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ABSTRACT Imaging genetics research based on Sparse Canonical Correlation Analysis (SCCA) helps to
discover the correlation between pathological features reflected by neuroimaging and genotypic variation.
Multi-Task SCCA (MTSCCA) method is to identify bi-multivariate associations between SNPs and multi-
modal imaging QTs. However, the MTSCCA method is unsupervised and cannot identify diagnosis-guided
genotype-phenotype associations. In order to improve the performance and interpretability of MTSCCA,
we propose an improved MTSCCA algorithm, which is a supervised sparse bivariate learning model fused
with a linear regression model, in which the regression part plays a guiding role in imaging QT selection.
To jointly understand the relationship between genotypes and phenotypes of multiple tasks, in this study,
gene expression data and single nucleotide polymorphisms (SNPs) as genetic data are considered in the
algorithm. The focus of each task is to determine the genotype-phenotype pattern guided by the diagnostic
team to discover the association with SNP/gene and brain region changes. Besides, the Laplacian matrices
of three kinds of data are added as prior knowledge to the algorithm penalty item so that the algorithm
can analyze the correlation between different features. Compared with other SCCA methods, our algorithm
has improved noise resistance and stability, and found some diagnostic-specific SNP/gene-ROI specific to
the two diagnostic groups of MCI and AD. Significance: This method provides a way to further study the
association of multi-modal biological data and identify the complex association patterns of diseases.

INDEX TERMS Alzheimer’s disease (AD), imaging genetics, sparse canonical correlation analysis (SCCA).

I. INTRODUCTION
In recent years, imaging genetics has become an important
research topic because of its ability to explore the effects of
genes on the structure and function of the brain and reveal
the pathogenesis of some brain diseases. Image genetics has
made significant progress in studying the pathogenesis of
Alzheimer’s disease (AD) and mining biomarkers.

To make up for the low accuracy problem of early imag-
ing genetics association relationship analysis based on uni-
variate paired statistical analysis methods, in recent years,
image genetics based on statistical learning has enabled the
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association analysis of multivariate genetic data with quan-
titative traits in multivariate imaging. How to effectively
use the high-dimensional genetic sites and sparse features
of images has become a research hotspot in biological data
association analysis.

Canonical Correlation Analysis (CCA) [1] is a standard
multivariate method that integrates two or more data types.
It can maximize the linear combination of the most remark-
able correlation among different types of variables and then
obtain the interrelated components of the two sets of data.
Therefore, when using traditional CCAmethods, severe over-
fitting may occur. In response to this problem, the sparse-
constrained CCA method [2], [3] was introduced, which
can identify bivariate associations between multiple SNPs
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and multiple imaging QTs. Many scholars made improve-
ments based on SCCA. Considering the different group-level
structures of genetic data and imaging traits, some scholars
improved the LASSO penalty that combines LASSO and
graph/network guidance in structured sparse learning. For
example, to balance the weighted similarity between group-
ing features or associated features, the KG-SCCAmethod [4]
is proposed. It can model two types of prior knowledge, one
as a group structure and the other as a network structure.
DU et al. introduced a new graph-guided format to solve
the traditional sparse feature selection problem in the case
of incomplete prior knowledge [5]. Hao et al. also proposed
a time-constrained longitudinal image gene association to
study and explore the dynamic relationship between multiple
genetic variables and multiple image markers [6]. Multi-task
SCCA (multi-task-SCCA, MTSCCA) is recently proposed to
study the genetic problems of multimodal imaging by jointly
constructing multiple SCCA tasks in the literature [7]. The
newly proposed MT-SCCALR [8] is superior to its sophis-
ticated modeling strategy, which enables it to identify the
characteristics of the diagnostic group and is of great signifi-
cance for clinical research. However, due to its algorithm’s
time-consuming and program limitations, it is not suitable
for large-scale association analysis, also. Fang et al. modi-
fied based on mSCCA and then proposed JSCCA to study
the association of each imaging genetic group. However, its
disadvantage is that it does not add a priori matrix to consider
the different internal characteristics of the two modal data.
When it performs SCCA in a single diagnostic group, many
undesirable associations may dominate the associations of
interest [9].

