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ABSTRACT We present the development and implementation of a novel wavelet shrinkage technique
for the retrieval of obscured characteristic resonant signatures in the scattered terahertz (THz) reflectivity
of molecular crystals. In this implementation, the wavelet basis functions associated with the absorption
features were identified using the second-order total variation of the wavelet coefficients. Additionally,
wavelet coefficients at certain scales were modified using the phase function corrections and wavelet hard
thresholding. Reconstruction of the original spectra using these modified wavelet coefficients yielded the
exact resonant frequencies of the chemicals, which were otherwise unrecognizable in the spectral artifacts
of the rough surface scattering. We examined the robustness of this method over controlled levels of rough
surface scattering, validated using theKirchhoff approximation, in spectroscopic targetsmade fromα-lactose
monohydrate and 4-aminobenzoic acid (PABA), which have close spectral lines. We successfully retrieved
the spectral absorption fingerprints in both specular and off-specular reflection geometries. This technique
can be utilized for stand-off material characterization using the THz reflection spectroscopy in uncontrolled
environments and potentially can be adopted for other broadband spectroscopic modalities.

INDEX TERMS Chemical identification, maximal overlap discrete wavelet transform (MODWT), phase
function effects, pyramid algorithm, reflection-mode spectroscopy, rough surface scattering, terahertz
time-domain spectroscopy (THz-TDS), wavelet shrinkage, off-specular scattered spectra.

I. INTRODUCTION
A broadband terahertz (THz) pulse can resolve the
low-frequency vibrational and rotational modes of molecular
crystals [1]. These molecular motions, which are associated
with intra- or inter-molecular interactions, such as the weak
hydrogen bonds or the crystalline lattice modes, appear
as resonant signatures in the dielectric functions measured
using THz time-domain spectroscopy (THz-TDS) [2]. There-
fore, they can be utilized as characteristic spectral fingerprints
for material characterization [3], [4]. However, chemical
identification using transmission spectroscopy geometries is
oftenmet with practical challenges in real-world applications,
such as the lack of access to the transmitted signal for remote
sensing or the signal attenuation in highly-absorptive mate-
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rials. Therefore, reflection-mode spectroscopy is preferable
for many nondestructive testing and biomedical spectroscopy
applications [5]–[7]. However, in the reflection-mode THz
spectroscopy, surface height variations on the order of the
illumination wavelengths result in significant rough surface
scattering, which can distort or obscure the resonant signa-
tures [8]–[10]. Although it may reduce the signal-to-noise
ratio (SNR) and cause spectral signal distortions, rough
surface scattering would allow for flexible emitter-detector
geometries. For example, it can enable spectroscopic mea-
surements using the back-scattered beam towards a collo-
cated emitter-detector setup [11], [12]. On the other hand,
random variations in a sample’s surface height result in a
random change in the phase of the THz fields reflected from
that sample as compared to a perfect reflector, which is often
used as a reference for the Fourier-domain deconvolution,
causing additional phase ambiguity in the extracted dielectric
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functions [13], [14]. Although rigorous experimental and
computational techniques have been employed to avoid the
phase error in reflection THz-TDS [14]–[19], they have
not been proved effective in the presence of rough surface
scattering, where the phase error is often a random variable
[20], [21]. However, despite the phase ambiguity problem,
the local maxima in the derivative of THz reflectivity with
respect to frequency can still reveal the center frequencies
of a substance’s resonant modes [5], [6]. Nonetheless, due
to the rough surface scattering, artifacts associated with
random noise and scattering effects can dominate the deriva-
tive of THz reflectivity spectrum, masking the characteristic
resonant signatures of the materials [21]–[23].

