sharing method that fairly awards the peers
depending on their contribution to the entire community’s
wellbeing. CM is an entity essentially different from a regular
supplier and does not gain any profit. Indeed, the CM is, all in
all, a platform for providing prosumers with multiple options
for monetizing their flexibility, but also exposing them to
risks of uncertainties traditionally hedged by the supplier.
CM is in charge of scheduling the operation of the flexible
appliances in the energy community in order to achieve the
lowest electricity cost for the entire community. CM is a
virtual entity managed and owned by the members of the
community, meaning that, in the end, any profit made by the
CM is divided among the community members.

A motivational psychology framework is proposed in [11]
to describe the different motivational stages that encourage
prosumers to join p2p energy trading. Their interaction is
modelled as the canonical coalition game. The social coop-
eration between prosumers is modelled as a coalition for-
mation game in [12] enabling prosumers to decide should
they use battery storage in p2p trading. P2p trading can
also be modelled through a bidding process or by way of a
game-theory approach. The authors in [13], [14], and [15]
present an auction-based p2p trading mechanism, where dif-
ferent bidding strategies for prosumers are analyzed. Several
papers are based on game-theory (Stackelberg game, Nash
bargaining, a non-cooperative game) to model the negotia-
tion between prosumers or between prosumers and a cen-
tral entity responsible for p2p trading. P2p energy trading
based on a Stackelberg game in which the renewable and
non-renewable producers lead, while prosumers and con-
sumers follow is presented in [16] showing higher social
welfare of consumers and prosumers compared to conven-
tional p2p trading. The authors in [17] study the energy
trading based on a Stackelberg game between prosumers
who share energy storage. The energy sharing provider leads
the game setting the internal trading prices, while the pro-
sumers follow optimizing their energy profile. Two shar-
ing modes are distinguished: directly sharing in which the
energy sharing provider acts as an intermediator between
prosumers with energy excess and deficit without the storage
and buffered sharing in which the energy sharing provider
uses a shared battery for matching the demand in different
periods. The price competition on the upper level between
the sellers is modelled as a noncooperative game, while the
seller selection competition on the lower levels among buyers
is modelled with an evolutionary approach. The interaction
between upper and lower levels in p2p trading is based on
a Stackelberg game [18] in which sellers are leaders and
buyers are followers. A two-stage real-time (RT) energy
sharing optimization model is presented in [19]. A clus-
ter of buildings consisting of offices, industrial, and com-
mercial buildings firstly minimizes the total energy cost
and then shares the energy in a non-cooperative game with

transparent energy sharing profiles. The model deals with the
uncertainty by adjusting the energy schedule traded with the
retailer and keeping the predefined day-ahead (DA) energy
exchange profile with other buildings. The bilevel objec-
tive model in [20] minimizes the cost and ensures fairness
for all p2p members involved in energy trading based on
the Nash barging solution taking into account network con-
straints and energy scheduling in both DA and RT markets.
The privacy issue regarding p2p trading has been addressed
in [15] and [21]. The distributed approach developed in [15]
describes a method for local optimal energy scheduling and
sharing that guarantees data confidentiality, while in [21] the
prices provided from a p2p platform agent are calculated
based on a multiclass energy management problem consider-
ing the wholesale energy price, the energy demand of each
prosumer and the expected losses in an iterative process.
A convex formulation of the model is proposed to reduce the
computational burden and to implement it in RT. The model
in this paper proposes a different approach in which the prices
are not calculated in RT, i.e., they are calculated the day after
energy delivery and therefore, the model does not require a
fast optimization algorithm. Moreover, the paper precisely
defines internal prices based on the amount of shared energy
and both DA prices and incentives for flexibility. The authors
in [22] compare cost-sharing-methods among community
members, namely Bill Sharing Method (BSM), Mid-Market
Rate (MMR), and Auction-based Pricing Strategy (APS)
with flat buying and selling prices and without any demand
response program. The work in [23] describes cost savings
in an energy community with and without p2p trading. The
results show that the community is always better off by
performing p2p trading, however, the paper does not include
a sharing mechanism that guarantees cost savings for all the
communitymembers and only focuses on the optimum for the
entire community. The paper in [24] compares the outcome of
BSM, MMR, and Supply Demand Ratio (SDR) cost-sharing
mechanisms in an energy community using heuristic meth-
ods. To facilitate the convergence of the proposed algorithm,
their model uses step-length control and includes a learn-
ing process. An innovative iterative p2p trading mechanism
called ECO-Trade is described in [25], where the authors
consider an energy community with different percentages of
households equipped with PV and batteries to demonstrate
that ECO- trade, which is based on a near-optimal algorithm,
provides better solutions in terms of accuracy and compu-
tational time than that provided in [26]. The work in [27]
proposes a SDR cost-sharing method within a p2p trading
framework that takes into account consumers’ preferences
with respect to their desired level of participation. The model
in [28] introduces a SDR-based profit-sharing scheme with
a compensation rate that incentivizes all consumers to join
the energy community by ensuring them lower electricity
costs. The energy community is exposed to dynamic buy-
ing and selling prices, but there is no uncertainty related
to the price or PV production and demand or discussion
on the optimal cost-sharing method. As an upgrade of [28],
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this paper precisely models demand flexibility, considers the
stochastic nature of PV production and consumers’ load, and
investigates the value of flexibility incentives to adjust the RT
operation schedule of household appliances to a predefined
DA schedule. A multi-energy retailer (MER) aims to maxi-
mize its profit from selling electricity, gas, and heat demands
to the multi-energy consumer [29]. MER participates in the
electricity, gas, and heat market and operates tri-state com-
pressed air energy storage (tri-CAES) and combined heat and
power (CHP) technologies in order to satisfy the demand
of final consumers. Final consumers are encouraged with
incentive compensation to participate in load shifting when
market prices are high resulting in reduced cost of MER.
A multi-objective two-stage stochastic problem considering
uncertainties related to electric and gas load and wind power
plant (WPP) production is modeled in [30]. The benefits
of employing demand response programs in electrical and
gas networks are investigated, together with a reduction of
CO2 emissions resulting in no curtailment of WPP produc-
tion and reduction of both gas and electrical network opera-
tional cost. Different models of community energy trading
are compared in [31]. The first one does not consider any
energy exchange between microgrids and is individually ori-
ented. The second one proposes a collective benefit without
considering individual interests. The third one focuses on
a collective and a satisfactory level of individual interests,
although the individual benefits of some microgrids are not
accomplished in this model. The fourth one brings both col-
lective and individual benefits with the same percentage of
cost savings for each microgrid and presents the best solution
of proposed models. A two-level optimization problem for
cost minimization and peak shaving of neighboring energy
hubs is presented in [32]. The lower level focuses on indi-
vidual household (home energy hub HEH) energy supply,
while the upper level forms the coalition giving HEHs and
conventional buildings financial compensation to facilitate
trading in the local market. Virtual energy hub supplies their
heat and electricity demand from CHP, boilers, and local
markets taking into account risk-constrained self-scheduling
of battery and thermal storage to reduce the purchase cost
of electricity and heat [33]. The results show almost 70%
of cost reduction for electricity imported from local markets.
The interaction of microgrids with 100% renewable power in
the transactive energy markets is proposed in [34]. The case
with local energy exchange brings 18.34 % cost reduction for
each microgrid which highly motivates them for local energy
sharing due to high energy prices for energy exchange with
the main grid.

