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ABSTRACT Vertical nanowire field-effect transistors (NWFETs) have been optimized to maximize digital
and analog performances using fully-calibrated TCAD and machine learning (ML) technique. Digital
performance is quantified by RC delay (CggVdd /Ion, where Cgg is gate capacitance, Vdd is operation voltage,
and Ion is on-state current) at the fixed off-state currents, and analog performance is quantified by the product
of cut-off frequency (Ft ) and transconductance efficiency (Gm/Ids). ML accurately predicted the geometry
and doping parameters suggesting the best device performances. All the optimized NWFETs have larger
drain diameters but smaller source diameters at the minimum of gate lengths, gate oxide thicknesses, drain
junction gradients, and source/drain spacer lengths. Small source diameters are needed to tightly control the
energy barrier to reduce the short-channel effects, whereas large drain diameters increase current drivability
than Cgg. Small drain junction gradients increase the lateral electric field from source to drain, which
increases the carrier velocity. Longer spacer lengths decrease both Ion and Cgg, but the Ion degradation is
critical. These device characteristics validate the optimization results from ML, and ML-based optimization
is fast and effective to maximize both digital and analog performances.

INDEX TERMS Machine-learning (ML), python, vertical, nanowire, RC delay, transconductance efficiency,
TCAD, device optimization.

I. INTRODUCTION
Fin field-effect transistors (FinFETs) have been scaled down
to 5-nm node successfully by full-fledged EUV and SiGe
channel [1]. Gate-all-around nanowire (NW) and nanosheet
FETs have also been introduced to enhance the gate electro-
statics and current drivability [2]. Also, design-technology
co-optimization including complementary FET [3]-[5] and
buried power rail (BPR) [6] enables further technology node
scaling in terms of front-end- and back-end-of-lines. Middle-
of-line (MOL) schemes such as self-aligned contact and
contact-over-active-gate contact increases the device density
by placing metal contacts within the active layout region [7].
However, it is a technology bottleneck to scale down the
contacted poly pitch (CPP) below 5-nm node due to process
variability and design complexity.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kalyan Koley .

Meanwhile, vertical NWFET is one of the promising can-
didates which can have device design flexibility by large
CPP margin since the channel is aligned vertically [8]–[11].
In addition, vertical NWFETs along with BPR possibly ease
3D MOL layout schemes by forming power delivery lines at
the bottom. Vertical NWFETs have great potential to increase
the device density by aligning transistors and selectors ver-
tically [11]–[14]. However, since the fabrication flows are
different from conventional horizontal FETs, it is needed to
optimize the device structure to boost its performance and
finally to provide the device guideline.

Therefore, in this work, we optimize digital and ana-
log performances of vertical NWFETs using fully-calibrated
TCAD and machine learning (ML) technique which has
been adopted for the optimization of silicon-on-insulator
FETs [15], [16]. DC/AC characteristics of vertical NWFETs
in terms of geometry and doping have been studied in
detail.
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FIGURE 1. 2-D schematic diagram of n-type NWFET. 10 device parameters
used for randomization are specified.

TABLE 1. Device parameters and their minimum/maximum values.

II. DEVICE STRUCTURE AND SIMULATION METHOD
All the silicon vertical NWFETs were simulated using Sen-
taurus TCAD [17]. Hydrodynamic transport model was
solved self-consistently with Poisson and electron/hole conti-
nuity equations. Jain-Roulston bandgap narrowingmodel was
used for highly-doped source/drain regions. Density-gradient
quantization model was used to consider the quantum
confinement effect within the channel. Inversion and accu-
mulation layer mobility degradation model was used to
consider impurity, phonon, and surface roughness scatter-
ings. Shockley-Read-Hall, and Hurkx band-to-band tunnel-
ing recombination models were used.

Fig. 1 shows 2-D schematic diagram of n-type NWFET.
Cylindrical coordinate system is used instead of 3-D device
structure to reduce TCAD computation time. 10 device
parameters are specified, and their minimum and maximum
values are indicated in Table 1. These values are chosen
under the feasible condition for vertical NWFETs [10], [11].
Before parameter randomization, n- and p-type NWFETs are
calibrated to Samsung NWFETs [18] as shown in Fig. 2. Cal-
ibration has been done first by modifying low-field mobility
and surface roughness scattering parameters to fit the drain
current (Ids) in the linear region. Then, saturation velocity

FIGURE 2. Calibration results of n-type and p-type single NWFETs.

FIGURE 3. Neural network for device optimization according to RC delay
and RF figure-of-merit (FoM).

is modified to fit the Ids in the saturation region. Detailed
fabrication flow of the NWFETs is shown in [19]. 10 device
parameters are randomized uniformly within their bound-
aries, and total 15,000 devices are used for each device type.
Train and test datasets are split randomly into 80:20.