To solve these problems, this paper proposes an improved
MTSCCA algorithm. First, add gene expression data parallel
to SNP as genetic data to explore the influence of multi-
modal genetic data on brain structure. Second, the GraphNet
regularizer [10] is added to the penalty term. The GraphNet
regularizer is a modified version of elastic net regularization,
which can effectively integrate physiological constraints such
as connectivity. Its stability and anti-interference have been
proved in the JCB-SCCA algorithm [11]. Using it as a pri-
ori knowledge into the algorithm makes the results of the
algorithm more biologically explanatory. Third, we integrate
the linear regression model into the MTSCCA algorithm,
so that the diagnosis information can be added, and then
the diagnosis-guided SNP/gene-ROI belonging to diagnosis
groups are obtained. The results show that the proposed
algorithm has better anti-noise performance in simulated data
sets, and higher canonical correlation coefficients and classi-
fication accuracy in most diagnostic groups of real data sets.

II. METHOD
A. SPARSE CANONICAL CORRELATION ANALYSIS (SCCA)
CCA is a method to determine the association between two
data sets. Given a data set X ∈ Rn×p, Y ∈ Rn×q, where X has
p features, and Y has q features, a total of n samples.

X represents the p feature of the imaging data, and Y rep-
resents the q feature of the SNP data and q feature of the
Gene expression data. Using the CCA method can achieve
high-dimensional data X , Y dimensionality reduction, in this
process to find a linear combination of variables in X and Y
to maximize correlation.

max
u,v

uTXTYv

s.t. uTXTXu = vTY TYv = 1 (1)

Among them, we assume that the columns of X and Y are
standardized. The mean and unit variance is zero. u and v are
the corresponding norm vectors.

The SCCAmodel was proposed by Parkhomenko et al. [2],
Du et al. [3] based on CCA. The innovation lies in the
proposed l1 penalty for controlling the sparsity of the model,
which is defined as follows:

min
u,v
−uTXTYv+ λu ‖u‖11 + λv ‖v‖

1
1

s.t. ‖u‖22 = ‖v‖
2
2 = 1 (2)

where u and v are corresponding norm vectors.

B. AN IMPROVED MTSCCA
The MTSCCA model was proposed by Du et al. We inno-
vatively added gene expression data in parallel with SNP to
genetic data. c represents the number of diagnostic groups.
Specifically, we use Xcj ∈ Rn×p to represent the phenotype
data with p imaging, and Y cj ∈ Rn×q (j = 1, 2) to represent
the genetic data with q SNPs, q gene expression data from
c diagnostic groups. Let U ∈ Rp×c be the canonical weight
matrix associated with Xcj and V j ∈ Rq×c be that associated
with Y cj , the MTSCCA model is as follows.

min
u,vj

n∑
c=1

2∑
j=1

−uTc X
T
c Ycjvcj

s.t. ‖Xcuc‖22 = 1,
∥∥Ycjvcj∥∥22 = 1,

� (U) ≤ b1, �
(
Vj
)
≤ b2 (3)

To encourage the similarity of related elements of the norm
vector, the connectivity-based penalty term [11] is introduced
in our algorithm. Specifically, if the connectivity between the
i-th node and the j-th node (that is, the brain region or SNP
site) is high, it will force the corresponding elements of the
norm vector to be similar. Therefore, we add the information
of the brain connectivity and the weighted SNP correlation
network to capture the genetic network structure [12] as
a prior matrix to add to the algorithm, aiming to improve the
biological significance of the extracted features.

P (u) =
∑
p,q

Lu(p,q)(up − uq)

P (v) =
∑
p,q

Lv(p,q)(vp − vq) (4)

Here, Lu and Lv represent the Laplacian matrix of X and
Y respectively.
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We regard the Laplacian matrix of X and Y as a new fusion
penalty of MTSCCA algorithm, and the specific formula is as
follows:

P (u) = uTLuu

P (v) = vTLvv (5)

Lu and Lv represent the matrix of X and Y j , respectively.
The Laplacian matrices are defined as L = D− C, where
D is the degree matrix of connectivity matrix P.

Then, we use linear regression to identify relevant ROI.
Since the association betweenQTs and genetic data will even-
tually encourage the identified QTs to be distinguished from
each other, we only include the regression terms betweenQTs
and category labels.

min
u

n∑
c=1

1
c
‖zc − Xcuc‖

zc is the corresponding class label of the lth subject for the
cth task.