Based on the literature review shown in Table 1, the fol-
lowing research gaps have been identified:
• Relevant literature on cost-sharing methods recognizes
three main categories: i) game-theory methods which
are rather complex to deploy, such as [8], [16]–[18],
ii) coalition games ([11], [12], [20]) and iii) post-event
methods which guarantee model convergence (such
as BSM, MMR, SDR [22], [28], [37]). Game-theory

cost-sharing methods are computationally demand-
ing and this complexity increases exponentially with
the number of peers. Coalition games are sometimes
restricted with the number of prosumers per coalition,
preventing the formation of a grand coalition (which
brings the highest savings) and potentially leading
to economic dissatisfaction of prosumers. All known
post-processing cost-sharing methods are easily imple-
mentable and guarantee model convergence. However,
and as the results in this paper will show, they are
defined so that they do not guarantee economic benefits
to all community members as opposed to staying in
traditional supplier-household contracts. To bridge this
gap the paper defines a new two-stage post-processing
cost-sharing method that guarantees lower costs for all
energy community members.

• The flexibility of the end-users is often neglected
or is not sufficiently modelled. Only a few papers
focus on this and model both the household level
batteries and controllable smart home devices, such
as [8], [19], [20], [24]. Other papers either model
only the battery storage or focus more on MES
aspects [28]–[34]. However, none of them considers
post-processing cost-sharing methods in their analyses.

• Although some papers include uncertainty aspects in
their modeling, none of them models static, post-event
cost-sharing methods to deal with this important fea-
ture of low-carbon energy systems. Additionally, to the
authors’ knowledge, none of the papers models flexi-
bility incentives for the end-users which award those
ready to change their consumption to benefit the power
system.

According to [42], an energy community is a legal entity
based on voluntary participation with the primary pur-
pose of providing environmental, economic, or social
community benefits for its members or the local areas,
rather than solely financial profits. Real-world examples
of energy communities are Bioenergy Village Jühnde,
Brixton Energy, Energy Cooperative of Karditsa, Green
Energy Cooperative (ZEZ) [43], etc. The work in this
paper considers an energy community operated by a CM
whose members have the possibility of p2p energy trad-
ing with internal prices determined based on both DA
prices and flexibility incentives reflecting regulating power
costs.

This paper seeks to investigate the financial benefits arisen
from participating in an energy community and demonstrates
under which conditions the new market concepts enable cost
savings for prosumers. Nowadays, trading with the supplier
solely is the most realistic choice for energy procurement.
However, due to the growing integration of distributed RES
and the liberalization of the retail energy market, energy
communities are becoming more and more popular. Com-
munity members are becoming active market participants
with multiple choices for energy purchase/sale, instead of
only one dominant supplier, which is, for example, one of
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TABLE 1. Comparison of literature review.

the main objectives of the Clean Energy Package (providing
better deals to all end users) established by the European
Union [1], [42].

C. CONTRIBUTIONS
Against this background, the contributions of the paper are
the following:

VOLUME 9, 2021 30229



M. Gržanić et al.: Electricity Cost-Sharing in Energy Communities Under Dynamic Pricing and Uncertainty

1. The proposal of a novel two-stage cost-sharing model
that guarantees individual welfare for each commu-
nity member. After running multiple simulations with
different types of prosumers in the energy commu-
nity, this paper shows that the centralized formulation
of the existing/well-known cost-sharing mechanisms
(described in [22], [28]) cannot always guarantee that all
prosumers are better off in the community. The authors
introduce a second stage which defines the minimum
bound of cost savings in the community to be shared
among community members who are worst off in the
community in the first stage which results in lower elec-
tricity cost for all communitymembers compared to indi-
vidual tradingwith the supplier. The prices are calculated
ex-post, the day after energy delivery. In the proposed
approach peers do not need to negotiate about the trading
volumes and prices and thus the model guarantees the
convergence. Both stages in this cost-sharing approach
do not interfere with the optimization algorithm, which
makes it simple and fast to solve (0.031 seconds for a
small test case and 0.172 seconds for the bigger one with
100 prosumers). Although the methods are discussed in
previous publications, such as BSM in [22] and [24],
this paper provides a systematic analysis and proves
the disadvantages of applying the BSM cost-sharing
method for prosumers with excess PV production. This
is analyzed and evaluated on a small test case with three
community members and a realistic test case involving
100 participants (and different configurations regarding
the percentage of households equipped with PV, battery
storage, and flexible appliances).

2. Unlike papers not considering any kind of flexible
behavior [7], [11], [14], [22] or focusing only on battery
storage [12], [17], [18], [21]–[23], [28]–[37], [39], this
paper investigates the monetary value of several flexible
appliances in terms of cost reduction for all community
members. The model analyses the impact of different
flexible appliances on electricity cost reduction com-
pared to the case with fixed consumption. The existing
literature body considers the effect of uncertainty of
demand or RES production on the cost [16], battery
scheduling in DA and RT optimization [17], adjusting
the energy schedule with RT trading with the retailer in
order to keep the predefined agreed p2p volume [19],
dealing with forecasting error [20], [40], the uncertainty
of market prices and demand on the profit due to con-
tract violations between the local energy system and
consumers [27], optimal size of battery and PV mod-
ules [41]. However, this paper looks into pricing mecha-
nisms stimulating final prosumers equipped with PV and
flexible appliances to adjust their RT operational points
to predefined DA schedules by explicitly modelling their
uncertainty aspects. This creates a proper award system
for a flexible and responsive prosumer reflected in a
higher cost reduction compared to the current pricing
scheme.

D. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows: Section III
describes the differences between individual directly trad-
ing with the supplier and collective trading within an
energy community represented by the CM. Section IV intro-
duces the two-stage cost-sharing algorithm together with
three cost-sharing methods: MMRN, SDRN, and BSMN.
Section V describes the case study, while results are analyzed
in Section VI. Finally, Section VII concludes the paper.

III. INDIVIDUAL AND COMMUNITY ENERGY SUPPLY
Prosumers today are not responsible for their PV or load
forecasting and do not trade directly on the electricity market.
Instead, they have a contract signed with the supplier provid-
ing them fixed prices, which the supplier offers considering
its exposure to both market and its portfolio uncertainties.
Together with energy cost, consumers pay network tariffs
and balancing costs for each consumed or injected kWh of
energy [46]. In recent years, feed-in-tariffs and incentives
for household PV integration have been reduced [44]. Con-
sumers are supplied at a higher buying price compared to the
price at which they can sell their PV production [8], [23],
and [28]. This difference in the buying and selling pricing
creates opportunities for consumers to join in an energy
community represented by a CM. In the same way, as lead-
ers of balancing groups are responsible for their deviation,
the CM also faces balancing costs for the entire commu-
nity and creates incentive signals to stimulate prosumers
to fully utilize their flexibility. Two different approaches
of retail market operation are analyzed and compared in
this paper. In the first one, each consumer independently
trades directly with the supplier, without any interaction
with other consumers. In the second approach, consumers
join in an energy community represented by a CM who
is in charge of trading in the power exchange on their
behalf.

A. INDIVIDUAL TRADING WITH THE SUPPLIER
Fig. 1 illustrates the relationship between the supplier
and the individual consumers. It is assumed that con-
sumers are not competing against each other or against the
supplier.

Consumers are individual entities who sign the contract
with their supplier and in this case cannot exchange energy
internally. The supplier provides DA buying and selling
prices to consumers, while the national transmission system
operator charges network and balancing fees (grey one-way
arrows). Black, two-way arrows represent power flows (sup-
plier procures energy for prosumers, but also buys excess
energy from them).

Each consumer’s goal is to minimize their energy pro-
curement cost formulated in (1). They purchase energy from
or sell it to the supplier and face a balancing cost for each
kWh of procured or sold energy together with the cost for
the network usage for procured energy. According to [46],
injected energy from PV is not charged with the network fees.
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FIGURE 1. Energy and financial flow in directly trading with supplier.

All the scenarios are considered equiprobable.

minC ind
d

C ind
d =

∑
t∈T

1t
∑
s∈S

π s[
(
λDABt + λBALB + λNETB

)
· PHDBd,s,t

− (λDASt − λBALS)·PHDSd,s,t ] (1)

In scenario s, each consumer net load is divided in imported
PHDBd,s,t and exported PHDSd,s,t at time step t (2). The variables
representing trading power are greater than zero (3).

PHDd,s,t = PHDBd,s,t − P
HDS
d,s,t (2)

PHDBd,t ,P
HDS
d,t ≥ 0 (3)

The power balance equation for consumer d is formulated in
(4). The demand of each consumer is composed ofmust-serve
load, flexible uninterruptible appliances (ap stands for wash-
ing machine, dishwasher, and dryer), flexible charging of EV,
flexible thermal load, and a small battery. The demand can
be supplied from rooftop PV or bought from the supplier.
If there is an excess PV production, it is sold to the supplier
(PHDd,s,t < 0).

PHDd,s,t + PVd,s,t = Pmsd,s,t +
∑
ap∈A

Puniapd,s,t

+PEVd,s,t + P
th
d,s,t + P

ch
d,s,t − P

dis
d,s,t (4)

The flexible charging of EVs is modelled by inequality con-
straints (5)-(6):

Ed ≤
∑
tεT

1t·PEVd,s,t ≤ Ed (5)

PEVd,s,t ≤ Pd , if Ha
d ≤ t ≤ H l

d

PEVd,s,t = 0, otherwise (6)

EVs’ state of energy when leaving the home is defined by
consumers’ preferences and modelled by way of (5), while
the maximum charging power is enforced by (6). Charging is
allowed only during the hours when the car is parked at home.

The supply of flexible uninterruptible appliances is mod-
elled with (7)-(8). The sum of all binary variables indicating
when the appliance is started is equal to 1, which ensures that
the appliance is started once a day in (7).

FIGURE 2. Energy and financial flow in energy community trading.

Equation (8) guarantees that, when the appliance is started,
the cycle cannot be interrupted.

T−Lap∑
t=1

xuni apd,s,t = 1 (7)

Puni apd,s,t =

Lap−1∑
l=0

xuni apd,s,t−l · P
uni ap (8)

Flexible thermal loads are modelled as in [47]. Outside tem-
perature is considered as an input parameter, while room,
floor, and water temperature inside a water tank connected to
a heat pump are variables used for modelling heating dynam-
ics. Minimum andmaximum bounds of room temperature are
described in Section V.

Each household is equipped with battery storage modelled
with a non-constant charging ability depending on the bat-
tery state of energy. The resulting non-linear charging curve
piecewise approximated with three segments of decreasing
slope as the battery state of energy increases. The reader is
referred to [48] for a precise mathematical formulation of
batteries.

B. ENERGY COMMUNITY
In the energy community, consumers exchange surplus of
energy among themselves. The difference in the buying and
selling prices offered by the supplier creates opportunities for
the consumers to benefit from joining an energy community.
They are represented by the CM who buys and sells energy
from the supplier and faces balancing costs for deviations of
end-consumers’ announced profiles. CM uses a centralized
approach to determine the behavior of all the consumers’
flexible appliances in RT in order to reduce the electricity cost
of the whole community and thus, of each consumer.). The
consumers within the community exchange their surplus of
electricity with their peers and do not negotiate about trading
volume and prices. The grey arrow in Fig. 2 represents the
buying and selling prices sent out by the CM to the consumers
ex-post (that is, the day after the actual exchange of energy.
Trading between communities is outside the scope of this
paper.
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The mathematical model that determines community’ cost
is given by (9)-(12). The CM minimizes the energy procure-
ment cost for the entire community (minus the profit from
selling PV excess) and faces the penalization cost for the
energy deviations incurred by the cooperative (9)-(11) and
network charges. The community is treated as one single
entity (12).