The appearance of these scattering-induced spectral
artifacts has encouraged development of computational tech-
niques to distinguish between them and characteristic spec-
tral fingerprints. [21], [23]–[30]. Cepstrum, anagram of
spectrum, filtering, i.e. the low-pass or band-pass filter-
ing of the Fourier-domain THz spectra, has been shown
effective for identification of resonant signatures in the
derivative of THz scattered reflectivity [21]. However,
this type of analysis requires designing material-specific
cepstrum-domain filters, limiting its robustness for standoff
detection of unknown chemicals. Spectral dynamics anal-
ysis using integral correlation criteria has also been uti-
lized for identification of rough-surface materials using THz
reflection spectroscopy [27]. This technique relies on acquir-
ing multiple internal reflections, which would not be avail-
able in studying single-layer semi-infinite solids. Wavelet
transforms have also been proved useful for chemical
recognition using the THz-TDS. However, previous work
has been limited to measurements in the specular direc-
tions only [23], [28]–[31]. Importantly, THz spectroscopy
in scattering-mitigated off-specular geometries will enable
stand-off detection applications in arbitrary detection angles,
which has not been possible so far due to the afore-
mentioned spectral artifacts. For instance, by increasing
the surface roughness, the increase in scattering-induced
artifacts in the wavelet domain diminishes the ability of
wavelets for identifying the resonant signatures in previous
algorithms [23], [28], [30].

In this paper, we demonstrate the implementation of a new
wavelet-domain computational technique, i.e., the wavelet
shrinkage scheme, for the identification of the exact charac-
teristic resonant frequencies of molecular crystals from the
scattered THz reflectivities in both specular and off-specular
angles. In this approach, using the second-order total vari-
ation of the wavelet coefficients, we identify the wavelet
basis functions that capture a material’s resonant signatures.
We further modify the wavelet coefficients generated by
these wavelet bases using a decomposition level-based hard
thresholding technique. We also discuss the phase function
corrections required for the proper threshold selection in the
maximal overlap discrete wavelet transform (MODWT). We
examine the robustness of this technique over sample disks
made from α-lactose monohydrate and 4-aminobenzoic acid

(PABA), onto which controlled levels of surface roughness
were applied and validated by the Kirchhoff approximation
model.We show that the wavelet shrinkage technique enables
identification of resonant frequencies obscured by the rough
surface scattering in both specular and off-specular detection
geometries.

The previous wavelet methods were limited to the identi-
fication in a specular direction. This limitation is caused by
using individual wavelet coefficients in the wavelet domain
for spectral analysis. In contrast, this paper introduces a
new methodology to reconstruct the extinction spectra back
in the frequency domain using the wavelet shrinkage algo-
rithm, which importantly utilizes all selected wavelet coeffi-
cients simultaneously. We show that this key distinction will
allow for off-specular detection of chemicals for the very
first time in the THz regime. Also, previous work has been
focused on the retrieval of the α-lactose’s resonant mode
at 0.53 THz [23]. Here, we demonstrate the robustness and
utility of the new wavelet shrinkage technique in identi-
fication of other spectral resonances in different materials
having close and overlapping spectral lines. Significantly,
the approach presented here does not rely on any a priori
information about the sample materials’ dielectric functions
(spectral fingerprints) or the characteristics of the rough
surface scattering. In addition, it does not utilize averaging
over a multitude of surface realizations or multiple internal
reflections. Moreover, it yields the exact spectral positions
of the resonant frequencies at both lower and higher ends
of the spectrum, and the reconstructed spectra are free of
any noise- or scattering-associated artifacts. Finally, we will
discuss the bandwidth limitations of the proposed technique
as the surface roughness increases, or the scattered energy
diminishes in higher detection angles.