C. THE EFFICIENT OPTIMIZATION ALGORITHM
Nowwe can write the proposed method with penalties explic-
itly exhibited.

min
u,vj

n∑
c=1

2∑
j=1

−uTc X
T
c Ycjvcj +

n∑
c=1

1
n
‖zc − Xcuc‖

s.t. ‖Xcuc‖22 = 1,
∥∥Ycjvcj∥∥22 = 1,P (uc) ≤ d1,

P
(
vcj
)
≤ d2, ‖uc‖1 = d3,

∥∥vcj∥∥1 = d4 (6)

We modify the loss function to

min
u,vj

n∑
c=1

2∑
j=1

∥∥Xcuc − Ycjvcj∥∥22 + n∑
c=1

1
n
‖zc − Xcuc‖

s.t. ‖Xcuc‖22 = 1,
∥∥Ycjvcj∥∥22 = 1,P (uc) ≤ d1,

P
(
vcj
)
≤ d2, ‖uc‖1 = d3,

∥∥vcj∥∥1 = d4 (7)

which is equivalent to the original one, ‖Xcuc‖22 = 1,∥∥Ycjvcj∥∥22 = 1. Then we write its Lagrangian.

L (u, v) =
∑n

c=1

1
n
‖zc − Xcuc‖ +

∑n

c=1

∑2

j=1∥∥Xcuc − Ycjvcj∥∥22 + γ1 (‖Xcuc‖22 − 1
)

+γ2

(∥∥Ycjvcj∥∥22 − 1
)
+ β1 (‖uc‖1 − d3)

+β2
(∥∥vcj∥∥1 − d4)+ λ1 (P (uc)− d1)

+λ2
(
P
(
vcj
)
− d2

)
(8)

where β1, β2, λ1, λ2, γ1 and γ2 are tuning parameters, and
β1, β2, λ1 and λ2 are positive values which control the model
sparsity. By dropping the constants, we further have

L (u, v) =
∑n

c=1

1
n
‖zc − Xcuc‖ +

∑n

c=1

∑2

j=1∥∥Xcuc − Ycjvcj∥∥22 + γ1 ‖Xcuc‖22

+γ2
∥∥Ycjvcj∥∥22 + β1 ‖uc‖1 + β2 ∥∥vcj∥∥1

+λ1P (uc)+ λ2P
(
vcj
)

(9)

from the point of view of optimization.
In order to minimize the objective function (9) to obtain

the optimal u and v algorithm, we use the alternating convex
search method [13]. First, we initialize u and v, then, when
u is fixed, we modify v, and vice versa. And repeat the
above process until convergence. We apply [2] to solve the
minimization problem.

min
v

n∑
c=1

2∑
j=1

∥∥Xcuc − Ycjvcj∥∥22 + β2 ∥∥vcj∥∥1
+λ2vTcjLvcjvcj + γ2

∥∥Ycjvcj∥∥22
s.t.

∥∥Ycjvcj∥∥22 = 1,
∥∥vcj∥∥1 = d4 (10)

We first get a value of v, which is minimized when u is
constant. Since the Laplacian matrix is a positive definite
matrix, the penalties based on connectivity are convex, that
is, equation (10) is convex and can be optimized using coor-
dinates based on soft thresholds, so the coordinate solution
of (10) is defined as

vcj = H (
n∑
c=1

2∑
j=1

[Y TcjXcuc + λ2v
T
cjLvc + γ

′

2Y
T
cj Y cjvcj], β2)

(11)

H is the soft-thresholding operator defined by H (x, β) =
sgn(x) max(|x| − β, 0) and γ ′2 = γ2 + 1.

After getting v, we can modify it to solve u. The objective
function of u can be rewritten as follows.

min
u,vj

n∑
c=1

2∑
j=1

−uTc X
T
c Ycjvcj +

n∑
c=1

1
n
‖zc − Xcuc‖

+β1 ‖uc‖1 + λ1u
T
c Lucuc + γ1 ‖Xcuc‖

2
2

s.t. ‖Xcuc‖22 = 1, ‖uc‖1 = d3 (12)

In this way, we obtain a u value, which is the same as the
method for (12), and we get the coordinate solution of (13)

uc = H (
n∑
c=1

2∑
j=1

[XTc Ycjvcj + X
T
c z+ λ1u

T
c Luc

+γ ′1X
T
c Xuc], β1) (13)

Among them, γ ′1 = γ1 + 1. Now that the building blocks
regarding updating u and each individual vj are created,
we present the pseudocode in Algorithm 1.