min
∑
t∈T

1t[λDABt · PDABt − λDASt · PDASt

+

∑
s∈S

π s

(
λUPt · P

UP
s,t − λ

DOWN
t · PDOWNs,t

)
+λNETB · P+s,t ] (9)

PGRIDs,t = PDABt − PDASt + PUPs,t − P
DOWN
s,t (10)

PDABt ,PDASt ,PUPs,t ,P
DOWN
s,t ,Pnet poss,t ,Pnet negs,t ≥ 0 (11)

PGRIDs,t = Pnet poss,t − Pnet negs,t

=

∑
d∈D

(Pmsd,s,t +
∑
ap∈A

Puni apd,s,t + P
EV
d,s,t+P

th
d,s,t + P

ch
d,s,t

−Pdisd,s,t − PVd,s,t) (12)

Furthermore, optimization problem (9)-(12) also includes the
consumers’ constraints (5)-(8), as well as thermal heating and
battery storage.

IV. COST-SHARING MECHANISMS
The optimization algorithm in this approach is a centralized
one, i.e., the CM schedules the flexible appliances of commu-
nity members to achieve lower electricity costs. The excess
PV production in the community is firstly shared among com-
munity members and the rest is traded on the central power
exchange. The main advantage of this approach is that final
consumers do not need to negotiate about the trading volumes
and prices or individually schedule their appliances. The CM
is in charge of scheduling flexible appliances and computes
the prices based on their net-load and defined cost-sharing
methods. The internal trading prices are calculated outside
the optimization algorithm, the day after energy delivery,
which makes the optimization algorithm simple to solve and
it guarantees the convergence which will ensure the broad
integration of this cost-sharing approach. The electricity pro-
curement cost of the energy community is shared among its
members based on their net-load in hour t and scenario s.
The cost allocation is conducted when the daily operation
is completed (that is, at the beginning of the day n, the cost
incurred in day n-1 is allocated). Therefore, the cost-sharing
process does not interfere with the optimization problem,
which makes it simple and fast to solve. The only information
needed for the cost allocation among the community mem-
bers is their net-load measured at the end-consumers’ smart
meter (13):

Pnetd,s,t = Pmsd,s,t +
∑
ap∈A

(Puni apd,s,t + P
EV
d,s,t + P

th
d,s,t + P

ch
d,s,t

−Pdisd,s,t − PVd,s,t) (13)

As the CM faces a penalization cost due to imperfect net-
load forecasts, the average cost of energy in time step t and
scenario s λunits,t is given by (14):

λunits,t =
λDABt · PDABt − λDASt · PDASt

PGRIDs,t

+
λUPt · P

UP
s,t − λ

DOWN
t · PDOWNs,t

PGRIDs,t
(14)

The first stage redefines existing cost-sharing mechanisms
and bases them on consumers’ net-load and their technical
characteristics. Nowadays, when feed-in tariffs for PV are
gradually decreasing, the installation and implementation
of net-metering (single four-quadrant meter) are perfectly
viable [44] and [45]. Unlike [22] and [24], where internal
community prices in MMR and BSM (similar is the case for
SDR in [28]) are computed based on the total community’s
consumption and generation, in the proposed approach the
consumers pay or get paid based on their net-load in scenario
s and time period t . This means that consumers only sell
surplus or buy deficit of energy, differently from the existing
research, where they sell their entire PV production and buy
their entire demand (not deficit). The second stage describes
the benefit reallocation if any of the communitymembers face
higher costs in the community.

A. PRICES CALCULATION IN THE FIRST STAGE
1) BILL SHARING METHOD NET
The Bill Sharing Method Net (BSMN) is based on allocating
the electricity cost among consumers based on their contri-
bution to the total community cost. In each time period t and
scenario s, the community cost is divided among consumers
who contribute to energy purchase. It uses the ratio between
the total community electricity import and the sum of all
the individual positive net-loads if the community purchases
energy, and on the ratio between the total community export
and the sum of the all individual negative net-loads if the com-
munity sells energy. As an upgrade of [22], this paper uses
dynamic pricing and flexible appliances and reformulates the
mechanism in terms of net-load unlike [24]. Furthermore, for
the first time, the disadvantage of BSMN for consumers with
an excess PV production is explained.

The total net import (15) and export (16) of the community
are calculated ex-post as follows:

Pnet poss,t =

∑
d∈D

Pnetd,s,t , if P
net
d,s,t > 0 (15)

Pnet negs,t =

∑
d∈D

Pnetd,s,t , if P
net
d,s,t < 0 (16)

If the community purchases energy in hour t, the price for
consumers who have a deficit of energy is calculated as (17):

λBSMN B
s,t = λunits,t ·

PGRIDs,t

Pnet poss,t
(17)

It can be noticed that consumers who have an excess
of electricity are not remunerated if that electricity is
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shared/consumed within the community. Since the commu-
nity in the above case has a deficit of energy, the cost of
procuring energy is shared among consumers who contribute
to the deficit. If, on the contrary, the community sells energy
in hour t, the price for consumers who have excess energy is
computed as (18):

λBSMN S
s,t = λunits,t ·

PGRIDs,t

Pnet negs,t
(18)

In this case, consumers who have a deficit of energy are
supplied at zero cost. Finally, if the community is in balance,
the electricity procurement cost is 0 (the community neither
needs to sell or buy) and consumers do not pay or do not get
paid.

2) MID-MARKET RATE NET SCHEME
In the case of theMid-Market Rate Net (MMRN) scheme, the
internal buying and selling prices are affected by the amount
of energy exchanged within the community. Consumers with
a deficit of energy pay and the ones with excess energy are
getting paid at a price that is determined based on how much
of the energy is consumed within the community and how
much from the supplier. Unlike [22], in this paper consumers
are exposed to dynamic prices to fully exploit their flexibility.
Moreover,MMR is redefined from [22] and [24] and the inter-
nal price calculation is based on the individual net-load of
consumers. Three different cases are considered, depending
on whether the community is in balance, buys or sells energy.

1) The community is in balance (PGRIDs,t = 0).