II. MATERIALS AND METHODS
A. SPECTROSCOPIC TARGETS
We used sandpapers with 4 different roughness levels, includ-
ing 220, 120, 80, and 40 grits (Norton Abrasives, Worcester,
MA, USA), for creating controlled degrees of rough surface
scattering, where the grit 40 sandpaper causes the highest
degree of surface roughness.We prepared two sample disks at
each roughness level. One sample was made from α-lactose
monohydrate (Spectrum Chemical Mfg. Corp., Gardena, CA,
USA) with resonant frequencies at 0.53, 1.2, and 1.38 THz,
and one from 4-aminobenzoic acid (PABA) (Sigma-Aldrich
Corp., St. Louis, MO, USA) with resonant frequencies at 0.6,
0.8, 1.29, and 1.54 THz. Figure 1(a) compares the extinction
spectra of α-lactose monohydrate and PABA measured by
THz-TDS in transmission mode. We mixed each chemical
with ultra-fine high-density polyethylene (HDPE) (1:1 ratio),
and pressed the mixture with a piece of sandpaper placed on
its top surface under 3000 psi load for an approximate half
hour period, yielding pellet disks with approximately 4 mm
thickness and 50 mm diameter. Therefore, each sample was
thick enough to avoid any overlaps between the front- and
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FIGURE 1. (a) The extinction spectra of α-lactose monohydrate and 4-aminobenzoic acid (PABA) measured by
THz-TDS in transmission mode to exhibit the dielectric resonant signatures of the samples, (b) schematic of the
measurement apparatus designed for the collection of THz radiation scattered in specular and off-specular
directions, (c1-c2) microscopic images illustrating the surface of grit 40 and grit 80 rough-surface samples, (d) the
specular reflectivities of sample disks made from α-lactose monohydrate with grit 40, 80, 120, and 220 rough
surfaces, and (e) similar to (d) for PABA. In (d) and (e), the Kirchhoff approximation, given by Eq. (1), shown by the
solid lines, is numerically fitted to the measurements, shown by the dotted lines.

back-surface-reflected THz pulses. Figures 1(c1) and 1(c2)
exhibit optical images from the surface of samples with grit
40 and grit 80 rough surface, respectively.

B. MEASUREMENT SETUP
We used a modified TERA-SMART (Menlo Systems
Inc, Newton, NJ, USA), which is a commercial THz
time-domain spectrometer, for taking reflection spectro-
scopic measurements from the surface of each sample. In
TERA-SMART, two fiber-coupled photoconductive antenna
(PCA), excited by a 1560 nm femtosecond laser, in addition to
a mechanically-moving delay stage carry out the generation
and detection of the THz pulses. We used two TPX50 lenses
with 50 mm focal length to collimate and focus the gen-
erated THz pulses on each sample’s surface. Using Similar
lenses, we recollimated and refocused the reflected waves on
the detector PCA. Each sample was fixed on a metallic sam-
ple holder. Monitoring the time-of-arrival for the THz pulses
reflected from the front surface allowed for adjusting the
sample holder to eliminate any possible tilt in the sample. The
size of the Gaussian beam at focus, surface of each sample,
was approximately 1.2 mm using knife-edge measurements.
To measure the waves scattered to off-specular directions,
we mounted the detection arm on a rotating rail, pivoting
around the center of the sample to collect the reflected rays
at different angles, as shown in Fig. 1(b).

C. KIRCHHOFF APPROXIMATION OF THE ROUGH
SURFACE SCATTERING
Using the surface properties of a solid material, such as the
RMS surface height and the correlation length, the Kirchhoff

approximation can predict the electromagnetic fields scat-
tered in specular and off-specular directions [23], [32]–[35].
The Kirchhoff approximation treats each local facet of a
rough surface as an infinitesimal segment of a smooth surface
located on a tangent plane of the rough surface. Therefore,
the Fresnel reflection coefficient of each smooth surface can
determine the local scattered field [8]. Accordingly, the spec-
ular reflectivity in the incidence plane of a rough surface
with a Gaussian height distribution undergoes a Gaussian
frequency roll-off given by,

|ρ|2 ∝ |r|2exp(−4k2σ 2cos2(θi)), (1)

where |ρ|2 is the specular reflectivity, r is the Fresnel reflec-
tion coefficient, k is the free-space wavenumber, σ is the
RMS surface height, and θi is the incidence angle with respect
to the surface normal. Therefore, the exponent term in Eq. (1),
known as the Rayleigh factor, can be utilized to find the RMS
surface height of a sample using its reflectivity.