III. RESULT
A. DATA SOURCE AND PREPROCESSING
In this section, we evaluate the effectiveness of the proposed
method on the ADNI database (http://ADNI.loni.usc.edu/).
In this database, we examine and select candidate SNP to
predict the MRI imaging phenotype Reaction. In this study,
there were 386 non-Hispanic Caucasian participants with
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TABLE 1. Specific process for improved MTSCCA algorithm.

imaging and genotyping data, including 113 healthy controls
(HC), 248 mild cognitive impairment (MCI), and 25 AD
Participants.

The original MRI images were downloaded from
ADNI1 in the experiment, which used DiffusionKit [14]
software to achieve head movement correction of the original
MRI image. They registered it to the Montreal Neurological
Institute (MNI) standard space. Next, the segmentation of
MRI images was implemented by using MATLAB software
CAT toolkit in the SPM software package [16]. Specifically,
voxel-based morphometry (VBM) provides voxel estimation
of the local number or volume of specific tissue compart-
ments. By scaling the volume change due to spatial registra-
tion to adjust the segmentation, the volume of gray matter
tissue was calculated in the region of interest (ROI) as a
feature. After screening, in the end, 140 ROI were retained.

The genotypes of 386 subjects in this study came from the
ADNI1 database. All SNPs were genotyped by the human
610QuadBeadChip in the study.We used the genetic analysis
tool PLINK [15] to screen genotype data, using the fol-
lowing exclusion criteria: rare SNPs (minor allele frequency
(MAF) < 0.05), violations of Hardy-Weinberg Equilibrium

TABLE 2. Characteristics of the subjects.

(HWE p< 10−6), poor call rate (< 90%) per subject and per
SNP marker, gender check, and sibling pair identification.

We used ANNOVAR (http://ANNOVAR.openbioinfor
miscs.org) to annotate SNP with the corresponding genes
listed in reference [17]. In order to get more accurate
correlation analysis results, we focused on 15 genes. For
each gene, we extracted all SNP within ± 5k base pairs
of the gene boundary based on ANNOVAR annotation.
Therefore, there is no overlap between the different
groups. We selected 1000G phase3 v5 as the reference
panel for genotype filling and used liftover software
(https://genome.sph.umich.edu/wiki/LiftOver) to convert
hg18-based SNP data to hg19-based data for better Compare
with a reference panel. Then, the direction of the chain is
corrected. The 1000G data is expressed based on the positive
chain of the reference genome. To match the reference panel,
snpflip is used to mark the positive chain, negative chain,
and fuzzy chain in the sample data, and the blur is removed.
Chain flipped the negative chain. Finally, the genotype filling
was performed, first phasing through shapeit2 [18], [19], then
through the Michigan Imputation Server website, the SNP
data was filled. After another quality control, this resulted
in 2957 single nucleotides being mapped to the 15 genes with
the highest risk. Figure 1 shows the AD risk factor genes and
the number of pre-selected SNPs in our study.

In Figure 1, the abscissa represents the name of the selected
risk gene, and the ordinate represents the number of genes
they contain. For the gene expression data corresponding to
the sample, the repeated expression items were first deleted,
and genes with variance more significant than 0.5 were
extracted. Due to algorithm limitations, the gene expression
data with the same number of SNPs was finally retained.

B. PARAMETER SELECTION
There are six parameters we need to set, namely β1, β2, γ1,
γ2, λ1, λ2. Since blind grid search is very time consum-
ing, we have adopted some techniques here to speed up
the adjustment process. On the one hand, if the parame-
ters are too small, SCCA and CCA will produce similar
results. On the other hand, if the parameter is too large,
SCCA will over-punish the result. Therefore, it is more rea-
sonable for a parameter that is neither too large nor too
small. We use the nested 5-fold cross-validation method to
find the optimal parameters. These parameters generating the
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FIGURE 1. The number of 15 AD risk genes and their single nucleotide
polymorphisms used in this study.

highest cross-task mean testing correlation coefficient will
be chosen as the optimal parameters, i.e. CV (λ, β, γ ) =
1
5

∑5
t=1

∑2
j=1 Corr(X̄tut , Ȳt,jvt,j), where X̄t and Ȳt,j are the

t-th fold which are the complementary sets used for testing,
and ut and vt,j are the canonical weights estimated from
training set.