In the case that the community is in balance and, hence, there
is no exchange of energy with the grid, the internal buying
and selling prices in hour t are the same. More specifically,
they are equal to the average value between the DA buying
and selling prices (19):

λMMRN B
s,t = λMMRN S

s,t =
λDABt + λDASt

2
(19)

Additionally, as PGRIDs,t is equal to zero, the average cost of
energy cannot be calculated as in (14). The penalization cost
associated with the realization of scenario s is given by (20):

costpens,t = λ
DAB
t · PDABt − λDASt · PDASt

+λUPt · P
UP
s,t − λ

DOWN
t · PDOWNs,t (20)

An equal amount of cost is allocated to each community
member (that is, the cost is divided according to the number
of consumers in the community).

2) The community buys energy (PGRIDs,t > 0).

If the community takes energy from the grid, the consumers
who have excess energy

(
Pnetd,s,t < 0

)
, are paid at the price

(21):

λMMRNSs,t =
λunits,t + λ

DAS
t

2
(21)

In contrast, consumers who have a deficit of energy pay a
price based on the ratio of the total community import and the
total positive and negative net-loads in the community (22):

λMMRN B
s,t =

λunits,t · P
GRID
s,t + λMMRNSs,t ·

∣∣∣Pnet negs,t

∣∣∣
Pnet poss,t

(22)

Notice that the community energy deficit Pnet poss,t is covered
with the purchase of energy from the supplier PGRIDs,t and/or
with the excess PV production within the communityPnet negs,t .
As the internal selling price λMMRN S

s,t is lower than the aver-
age cost of energy from the supplier λunits,t (see (21)),the
larger the amount of energy exchangedwithin the community,
the lower the internal buying price λMMRN B

s,t .

3) The community sells energy (PGRIDs,t < 0).
If the community sells energy, the consumers who have a
deficit of energy

(
Pnetd,s,t > 0

)
, pay the average price (23):

λMMRN B
s,t =

λDABt + λunits,t

2
(23)

On the other hand, consumers who have excess energy get
paid based on the ratio of the total community export and the
total positive and negative net-loads in the community (24):

λMMRN S
s,t =

λunits,t ·
∣∣PGRIDs,t

∣∣+ λMMRNBs,t ·Pnet poss,t∣∣∣Pnet negs,t

∣∣∣ (24)

The summation of all the surpluses of PV production Pnet negs,t
is sold to the supplier PGRIDs,t or exchanged with the commu-
nity members Pnet poss,t . As the internal buying price λMMRN B

s,t
is higher than the average selling price provided by the sup-
plier λunits,t ,the larger the amount of energy exchanged within
the community, the higher the internal selling price λMMRN S

s,t .

3) SUPPLY DEMAND RATIO NET SCHEME
The Supply-Demand Ratio (SDRs,t ) is defined as the ratio
between the negative and positive net-loads in the commu-
nity (25):

SDRs,t =

∣∣∣Pnet negs,t

∣∣∣
Pnet poss,t

(25)

Differently from [18], this paper considers the stochastic
nature of demand, PV production, and outside tempera-
ture, and therefore, SDRN is based on consumers’ net-load
instead. Five possible situations may occur:
1. Pnet poss,t = 0 and SDRs,t = ∞.

Each consumer in the community has a surplus of PV pro-
duction. In that situation, the selling price under the SDRN
scheme is equal to the average cost of energy in scenario s
and time t (26):

λSDRN S
s,t = λunits,t (26)

2. SDRs,t = 0.
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Each consumer in the community has a deficit of energy. The
community has to buy energy from the supplier and each
consumer pays the average cost of energy in scenario s and
time step t (27):

λSDRN B
s,t = λunits,t (27)

3. SDRs,t = 1.
If the community self-balances and does not procure or sell
energy from the grid in time step t and scenario s, the internal
buying and selling prices are both the same (28):

λSDRN S
s,t = λSDRN B

s,t = λ
DAS
t + λs,t (28)

where λs,t is a compensation rate guaranteeing that the con-
sumers are always better off in the community. Its value can
be in the range [0, λDABt − λDASt ] [28]. This value will be
defined in the case study.
4. SDRs,t > 1.

If the community has a surplus of energy and some con-
sumers have positive net-load, the internal selling and buying
prices determined by the CM in time step t and scenario s
are (29)-(30):

λSDRN S
s,t = λunits,t +

λs,t

SDRs,t
(29)

λSDRN B
s,t = λunits,t + λs,t (30)

5. 0 < SDRs,t < 1.
If the community has a deficit of energy (which must be pur-
chased from the supplier), but some consumers have a surplus
of PV production that is consumed locally, the internal selling
and buying prices are calculated as follows (31)-(32):

λSDRN S
s,t =

λunits,t ·
(
λDASt + λs,t

)(
λunits,t − λ

DAS
t − λs,t

)
· SDRs,t + λDASt + λs,t

(31)

λSDRN B
s,t = λSDRN S

s,t · SDRs,t + λunits,t ·
(
1− SDRs,t

)
(32)

B. BENEFIT REALLOCATION IN THE SECOND STAGE
The results presented in this paper have shown that the math-
ematical formulation of existing direct cost-sharing methods
does not always favor participation in the energy community,
but rather result in lower cost if the prosumer individually
signs a dynamic price contract with the supplier. For this
reason, the paper proposes the second stage for the existing
direct cost-sharing methods. This second stage is executed in
case any of the prosumers face higher costCcomm

d when being
a member of the community compared to the individual sup-
plier cost C ind

d . The logic of the improved direct cost-sharing
concept is as follows:
1. The first stage is conducted as described in

Section IV A.
2. Each community member allocated cost (under m

cost-sharing method) is compared to the cost it would
receive if staying with the supplier (33). C ind

d can easily

be calculated as all price parameters are transparent and
publicly available on a DA base.

1d = C ind
d − C

comm
d , ∀d ∈ D (33)

3. If all community members are paying less compared to
staying with the supplier, the algorithm stops. If any
community member is worst off in the community,
the second stage is initiated.

4. The sum of the positive cost difference C+ is calculated
in (34), i.e., for all prosumers who are better off in the
community. The sum of the negative cost difference C−

is calculated in (35), i.e., for all prosumers who are worst
off in the community.