Figures 1(d) and 1(e) illustrate the specular reflectivities
of rough-surface samples made from α-lactose monohydrate
and PABA, respectively. The Kirchhoff approximation was
numerically fitted to each reflectivity, shown by the solid lines
in Figs. 1(d-e). After calculating the RMS surface height, σ ,
from the exponent term in the fitted Kirchhoff approximation,
the Fraunhofer criterion given by [8],

σ ≥
λ

32
cos(θi), (2)

determines the wavelength threshold λ. The rough surface
scattering will be significant for any wavelength smaller than
this threshold. Table 1 compares the RMS heights obtained
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TABLE 1. The RMS surface height and the Fraunhofer frequency for each
sandpaper grit.

from the Kirchhoff approximation of the reflectivities shown
in Fig. 1 with those reported in the literature for each sand-
paper grit [21], [31], [36]. Noteworthy here, the RMS height
of a pressed powder-made pellet can be affected by different
factors, such as the pressure of the hydraulic press or the pow-
ders’ cohesion factor, and can be different from a sandpaper’s
reported height. Nonetheless, values obtained from the Kirch-
hoff approximation serve as approximate surface roughness
indicators, and together with the Fraunhofer criterion specify
whether a particular resonant signature was affected by the
rough surface scattering. Here, the σ s obtained for grit 220,
120, and 80 by the Kirchhoff approximation are very close
to those reported in the literature. Only the grit 40 exhibits
42 µm difference, which can be attributed to the pellet press
pressure, and also the degree by which the sandpaper’s rough-
ness was transferred to the sample surface. Nevertheless, for
a 91 µm RMS height, the Fraunhofer criterion indicates that
all the resonant signatures above 80 GHz were affected by the
electromagnetic scattering. Also note that the wavelet shrink-
age technique presented in the following sections does not
rely on the RMS surface heights obtained using the Kirchhoff
approximation model.

It can be noted that the resonant frequencies of α-lactose
and PABA were not readily identifiable in the reflectivity
spectra shown in Figs. 1(d-e). Particularly at greater rough-
ness levels, the available bandwidth in specular direction
was narrower, resulting in obscured resonant signatures.
Additionally, because of the phase ambiguity in reflection
spectroscopy, extinction coefficients similar to those shown
in Fig. 1(a) were not attainable. In such circumstances,
the negative derivative of the THz reflectivity with respect to
frequency can still provide the peak positions of the absorp-
tion resonant frequencies with less than 0.02 THz devia-
tions [5], [6], [21]. However, in the presence of scattering,
identifying the resonant frequencies in the derivative of THz
reflectivity is further complicated by the amplification of the
noise and scattering artifacts. For example, Fig. 2(a) illus-
trates the derivative of THz reflectivity from a PABA sample
with grit 220 rough surface. In Fig. 2(a), a peak recognition
algorithm based on the peak’s height thresholding would not
yield the center frequencies of the PABA resonant modes
only. Among the peaks delineated in Fig. 2(a), only those at
0.6 and 0.8 THz were associated with the PABA absorption
resonances, while the PABA’s higher-frequency resonances
at 1.29 and 1.54 THz were obscured and masked by the
scattering artifacts. Similarly, Fig. 2(b) shows the derivative
of THz reflectivity from an α-lactose monohydrate sample
with grit 220 rough surface. Likewise, only the peak marked
at 0.53 THz represented a resonant frequency, while the

FIGURE 2. The derivative of specular reflectivity from samples made from
(a) PABA and (b) α-lactose monohydrate with grit 220 rough surface. Peak
recognition based on the height thresholding resulted in erroneous
resonant frequencies, (c) flowchart representing the wavelet shrinkage of
derivative of THz reflectivity for the retrieval of obscured resonant
frequencies.

others were either caused by the atmospheric water vapor
absorption lines or the measurement noise and scattering
artifacts.

D. WAVELET SHRINKAGE
The wavelet shrinkage technique can effectively identify the
characteristic resonant frequencies in the derivative spectra
shown in Figs. 2(a-b). It can also recover the resonant sig-

VOLUME 9, 2021 29749



M. E. Khani, M. H. Arbab: Chemical Identification in the Specular and Off-Specular Rough-Surface Scattered Terahertz Spectra

natures obscured by rough surface scattering, such as the
PABA’s resonances at 1.29 and 1.54 THz. The flowchart
in Fig. 2(c) illustrates the implementation steps. After finding
the wavelet and scaling coefficients of the derivative of THz
reflectivity, we correct the phase distortions caused by the
wavelet and scaling filters in the decomposition stage [30].
Next, we find the decomposition levels that better capture
a material’s absorption signatures, while we exclude those
mainly associated with the scattering effects. Afterwards,
we find an appropriate threshold at each remaining scale
to further remove the scattering artifacts. Reconstruction of
the original spectrum from modified wavelet and scaling
coefficients yields the characteristic resonant frequencies,
even those obscured by scattering. In the following, we will
describe each step of the spectral reconstruction algorithm in
more details.