We fixed γ1 =1 and γ1 =1, because they mainly affect the
amplitude of U and V [20]. Finally, we take β1 = β2 = 10,
γ1 = γ2 = 0.01

C. IMPROVED BI-MULTIVARIATE ASSOCIATION
In this section, we will identify two sets of genetic data (SNP,
Gene Expression Data) and a set of imaging phenotypes in
the three categories of AD, MCI, and HC. For the three
SCCA tasks, the proposed algorithm learns them together and
generates an MRI weight matrix U, SNP weight matrix V1,
and gene expression data weight matrix V2.

Figure 2 shows the weight of each QTs after five-fold
cross-validation in the three data sets. Table 3 and Table 4
show the top 30 SNPs and the top 30 genes of the AD
group and MCI group selected by our algorithm after five-
fold cross-validation, and their respective absolute weights.

FIGURE 2. The weight of each QTs after five-fold cross-validation in the
three sets of data.

IV. DISCUSSION
A. BIOLOGICAL SIGNIFICANCE
We observed that the non-zero coefficients of all these imag-
ing markers have been shown to be significantly related to

TABLE 3. Use our model to select the genetic characteristics of the AD
group.

the progression of AD. In addition to observing a slight dif-
ference in the gray matter volume of left/right hippocampus
between the AD group and the MCI group and the HC group,
significant differences in the gray matter volume of left/right
precuneus and left parahippocampus between the two groups
were also observed. These QTs have been reported in the
past. It was confirmed in [21]–[23]. The JSCCAalgorithm did
not recognize the difference between precuneus and parahip-
pocampus in the three groups. In addition, our algorithm also
recognizes the weight difference between the three groups of
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TABLE 4. Use our model to select the genetic characteristics of the MCI
group.

left/right posterior cingulate, which is the obvious difference
between AD and MCI [24], [25]. Although JCB-SCCA uses
the Laplacian matrix as a priori knowledge to introduce the
algorithm, it also explains the biological significance of the
selectedQTs. Still, it does not accurately reflect the difference
between these QTs in the diagnosis group and the control
group. The results show that our proposed algorithm can
identify the characteristics specific to the diagnosis group and
reveal the biological significance of more QTs specific to the
diagnosis group.

Also, we performed KEGG enrichment analysis on the
TOP 600 genes in the AD group selected by the algorithm,
as shown in figure 4A. Most of the biological processes are
closely related to AD. Among them, the signalling pathways
between B cells and T cells have been confirmed in previous
literature [26]. Ginsenoside Rb1 can increase productions
of Aβ1-42 and byproducts of β- and γ -secretase. Collected
evidence supported that ginsenoside Rb1 improves learning
and memory in AD rat by altering the amyloidogenic process
of APP into the non-amyloidogenic process, to exert its anti-
Inflammatory function [27]. In addition, RB1 selected by
the algorithm as a tumor suppressor gene, its loss also has a
carcinogenic risk [28]. Human ATP-binding cassette (ABC)
transporters are potential causes or contributing factors of
many pathologies such as AD. Literature [29] confirmed the
potential of human ABC transporter as a new pharmaco-
logical target for the diagnosis and treatment of AD. The
critical roles of apoptosis and hepatitis B in the process of AD
were confirmed in the literature [30], [31]. Similarly, KEGG
enrichment analysis was performed on the TOP 600 gene
of the MCI group, as shown in Figure 4B. We found that
the genes of the MCI group and the AD group are involved
in many of the same biological processes. Cell adhesion
molecules, hematopoietic cell lineage, and regulation of actin
cytoskeleton are biological processes specific to the MCI
group. In [32], amyloid β peptides (AβOs) have been shown
to affect cognitive decline in AD and participate in cell
adhesion molecules and regulation of actin cytoskeleton. The
results indicate that AβOs plays a key role in the early stage
of AD. The relationship between hematopoietic cell lineage
and MCI needs to be further confirmed.