C+ =
∑
d∈D+

1d if 1d ≥ 0 (34)

C− =

∣∣∣∣∣∣
∑
d∈D−

1d

∣∣∣∣∣∣ if 1d < 0 (35)

5. If C+ ≥ C−, the benefits are distributed between
community members as described in (36) and (37). This
ensures that they are at least equally well off as they
would be in the traditional supplier contracts. The logic
of this distribution is based on the concept of minimum
bound. This minimum bound, defined by a range in (36),
is a concept that guarantees that for the values between
the lower and the upper limit each end-user will have at
least the same cost as in the case of having the contract
with the supplier. For any value in between the end-user
will be better off in the community. The same value of
minimum bound has to be chosen for each consumer in
benefit reallocation. The cost of community members in
the second stage is calculated in (37a) and (37b).
if C+ ≥ C− :

C−

C+
≤ min bound ≤ 1 (36)

if 1d ≥ 0 :

Cnew+
d = Ccomm

d +min bound ·1d , (37a)

if 1d < 0 :

Cnew−
d = Ccom m

d −
|1d |

C−
·

∑
d∈D+

(
Cnew+
d − Ccom m

d
)
,

(37b)

6. If C+ < C−, the benefits cannot be reallocated under
m cost-sharing method which makes it a non-preferable
cost-sharing method.

V. CASE STUDY
For the analyses that follow, two prosumers and a flexi-
ble consumer are considered. All three have flexible ther-
mal heating, flexible uninterruptible appliances (washing
machine, dishwasher, and dryer), a battery (4kWh), and a
smart EV charger (3.7 kW)with the same EV battery capacity
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(30 kWh). The power of the washing machine, the dryer,
and the dishwasher is 2 kW, 2.5 kW, and 1.9 kW, respec-
tively, while the cycle length of each appliance is 3 h,
2h, and 1h, in that order. For the modeling of the ther-
mal heating, an upper temperature bound is set at 25 ◦C
for each household, while the lower bound depends on
the consumers’ preferences on the assumption that they
allow for a lower temperature at night or when not at
home.
Prosumer 1: Car 1 is parked at home between hour 23 and

hour 6 in the morning, while E1 at the end of the charging
period is set at 25.9 kWh (Ha

1 = 23,H l
1 = 6). Consumer

1 sets the lower temperature bound at 19◦C from hour 21 to
6 in the morning, and 22 ◦C for the rest of the day.
Consumer 2: Car 2 is parked at home between hour 18 and

7 (E2 = 22.2kWh). Consumer 2 sets the lower temperature
bound at 20◦C during hours 23-9, and at 23 ◦C during the rest
of the day.
Prosumer 3: Car 3 is connected to the charger between

hours 17 and 8 (E3 = 29.6kWh). Consumer 3 requires an
indoor temperature of at least 18◦C from hour 23 to 13, while
21◦C is set as the lower bound during the rest of the day.

Albeit the minimum and maximum temperature bounds
are set as fixed parameters, uncertainty related to thermal
heating is considered through different scenarios of the out-
side temperature. Three different cases of PV production
are considered with six possible scenarios each: high (black
discontinuous line), medium (dark grey dotted line), and low
(light grey color) as depicted in Fig. 3. PV and temperature
measurements are taken from a PV panel placed on the
rooftop of a laboratory in Zagreb and grouped to fit in the
three previously mentioned cases.

DA buying (black) and selling (grey) prices, as well as
up (black dotted) and down incentive prices (grey dotted)
are presented in Fig. 4. The difference in the buying and
selling prices offered by the supplier actually represents the
real situation in some countries like Denmark. The Danish
supplier Orsted offers dynamic selling prices to the final
consumers [49], while the surplus of PV production is sold at
the market price (Nordpool [50]). According to the proposal
of the market design in the European directive [42], more
transparent RT price signals (which reflect the DA market
prices) stimulate consumers to change their consumption,
either individually or through aggregation. This results in
increased flexibility that facilitates the transition towards a
carbon-neutral power system. Danish prices are taken as an
example due to data availability, however other countries
in the EU have already implemented dynamic tariffs for
end-users (such as Red Eléctrica in Spain [51] or 7H Kraft in
Sweden [52]). The approach used in this paper is not country-
specific, but rather general enough for the entire EU. Net-
work charge for supplied kWh is set at 9.7 ORE/kWh while
balancing cost in directly trading with the supplier is set at
0.197 ORE/kWh for purchased energy and 0.112 ORE/kWh
for sold energy [46]. Up and down incentive prices encour-
age prosumers in the energy community to follow their

FIGURE 3. Aggregated PV production.

FIGURE 4. DA buying/selling prices, up /down flexibility incentives.

FIGURE 5. Flexible and non-flexible charging of EV – consumer 2.

predefined DA schedule instead of paying the balancing cost
for each bought or sold kWh of energy.

If the energy community has a deficit of energy with
respect to the committed DA schedule, it will pay the differ-
ence at the up price, which is higher than the DA buying price.
On the other hand, if a consumer has a surplus of energy,
they will sell the difference from the scheduled amount at the
down-price, which is lower than the DA selling price.

VI. RESULTS
In this section, the monetary value of implementing a flexible
EV charging and a flexible start-up time of uninterruptible
appliances is assessed. Further, the analysis shows for which
case of PV production consumers are always better off in
the community and elaborates which cost-sharing scheme is
preferable for different types of consumers.

A. BENEFITS OF FLEXIBILE PROSUMPTION
The flexible scheduling of domestic appliances results in a
significant cost reduction compared to the case when the
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TABLE 2. Averaged cost reduction (in %) (computed over the set of
scenarios) in the case of a high PV production with flexible appliances.

EV charging and the start of uninterruptible appliances are
not flexible. In the non-flexible scenario, it is supposed that
the charging of the EV is started from the very moment
the car arrives home. The car is being charged at maximum
charging power until the desired battery state of energy is
reached. Besides, the starting times of the washing machine,
the dryer, and the dishwasher are fixed to 18 h, 21 h, and
23 h, respectively. On the other hand, in the flexible regime,
the operation of each appliance is determined by the CM
scheduling algorithm in accordance with the predefined com-
fort zones of consumers. The average cost reduction in per-
centage for each consumer in the case of high PV production
is shown in Table 2. The first row in this table provides the
cost reduction for the instance in which each consumer trades
directly with the supplier, while the remaining rows in the
table pertaining to the different cost-sharing mechanisms in
the community that have been described in Section IV. As can
be seen in Table 2, smart charging of EV and flexible starting
time of uninterruptible appliances can significantly reduce
the end-user cost (from 3% to almost 20% cost reduction
in flexible regime). The highest cost reduction achieves con-
sumer 2 who does not have PV installed.