1) MAXIMAL OVERLAP DISCRETE WAVELET TRANSFORM
To calculate the wavelet, W̃j(f ), and scaling coefficients,
Ṽj(f ), as functions of frequency, f , we used the maximal
overlap discrete wavelet transform (MODWT) pyramid algo-
rithm, given for the jth level of decomposition by [37]

W̃j(f ) =
L−1∑
k=0

h̃(k)Ṽj−1(f − 2j−1k mod N ), (3)

and

Ṽj(f ) =
L−1∑
k=0

g̃(k)Ṽj−1(f − 2j−1k mod N ), (4)

where Ṽ0(f ) = −d |ρ(f )|2/df and j = 1, .., blog2(N )c,
while N is the size of the reflectivity spectrum, |ρ(f )|2. In
Eqs. (3-4), h̃(k) and g̃(k) represent the MODWT wavelet and
scaling filters with size L, obtained from the same mother
wavelet function [37], [38], and the ‘‘mod’’ operator indi-
cates circular convolution. Here, we used the LA(8) mother
wavelet, i.e., the least asymmetric wavelet filter with eight
taps, also known as ‘‘sym4’’, indicating the symlet wavelet
function with four vanishing moments [39]. The four vanish-
ing moments guarantee perfect reconstruction of the polyno-
mials up to order three [40]. We applied MODWT for J = 6
levels of decomposition. The sixth-level wavelet and scaling
coefficients only represented the baseline of the derivative
spectrum. Therefore, calculating higher decomposition levels
for extracting the resonant modes was not justified. Impor-
tantly, the required number of decomposition levels depends
on the sampling interval of ρ(f ), δf . Because the jth-level
wavelet coefficients represent the differences of a signal’s
localized averages over the scale σj = δf .2j−1 [37], a finer δf
necessitates using higher decomposition levels to obtain the
same features extracted by lower-level wavelet coefficients at
a coarser sampling.

2) MODWT ZERO-PHASE PYRAMID ALGORITHM
Figure 3(a) exhibits the vertically-offset wavelet coefficients
of the derivative of PABA reflectivity, shown in Fig. 2(a),

FIGURE 3. (a) The vertically-offset MODWT wavelet coefficients of the
derivative of the PABA reflectivity up to the fifth level. The vertical dashed
lines delineate the PABA resonant frequencies at 0.6 and 0.8 THz.
Resonant features in the wavelet domain that should appear in these
frequencies are delineated using the black circles in the second to
fourth-level wavelet coefficients to show the misalignments between
them, (b) MODWT wavelet coefficients circularly advanced to align the
features in the wavelet domain with the original spectrum.

up to the fifth decomposition level, while the wavelet coef-
ficients at each level were min-max normalized. Note that
in Fig. 3(a), the characteristic spectral features extracted
in the wavelet domain are not in alignment with those in
the original derivative spectrum, whose locations at 0.6 and
0.8 THz are delineated using the vertical dashed lines. The
wavelet coefficients associated with these resonant frequen-
cies, marked by the black circles, demonstrate a decom-
position level-dependent shift with respect to their correct
positions. These misalignments are originated from the phase
functions of the wavelet and scaling filters used in the wavelet
transform’s pyramid algorithm [28], [30]. Especially when
choosing the wavelet shrinkage thresholds from a specific
interval at each decomposition level [41], these misalign-
ments can lead to selecting erroneous threshold values. In
Fig. 3(b), we show that by advancing the wavelet coefficients
at each level by a specific number, shown as the power of T in
T−νjW̃j, these misalignments can get compensated, achieving
an effective zero-phase MODWT pyramid algorithm. If a
filter has a linear phase function given by θ (f ) = 2π f ν,
where f represents the normalized discrete frequency, its
phase function will shift the outputs by ν units. Therefore,
circularly shifting the outputs of such filter by ν units will
yield an effective zero-phase filter. The orthogonal wavelet
and scaling filters used in the MODWT algorithm do not
demonstrate deterministic linear phase functions [37], [39].
Additionally, because in the pyramid algorithm implemen-
tation given by Eqs. (3) and (4) wavelet and scaling filters
are used recursively, the misalignments caused by their phase
functions become more complicated. However, among the
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Daubechies orthogonal wavelet filters introduced in [39],
the least asymmetric wavelets demonstrate the most symmet-
rical shapes and therefore the highest phase function linear-
ity. Consequently, for the LA(L) mother wavelets, where L
represents the mother wavelet length, it has been shown that
advancing the jth-level wavelet coefficients by 2j−1(L−1)−
ν, where ν is given by [30], [37],