Fig. 3 shows simple schematic neural network using fully-
connected multi-layer perceptron (MLP) for the optimization
of vertical NWFETs. There is one hidden layer with 20
nodes and hyperbolic tangent (tanh) as an activation function.
Loss function is a mean-squared-error (MSE). Ns and Nd
are logged, and then all the parameters are standardized by
subtracting their means and then dividing by their standard
deviations. Output parameters are the logarithmic values of
RC delay at the off-state currents (Ioff ) of 10−10 and 10−8 A
for low-power (LP) and high-performance (HP) applications,
respectively, and RF figure-of-merit (FoM). RC delay and RF
FoM are given by

RCDelay =
CggVdd
Ion

(1)

RFFoM = max
(
FtGm
Ids

)
(2)

where Cgg is gate capacitance, Vdd is operation voltage fixed
to 0.7 V, Ion is on-state current, Ft is cut-off frequency,
and Gm is transconductance. Here Ft is simply calculated
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TABLE 2. Spearman correlations between input and output parameters.

as Gm/(2πCgg), which is valid to non-planar devices [20].
RC delay and RF FoM are logged and then standardized to
improve the ML training as in [15].

Weights and biases of hidden and output layers are initial-
ized according to Glorot and Bengio [21], and their values
are updated using Adam optimizer [22]. After ML training is
finished, using 100 individual trained networks, input param-
eters are predicted each by gradient descent method numeri-
cally [15]. Finally, best input parameters predicting minimum
RC delay or maximumRF FoM are chosen. All theMLworks
were performed using python on a personal computer with
Intel i7-7700 (3.60 GHz) and 32.0 GB RAM.

III. RESULTS AND DISCUSSION
A. PERFORMANCE ESTIMATION OF NWFETs USING
DEVICE PHYSICS AND CORRELATION ANALYSIS
Digital and analog performances of NWFETs have been
analyzed thoroughly in the past. Tox scaling, along with
high-k dielectrics, is essential to maintain the gate electro-
statics. Shorter junction gradients decrease the short-channel
effects (SCEs) as well as the parasitic capacitances including
overlap and outer-fringing capacitances, resulting in smaller
RC delay [23]-[26]. But too small source-side extension
doping increases parasitic resistance (Rsd ), leading to smaller
Ion [23], [26]. Smaller NW diameters increase the gate-to-
channel controllability, thus showing smaller RC delay in
the 5-nm node [27], but the vertical NWFETs have enough
design margin to control Lg, Lsps, and Lspd under the feasible
condition to prevent the SCEs. Thus, there are more design
options to increase the device performances.

Table 2 shows Spearman correlations between the device
parameters and the RC delay for LP and HP applications
and the RF FoM. Compared to Pearson correlation, Spear-
man correlation can find out non-linear relationships between
input and output parameters [28]–[30]. All the device param-
eters are randomized independently, thus are not correlated
between them. Among the device parameters, Lsps and Lsj
are the most dominant ones to affect RC delay and RF
FoM. According to the correlation analysis, minimum RC
delay or maximum RF FoM is achieved when Lsps is shorter
and Lsj is longer. However, this monotonic approach cannot
optimize the devices because source-side doping penetrates

FIGURE 4. (a) RC delay for LP, (b) RC delay for HP applications, and (c) RF
FoM of n-type (left) and p-type (right) NWFETs from datasets, ML
estimation, and the best one within the input parameter ranges.

greatly into the channels and thus increases the SCEs.
Thus, it is needed to use other approach, rather than device
physics or correlation analysis, in order to optimize the verti-
cal NWFETs.

B. PERFORMANCE OPTIMIZATION USING ML APPROACH
Errors of RC delay and RF FoM between datasets and predic-
tion, averaged from 100 networks, are smaller than 5 % (not
shown), providing thatML accurately predicted RC delay and
RF FoM. Computation times for prediction and optimization
per network are about 10 seconds each.

Fig. 4 shows the output parameters of n-type and p-type
NWFETs from datasets, ML, and best one within the input
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TABLE 3. Input parameters predicted by ML and having the best performances.

parameter ranges in Table 1. ML predicts the devices having
better performance than those in the datasets. Errors are
smaller when predicting RC delay of n-type NWFETs for
HP application because the output ratio (outputmax/outputmin)
from the datasets is small [16]. This factor means the dif-
ference of the output parameters used for ML because the
output parameters are logged on the RC delay and the RF
FoM. For example, the output range of RC delay (LP) is
676.9 for n-type (838.3 for p-type), whereas that of RC delay
(HP) is 225.5 for n-type (366.2 for p-type) and that of RF
FoM is 445.4 for n-type (800.8 for p-type). More datasets,
whose input parameters are different from those in the current
datasets, are needed to reduce the error between ML and
TCAD, especially for RC delay (LP). Best performances are
obtained by fine-tuning the input parameters with respect to
those predicted by ML. Input parameters except Ns and Nd
are tuned to an interval of 1 nm. Ns and Nd are tuned to an
interval of 1020 cm−3. P-type NWFETs have greater perfor-
mances than n-typeNWFETs because the p-type devices used
for calibration have larger Ion and Gm [31], [32].
Table 3 summarizes the input parameters predicted from