Average (over the observed set of scenarios) charging pow-
ers of EVs under the flexible and non-flexible case studies are
compared in Fig. 5 for consumer 2. Non-flexible charging is
set from hour 18. The car is being charged at the maximum
power of 3.7 kW for 6 hours to reach the desired state of
charge, which is set at 22.2 kWh. Compared to flexible charg-
ing, which considers prices, one can notice that cost reduction
in the flexible case is achieved by charging the EV in hour
24 and during the morning hours from 0 to 6 am when the
prices are lower compared to the early evening prices from
hour 18 to 21.

Moreover, in the flexible regime, the start-up time for
washing machine, dryer, and dishwasher is at hour 21h, 22h,
and 23h, while in non-flexible is set at 18h, 21, and 23h.
The biggest cost reduction is achieved by the scheduling of
washing machine where the whole washing period of 3 hours
is moved to less expensive hours.

B. ANALYSIS OF THE BEST COST-SHARING MECHANISM
Table 3 compares the average cost of procuring electricity
by the energy community under the different cost-sharing
methods for the three considered cases and the cost linked

to individually trading with the supplier. A fair cost-sharing
mechanism is the one that makes all consumers better off
within the energy community compared to the individual
trading approach with the supplier. As can be seen from
Table 3, all community members are better off in the energy
community with SDRN and MMRN for the cases of medium
and high PV production. In the case of low PV production,
prosumer 3 is not always better off within the energy commu-
nity. Their cost reduction can, in case of high PV production,
reach 20% with community trading and cost-sharing under
BSMN. In MMRN, if the energy community self-balances,
consumers with excess energy get paid more than in the
individual trading strategy. In particular, they are paid at
the average of the buying and selling prices offered by the
supplier, which is higher than the selling price. Likewise,
consumers who need to buy get the same average price, which
is lower than the buying price. Under SDRN, those con-
sumers with excess energy get a compensation, which is set
at (λDABt − λDASt )/2. The result is that all the members in the
cooperative are awarded for supporting the self-sufficiency of
the community.

Table 4 shows the attained cost reduction (if negative) or
cost increase (if positive) in percentage under the six scenar-
ios of high PV production. It can be noticed that all consumers
are better off in the energy community under SDRN and
MMRN. The exception is prosumer 1 in scenario 5, consumer
2 in scenario 4 under MMRN and prosumer 3 in scenario
2 under SDRN (the benefit reallocation in the second stage
will be explained further in the text). However, BSMN is
only favorable for the consumer without PV as they profit
from prosumers with an excess PV production. The energy
deficit of consumer 2 is supplied at zero cost from excess PV
production from other prosumers resulting in the biggest cost
savings. Cost savings for prosumers 1 and 3 under MMRN
and SDRN are very similar because they reward excess PV
production with higher internal selling prices compared to
that of the supplier. The optimal contracts that lead to a
win-win situation for all stakeholders are both MMRN and
SDRN. For high PV production, prosumers 1 and 3 incur
higher electricity costs under BSMN. To further illustrate the
disadvantages of BSMN for prosumers with a surplus of PV
production, Table 5 shows the electricity procurement costs
in DKK for all consumers in hour 10 of scenario 6, under
the individual trading setup and the BSMN cost-allocation
method that is based on net-load (note that a negative cost
represents a profit from selling energy). In this hour, the com-
munity does not exchange energy with the grid, while the
consumers’ net-loads are -0.24kW, 2.4 kW, and -2.16 kW.
Consumer 2 takes advantage of the excess PV production
from prosumers 1 and 3. Moreover, in the hours when the
total net-load of the community is negative, the consumers
who contribute to the profit of the community share only
the profit for the energy exported outside the community, but
not for the energy shared among other community members.
In contrast, a consumer with a positive net-load is the one
benefiting the most because they do not pay anything for
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TABLE 3. Average cost (IN DKK and computed over the respective set of scenarios) of individual vs. community trading under the different cost-sharing
methods in the first stage.

TABLE 4. Cost comparison (in %) under six scenarios of high pv production in the first stage.

TABLE 5. Cost comparison in individual and bsmn approach.

their energy deficit. The amount of energy consumed within
the community reduces the selling price (see Equation (18)),
and thus reduces the profit for those consumers with an
excess PV production. When the community sells energy,
the so-obtained profit is shared among prosumers 1 and 3
(that is, between the consumers who have excess energy).
However, prosumers 1 and 3 are paid only for the surplus
of PV production that is sold by the CM to the supplier and
not for that part of the surplus that is consumed within the
community. This means that consumer 2 (without PV) covers
their deficit of energy at zero cost.

C. SENSITIVITY STUDIES
The results in Table 6 below show daily costs for each con-
sumer in DKK, under different cost-sharing mechanisms, for
a case where all three consumers have a PV panel installed.
It can be noticed that regardless of all community members
have PV installed and excess PV production, they are better
off with MMRN and SDRN, while consumer 2 is worse off
with BSMN due to the highest excess PV production. The
average of PV production excess during the day for consumer
1 is 2.58 kWh, for consumer 2 is 3.33 kWh, and for consumer
3 is 2.30 kWh.

Furthermore, an additional study is conducted for
an energy community consisting of 100 participants.
Fig. 6 presents the ratios between the energy cost in the com-
munity and the cost in the individual approach, for different

TABLE 6. Average cost comparison when all prosumers have PV (DKK).

percentages of PV share and customer flexibility potential.
A lower ratio means that trading within the community
is more profitable for the consumer. More specifically, if
the ratio is below 1, the consumer is better off within the
community, while a ratio bigger than 1 involves the existence
of consumers who are better off under the individual trading
scheme. Simulations are performed for four cases:
1) all community members have PV, battery storage, and

the flexible start of uninterruptible appliances (denoted
as flexi uni in Table 7 ),

2) all community members have PV, 50% of all consumers
do not have battery storage or capability to flexibly start
uninterruptible appliances,

3) 50% of community members have PV, none has a bat-
tery and 50% have the flexible start of uninterruptible
appliances,

4) 50% of community members have PV, battery, and the
flexible start of uninterruptible appliances (not neces-
sarily the consumer with PV has flexible appliances as
well).
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FIGURE 6. Comparison of cost ratios under different pricing mechanism.

TABLE 7. Comparison of cost reduction and cost increase in current and proposed pricing scheme in %.