νLA(L) =


−L/2+ 1 L = 8, 12, 16, 20;
−L/2 L = 10, 18;
−L/2+ 2 L = 14,

(5)

results in an effective zero-phase MODWT pyramid algo-
rithm. Accordingly, features in the wavelet domain will be
in alignment with those in the input signal [30], as it is shown
in Fig. 3(b).

3) THRESHOLD SELECTION
In MODWT, the fine-scale wavelet coefficients, e.g. W̃1(f )
and W̃2(f ) when J = 6, mainly extract the sharp transitions in
the signal. In the THz reflectivity, these transitions are either
caused by the scattering-induced artifacts, which appear as
noisy features with high queferency, anagram of frequency,
content (spectral content of the Fourier-domain data) [21],
[42], or the water vapor absorption lines, which are sharper
than most solid-state materials’ resonant modes. Therefore,
because the derivative operator exhibits a high-pass filter’s
characteristics, the fine-scale wavelet coefficients associated
with higher-queferency transitions in the derivative spectrum
will have the largest magnitudes in the MODWT output.
Consequently, the wavelet shrinkage techniques that use the
fine-scale wavelet coefficients to specify the noise level
[43] cannot retrieve the resonant signatures. Moreover, due
to the recursive operation of the pyramid algorithm, this
sharp transitions, gradually smoothed by the scaling filters,
still would appear at higher decomposition levels. There-
fore, the level-based thresholding techniques, such as the
one introduced in [41], are also incapable of recovering the
characteristic resonant modes. To deal with these sharp tran-
sitions in the derivative spectrum prior to wavelet shrinkage,
we needed to exclude wavelet decomposition levels that are
not associated with the resonant signatures. As two candi-
dates for finding these decomposition levels, Fig. 4 compares
the wavelet decomposition level-based energy distribution
with the decomposition level-based second-order total vari-
ation of the PABA samples with surface roughness ranging
from grit 40 to grit 220. The level-based energy distribution
is calculated based on the energy of the wavelet coefficients
at each level. For defining the second-order total variation,
we used the first-order difference, which for the wavelet
coefficients at level j is given by,

D1,j(f ) = W̃j(f + δf )− W̃j(f ), (6)

where δf represents the sampling interval of ρ(f ). Therefore,
the second order difference at level j is obtained by,

D2,j(f ) = D1,j(f + δf )− D1,j(f ), (7)

FIGURE 4. (a) The wavelet decomposition level-based energy distribution
of the PABA samples with surface roughness ranging from grit 40 to grit
220, (b) the level-based second order total variation, defined by Eq. (8),
for the PABA samples. Both variables are normalized to sum to unity.

and the decomposition level-based second-order total varia-
tion at level j is computed by,