Not only that, the GCLC [33], GCLM [34], E2F5 [35],
RAD50 [36], IDH3A [37], LPP [38], CCR6 [39],
RNASE2 [40], ISOC1 [41], MS4A1 [42], CAMP [43] of
the TOP 30 genes in the AD group selected by our proposed
algorithm all play an important role in the AD process or par-
ticipate in the biological processes related to it. In addition,
in the MCI group, the low expression of PGRMC1 caused
more than 90% of the exogenous Amyloid beta (Abeta)
1-42 oligomers to reduce the binding of neurons [44]. Abeta
accumulates in the brains of patients with MCI. Low-density
lipoprotein receptor-related protein 1 (LRP1) is involved in
brain glucose metabolism and amyloid β clearance. It is
shown in [45] that the T allele of LRP1 rs1799986 may
reduce the sensitivity to MCI. Reference [46] indicates that
phosphodiesterase (PDE) inhibitors can increase intracel-
lular cyclic adenosine monophosphate (cAMP) to improve
signal transduction pathways in brain circuits. The relation-
ship between other genes and AD and MCI needs further
confirmation.

Because the SNPs we selected are distributed near mul-
tiple risk genes, only rs2279796 can be confirmed in the
existing literature [47] to have a strong correlation with AD.
In the MCI group, rs442495, rs605928, rs7161889, and
rs653765 have been confirmed in the [48], [49] to be SNP
sites that are significantly related to MCI and AD near

VOLUME 9, 2021 30533



K. Wei et al.: Improved MTSCCA of Imaging Genetics for Detecting Biomarkers of AD

FIGURE 3. A and B are heat maps of the brain ROI-SNP and ROI-GENE
associated with the selected markers at the top of the AD diagnosis
group, respectively. C and D are heat maps of the brain ROI-SNP and
ROI-GENE associated with the selected markers at the top of the MCI
diagnosis group, respectively.

FIGURE 4. A and B respectively show the KEGG enrichment analysis
results of the TOP 600 genes in the AD group and the MCI group selected
by our algorithm.

ADAM10. And rs383902 [50] is a SNP site significantly
related to schizophrenia.

In addition, based on the selected top 30 SNPs, top 30 gene
and top 10 brain ROI, figure 3 shows the pair-wise correlation
heat map of brain ROI-SNP/gene pairs. As expected, most
ROI-SNP/gene pairs are strong. In addition, we also found
that TOP 30 SNP and Genes corresponding to the same ROI
showed a consistent positive/negative correlation. In order to
find the significantly stronger SNP/gene-ROI pairs, we dis-
play the top five pairs with p < 0.01 in the AD group and
MCI group respectively in the Table 5 and Table 6. It can
be seen from Table 5 that rs304138 is closely related to the
changes in gray matter volume in multiple brain regions, and
is likely to be a risk SNP site for Alzheimer’s disease. It can
be seen from Table 6 that Right Angular Gyrus are likely to
be the risk brain areas of MCI, and its gray matter volume
changes are jointly affected by multiple genes.

TABLE 5. The top five pairs with p<0.01 in the AD group.

TABLE 6. The top five pairs with p < 0.01 in the MCI group.

B. COMPARISON WITH OTHER ALGORITHMS
In this research, we added the traditional SCCA algorithm to
the multi-task framework. We used the Laplacian matrix as a
new penalty item to process the image and genetic data. It can
not only improve stability and anti-noise performance but
also provide biologically interpretable results. The datasets
are generated as follows. We first conducted experiments on
the simulated data set. We simulated 100 random samples
of neuroimaging data X, Y1(SNP) and Y2(gene expression
data) and applied the model similar to previous studies [17].
Then, define a latent variable ε, which belongs to the normal
distribution N (0, σ 2

ε ). Finally, generate a neuroimaging load-
ing vector α with p elements and a genetic loading vector β
with q elements. Each non-zero elements was drawn indepen-
dently from a uniform distribution U (−1,−0.5)∪U (0.5, 1).