For consumers without the flexible start of uninterrupt-
able appliances, the start-up time is set as explained in
Section VI A. In the first stage of the cost-sharing, the internal
buying and selling prices according to the three cost-sharing
schemes are calculated. The second stage determines the
lower value of the benefit reallocation if any of the com-
munity members face higher costs in the community.
In Case 3 all community members are at least the same or
better off in the first stage under the existing MMRN and
SDRN. The cost ratio is 1 or lower than 1 which means that
there is no need to run the proposed stage 2 of the cost-sharing
allocation. On the other hand, one can notice from Fig. 6 in

Cases 1, 2, and 4, some community members are worst off in
the energy community under the existing pricing mechanisms
(a white boxplot for MMRN and a gray boxplot for SDRN),
i.e., their ratio is higher than 1. In these two cases, the second
stage is executed ensuring the distribution of benefits as
described in Section IV. B. and the results in Fig. 6 show that
now all community members face at least the same or lower
cost compared to the individual trading with the supplier in
all scenarios. Graphs are plotted for the lower limit of the
minimum bound which defines the minimum value of cost
reduction sharing. All communitymembers have a ratio equal
to 1 or lower than 1 in light gray boxplots (MMRN) and dark
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FIGURE 7. Net-load of consumers 2 and 12.

TABLE 8. Reduction in lower bound in % of benefit reallocation in case 4.

gray boxplots (SDRN). Interestingly, it can again be noticed
that BSMN is not a preferable method for community trading.
BSMN underperforms in all analyzed cases, suggesting this
is not a desirable method to be used for cost-sharing in energy
communities. The proposed improvements of the original
method cannot be applied because C+ < C−, concluding
that the prosumers with excess PVwill not be attracted to join
the energy community under the BSMNmethod as their over-
production is treated as free electricity for other community
members. The total cost increase for prosumers is higher than
the total cost reduction in the community, making it impossi-
ble to reallocate the benefits among community members to
achieve the lower cost for all members. To explain the reason
why the BSMN method is not a preferential method in the
community participation, the net loads of consumers 2 and
12 in case 4 and under BSMN cost-sharing mechanism are
compared. Fig. 7 represents the net-load during the day of
consumer 2 and 14 in case 4. It can be noticed in Fig. 7 that
consumer 2 has a surplus of PV during the day, which is
shared among other community members for free. The total
community export in hours 8,9, 14 is zero, whereas consumer
2 is not getting paid at all in hours 9 and 14.

D. THE VALUE OF FLEXIBILITY INCENTIVES
In the current trading with the supplier, consumers pay
the balancing cost for each consumed or injected kWh of
energy [46] as described in (1). This paper proposes flexi-
bility incentives that encourage the prosumers to follow the
predefined DA schedule and minimize paying for regulating
up and down power deviations. Additional simulations were
run to demonstrate the benefits of the proposed community

pricing with flexibility incentives compared to the current
pricing scheme when final prosumers are engaged in the
energy community. The results in Table 7 clearly show that
under the current cost-sharing calculation of MMRN and
SDRN some community members will end up with higher
energy bills compared to the individual trading with their
supplier. On the other hand, the proposed two-stage method
guarantees this will not happen as it evenly distributes the
welfare among members. Although in the proposed approach
individual cost reduction is lower (5.97 – 8% compared to
3.52 – 7.61% ), none of the community members face higher
costs. On the other hand, in the current community trading,
some community members face up to 4% of a cost increase
under MMRN. The results also clearly show that BSMN
should not be used as the community cost-sharing method.
Table 8 shows the change in minimum bound value between
the case in which the energy community pays the balanc-
ing cost and the proposed pricing method based on flexi-
bility incentives. Interestingly, this minimum bound cannot
be calculated for Case 1 and 2 when the community pays
the balancing cost for each kWh of consumed or injected
kWh of energy (C+<C−). This means that some community
members will be worst off in the community. In Case 3, all
community members are better off in the community in both
types of community pricing. In Case 4 consumers who are
better off in the first stage will need to share a lower amount
of their cost reduction with other community members. This
lower value of minimum bound is reduced by 18-47% in
MMRNand 49-114% in SDRN in the proposed pricingwhich
makes it more preferable compared to the current pricing
scheme.

VII. CONCLUSION
To raise awareness about energy efficiency, it is important to
encourage prosumers and energy communities to consume
energy locally and to utilize their flexibility by following
price incentives. In order to reduce prosumers’ electricity
costs, this paper describes an energy community driven by
price signals from a CM. The CM contracts buying and
selling energy from a DA market and encourages flexible
behavior of its community members with incentives that
capture the regulating power costs linked to errors in the
forecast load and PV production. The allocation of those costs
within the community is carried out ex-post (in particular,
the day after energy delivery) based on individual net-load
measurements and both DA market prices and incentives
from the CM. In this approach, consumers do not need
to negotiate the exchanged electricity volumes and prices
between each other. They share the surplus of energy, while
the CMdetermines the transaction prices the day after. Firstly,
the monetary value in terms of decreasing electricity costs
with domestic flexible appliances is assessed. The case with
fully flexible uninterruptable appliances and EV charging
is compared with a non-flexible setup with a predefined
starting time of EV charging and uninterruptible appliances
resulting in savings between 3 and 20%. Secondly, the paper

VOLUME 9, 2021 30239



M. Gržanić et al.: Electricity Cost-Sharing in Energy Communities Under Dynamic Pricing and Uncertainty

investigates the differences and advantages of various cost-
sharing mechanisms for prosumers with PV generation and
explains the main disadvantages of the BSMN method for
prosumers with excess PV production. Excess PV production
in the energy community under BSMN is shared at zero cost
which benefits only consumers with an energy deficit, while
sellers are at a loss. Thirdly, the paper demonstrated that some
community members are not always better off with existing
MMRN, SDRN, and BSMN cost-sharing methods compared
to the individual trading with the supplier. To overcome this
issue, the authors propose the second stage in the centralized
cost-sharing process which provides the lower bound of cost
reduction reallocation to be shared among peers to achieve
lower energy cost underMMRN and SDRN. The results show
that none of the community members will face increased
cost compared to individual trading with the supplier (unlike
in current community trading where some members face
up to 4% of cost increase in the community). Furthermore,
the paper introduces flexibility incentives, reflecting balanc-
ing market costs, with the goal to encourage consumer’s
RT flexible behavior to follow a predefined DA schedule.
This results in lowering the value of the minimum bound in
benefit reallocation by 18-47% in MMRN and 49-114% in
SDRN.
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