TV2,j =
f2−2δf∑
f=f1

|D2,j(f )|. (8)

where f1 and f2 indicate the beginning and ending points of the
bandwidth. Figure 4(a) illustrates that the level-based energy
distribution cannot differentiate the levels of decomposition
at all roughness degrees. In contrast, the second-order total
variation, shown in Fig. 4(b), effectively separates different
levels of decomposition, regardless of the surface roughness
degree. Moreover, the TV2,j of all PABA samples with dif-
ferent surface roughness degrees demonstrate similar values.
We observed similar trends in the α-lactose monohydrate’s
TV2,j at different roughness levels. We found that removing
the decomposition levels whose second order total variation
accounts for more than 25% or less than 0.2% of the total sec-
ond order total variation in the wavelet domain prior to
wavelet shrinkage can significantly improve the results. For
the remaining decomposition levels, we performed wavelet
shrinkage by defining a noise and scattering interval at each
level, similar to the approach proposed in [41] for the time-
domain THz signals. Note that the phase corrections dis-
cussed earlier are necessary here to ensure the alignment of
the features at different scales. Here, we found that using a
200-GHz spectral window centered at 300 GHz and a 200-
GHz spectral window centered at 1.7 THz yields the best
results in the wavelet shrinkage given by,

W̃j(f ) =

{
W̃j(f ) |W̃j(f )| ≥ τj
0 |W̃j(f )| < τj,

(9)
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FIGURE 5. (a) The vertically-offset derivative of THz specular reflectivity from PABA samples with grit 40, 80, 120, and 220 rough
surfaces, (b) wavelet shrinkage outcome for the derivative of PABA samples shown in (a), (c) the vertically-offset derivative of THz
specular reflectivity from α-lactose samples with grit 40, 80, 120, and 220 rough surfaces, (d) wavelet shrinkage outcome for the
derivative of α-lactose samples shown in (c), (e) the integral of the specular reflectivity (normalized THz power reflectivity) for PABA
and α-lactose from sample pellets with grit 40, 80, 120, 150, and 220 rough surfaces.

where τj is the amplitude of the largest wavelet coefficient in
the selected intervals at level j. After modifying the wavelet
coefficients, we implemented the inverse MODWT pyramid
algorithm given by,

Ṽj−1(f ) =
L−1∑
k=0

h̃(k)W̃j(f + 2j−1k mod N )

+

L−1∑
k=0

g̃(k)Ṽj(f + 2j−1k mod N ), (10)

recursively until reaching Ṽ0(f ), which represents the final
reconstructed signal. Note that because in the inverse
MODWT, wavelet and scaling filters, h̃(k) and g̃(k), iden-
tical to those used in the decomposition algorithm are
employed, it is important to reverse the circular advancements
applied in the phase correction step prior to the spectral
reconstruction.

III. RESULTS
A. SPECULAR REFLECTIVITY
Here, we illustrate the results of the proposed wavelet
shrinkage technique in specular reflectivities of PABA and
α-lactose monohydrate. Figure 5(a) shows the vertically-
offset derivative of reflectivity from PABA samples with
grit 40, 80, 120, and 220 rough surfaces. Obviously, peak
recognition based on the peak height thresholding would not
yield accurate resonant frequencies in the derivative spec-
trum. However, as shown in Fig. 5(b), in the wavelet shrink-
age outcome, only the PABA’s true resonant frequencies at

0.6, 0.8, 1.29, and 1.54 THz appeared as the local maxima.
Importantly, the resonant features at 1.29 and 1.54 THz were
completely obscured in Fig. 5(a). Yet, they were successfully
recovered in the derivative spectra reconstructed from the
modified wavelet coefficients. As shown in Fig. 5(e), increas-
ing the surface roughness level resulted in a significant drop
in the available bandwidth through the specular detection
angle. Therefore, the 1.54 THz resonant frequency, already
close to the measurements’ noise floor, could not be resolved
in samples with grit 120, 80, and 40 rough surfaces. Likewise,
Fig. 5(c) illustrates the vertically-offset derivative of reflectiv-
ity from α-lactosemonohydrate samples with grit 40, 80, 120,
and 220 rough surfaces. Although peak thresholding could
resolve the sharp resonant signature at 0.53 THz, α-lactose’s
resonance at 1.38 THz was completely obscured at all rough-
ness levels. Figure 5(d) demonstrates that in the wavelet
shrinkage outcome both resonant features were clearly dis-
tinguished as local maxima, without being disturbed by other
spectral artifacts. Note that the α-lactose’s resonant mode
at 1.2 THz has a weaker amplitude and full width at half
maximum (FWHM) in comparison to the resonant features at
0.53 and 1.38 THz.Moreover, wavelet coefficients associated
with the 1.2 THz resonance are smaller than the threshold
values set based on the highest amplitude in the noise and
scattering intervals at each decomposition level. Therefore,
the 1.2 THz resonant frequency could not be recovered in
the reconstructed reflectivity spectra. Additionally, for both
PABA and α-lactose samples with grit 40 rough surfaces,
because of the lower SNR, we were able to apply the wavelet
shrinkage in a slightly smaller spectral range.
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FIGURE 6. (a) The wavelet shrinkage of the derivative of reflectivities from a grit
80 rough surface α-lactose sample at specular and off-specular angles, including
θ0 = 35◦, θ1 = 40◦, θ2 = 45◦, and θ3 = 50◦. The resonant signature at 1.38 THz was
only identifiable at θ0 = 35◦ (specular), and θ1 = 40◦, (b) the integral of reflectivity of
an α-lactose monohydrate sample with grit 80 rough surface at detection angles
θ = 35◦ (specular), θ = 35◦, θ = 40◦, and θ = 45◦ (off-specular).