We compare our method with the other three CCA-based
multivariate methods (JCB-SCCA and JSCCA) and the
MT-SCCALR algorithm that uses a multitasking framework.
Our goal is to evaluate the correlation of SNP features,
gene expression data features and MRI features in the sim-
ulation data set. We assume the imaging X and genotype
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data Y1 and Y2. The data set uses the same sample size
and the number of features (n = 300, p = 650 and
q1 = q2 = 350). Among them, the first data set mainly simu-
lates task-specific situations, while the second data set mainly
simulates tasks consistently. Specifically, in the second data
set, there is a continuous relationship between the classes to
affect the relationship between HC and MCI and between
MCI and AD. The two data sets are generated as follows
(Noise Level= 1). To evaluate the performance of these three
algorithms. It can be seen from figure 5 that the anti-noise
performance of the MR-SCCALR algorithm is poor. Other
algorithms can better restore Ground Truth.

FIGURE 5. A and B are the norm weights of the two sets of data,
respectively. Lines 1-5 are Ground truth, JCB-SCCA, MT-SCCALR, JSCCA and
our proposed algorithm. For each data, from top to bottom are the
weights U, V1, V2. In each panel, there are three rows (each row
containing five times the norm weight) corresponding to three tasks.

The typical correlation coefficients CCC1 of U and V1
and the typical correlation coefficients CCC2 of U and V2 of
the three sets of data under different noise levels. As shown
in figure 6, we compared their anti-noise performance on
three random data sets. These four algorithms exhibit rela-
tively similar typical correlation coefficients when the noise is
small. As the noise increases, our proposed algorithm shows
better anti-noise performance than the other three algorithms.

We apply the proposed method with JCB-SCCA and
JSCCA to this real neuroimaging genetic data. Due to the
use of a large number of SNPs and genes, the MT-SCCALR
method exceeds the program limit, and it is not added for
comparison. All algorithms have three columns, representing
AD, MCI, and HC. Figure 7 shows the typical correla-
tion coefficients of the test set after five times of cross-
validation of QTs-SNPs (U-V1) and QTs-Gene Expression
Data (U-V2).

We show the test classification accuracy of SVM based on
the LIBSVM (https://www.csie.ntu.edu.tw/∼cjlin/libsvm/)
software package respectively. In Table 7, our proposed
algorithm has the highest classification accuracy in the AD

FIGURE 6. The four algorithms are compared with five-fold
cross-validation under different noise levels. A and B are
the sets of simulation data, respectively.

FIGURE 7. CCC comparison of three algorithms with five-fold cross
validation on different data sets.

and HC data sets and achieved the same classification accu-
racy in the MCI data set with JCB-SCCA. In addition,
we found that the JSCCA and JCB-SCCA algorithms show
higher classification accuracy on the training set than our
algorithm, but they perform poorly on the test set. It indicates
that our proposed algorithm can more effectively prevent
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TABLE 7. Classification accuracy using SVM algorithm.

over-simulation. It reflects the robustness of our proposed
algorithm to a certain extent.

V. CONCLUSION
SCCA is a robust and scalable multiple association analysis
algorithm, which has been widely used in the field of image
genetics [2]–[9]. Compared with the constraints of existing
methods, we propose an improved multi-task SCCA method.
It uses one kind of image (sMRI) and two kinds of genetic
data (SNP, gene expression data) to mine the characteristics
specific to each diagnosis group. In addition, the Laplacian
matrix is used as the algorithm penalty item to make the
results easier to interpret and have biological significance.
We tested our algorithm on the simulation data set and the
ADNI data set. The results show that, compared with the
existing methods (JCB-SCCA, JSCCA, MT-SCCALR), the
algorithm not only has stronger anti-noise performance in
the simulation data set, but also has higher canonical correla-
tion coefficient and classification accuracy in the diagnosis
group of real data set. The proposed algorithm can mine
the unique characteristics of different diagnostic groups, and
also found many SNP-ROI and gene-ROI pairs that may be
closely related to MCI and AD, which are worthy of in-depth
study.

In addition, we used one type of imaging data (MRI)
and two types of genetic data (SNP, Gene Expression
Data). In future research, we will try to integrate more
imaging modalities (such as PET, fMRI), and more types
of genetic data (such as DNA methylation data), hoping
to more accurately and comprehensively explore biologi-
cal significance between the brain area and the risk gene
locus.
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