B. OFF-SPECULAR REFLECTIVITY
Although the off-specular THz reflectivity has been utilized
for chemical recognition in crystalline solids [20], [21],
it either has been averaged with the specular reflectivities
[21], or uncharacteristic spectral artifacts have reduced its
applicability [20]. Here, we demonstrate that the wavelet
shrinkage technique is also effective for the retrieval of char-
acteristic resonant frequencies from the derivative of THz
off-specular reflectivities, despite their lower SNRs. Figure 6
shows the outcome of the wavelet shrinkage method applied
to the derivative of reflectivities from a grit 80 rough sur-
face α-lactose sample at θ0 = 35◦ (specular), θ1 = 40◦,
θ2 = 45◦, and θ3 = 50◦. It can be seen that as the
detection angle increases, the resonant feature at 1.38 THz
becomes smaller until it is vanished at θ2 = 45◦. As shown
in Fig. 6(b), increasing the detection angle, similar to increas-
ing the surface roughness level, has significantly decreased
the measurements’ bandwidth. Therefore, by increasing the
detection angle to higher than 40◦, the resonant frequency
of α-lactose at 1.38 THz could not be resolved in the recon-
structed spectra. However, the resonant signature at 0.53 THz
is prominently featured in the reconstructed derivative spectra
at all off-specular detection angles.

IV. CONCLUSION
Although the reflection-mode THz-TDS is preferred for non-
invasive material characterization, the phase ambiguity and
the rough surface scattering remain the bottle-necks for suc-
cessful real-world implementations. In this work, we pre-
sented the implementation of a wavelet shrinkage technique
for the retrieval of characteristic resonant frequencies from
the derivative of THz reflectivities measured at both specu-
lar and off-specular detection angles. Using this technique,
we could reliably identify the characteristic resonant fre-
quencies from the derivative of THz reflectivity, where the
rough surface scattering effects were dominant and had
obscured most of the resonant signatures. In particular, most
higher-frequency resonant features extracted by this tech-
nique were not readily identifiable in the derivative spectrum,
mainly because they were masked by the scattering effects.
We evaluated the robustness of this technique over sample

pellets made from α-lactose monohydrate and PABA, where
controlled levels of rough surface scattering were applied to
the samples using sandpapers of different grits. In particu-
lar, grit 40 and grit 80 sandpapers are considered to create
extremely high levels of electromagnetic scattering. The abil-
ity of our computational technique to mitigate all levels of
rough surface scattering without any a priori information on
the sample materials and surface characteristics highlights its
robustness and potential for stand-off detection applications.
Future works may include the investigation of the effective-
ness of this technique for retrieval of resonant signatures
at higher frequencies using THz generation and detection
techniques that enable even higher bandwidths. Moreover,
the effects of the shape of a particular resonant signature, such
as its height or the full-width at half maximum (FWHM),
and the proximity of two adjacent resonant frequencies on
the performance of the wavelet shrinkage technique can be
further studied.
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