ML and those having the best performance. The input param-
eters which are not accurately predicted by ML are under-
lined. The best input parameters are slightly deviated from
those predicted by ML because the datasets are not densely
populated near the optimum enough to train ML and to pre-
dict the best input parameters accurately. Most of the input
parameters are predicted well at the boundaries: Lg of 15 nm,
Dnws of 7 nm, Lsps and Lspd of 10 nm, Tox of 1 nm, and
Ldj of 2.5 nm/dec. Ns and Nd are 4·1020 cm−3 for minimum
RC delay, but the Ns is 2·1020 cm−3 for maximum RF FoM.
N-type and p-type NWFETs have almost the same input
parameters having the best performances, explaining that the
optimum device structures are irrespective of the intrinsic
device performances such as mobility and velocity calibrated
to Samsung NWFETs [18].

Fig. 5 shows the device structures having the best digi-
tal or analog performances. All the devices have shorter Ldj
than the Lsj, having the channel junctions near the drain.

FIGURE 5. Device structures having the minimum RC delay or maximum
RF FoM.

All the devices have underlapped drain regions which neglect
gate-induced drain leakage currents and thus increase Ion/Ioff
ratio [25], [26], [33]. Dnwd are larger than Dnws for digital
applications, but both Dnws and Dnwd are same as 7 nm for
analog applications. That is going to be discussed in the
following sub-section.

C. PERFORMANCE ANALYSIS WITH RESPECT
TO THE BEST DATA
The input parameters are varied each to understand how they
affect the RC delay and the RF FoM. Firstly, it is clear that
shorter Lg and thinner Tox increases theDCperformances (Ion
and Gm) and thus RC delay and RF FoM as long as the small
SCEs are maintained. All the following figures are about
n-type NWFETs, but p-type NWFETs show almost exactly
same device physics as n-type ones and thus are not shown in
this work.

Fig. 6 shows the Ion and Cgg variations with respect
to Dnws and Dnwd of n-type NWFETs for HP application.
Cgg increases at constant rate, but Ion increases at smaller
rate because the SCEs degrade as either Dnws or Dnwd
increases [33]. But the best RC delay is formed at the Dnwd of
11 nm which is larger than the Dnws of 8 nm. Dnws greatly
impacts on the SCEs than Dnwd because the top of energy
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FIGURE 6. (a) Dnws and (b) Dnwd dependences of Ion and Cgg of n-type
NWFETs for HP application. The devices having the minimum RC delay are
also indicated.

FIGURE 7. Ion and Cgg variations of n-type NWFETs as a function of
Lsps or Lspd for HP application. The devices having the minimum RC delay
are also indicated.

barrier is formed near the source. Larger Dnws or Dnwd
reduces the Rsd but degrades the SCEs instead. RC delay is
determined by the SCEs rather than the on-state performances
under the small Vdd of 0.70 V [23]. So, small Dnws enough to
maintain good gate electrostatics is preferred.

Fig. 7 shows the Ion and Cgg variations of n-type NWFETs
with respect to Lsps or Lspd for HP application. Lsps varies
Ion and Cgg much greatly than does Lspd. The source-side
regions reside larger amounts of inversion carriers whereas
the inversion carriers at the drain-side regions are depleted
by high Vds equal to Vdd , so the large portion of Cgg is
gate-source capacitance (Cgs). Since longer Lsps underlaps
the device much, Cgs and thus Cgg decrease greatly. But this
underlapped device loses the amount of inversion carriers
flowing from source to drain, so the Ion decreases as well. But
overall, RC delay variations as a function of Lsps and Lspd are
not different much.

Fig. 8a shows the Ion andCgg variations as a function of Ldj.
Longer Ldj increases the drain-side overlap regions, Cgd , and
thus Cgg. Although Ldj does not affect the SCEs (not shown),

FIGURE 8. (a) Ion and Cgg variations of n-type NWFETs as a function of
Ldj for HP application and (b) Conduction band energy at the center of
n-type NWFETs at on state.

Ion decreases by smaller electric field near the drain (Fig. 8b).
Smaller lateral electric field, induced by much gradual drain
junction (= longer Ldj), decreases carrier velocity near the
drain. Ldj from 10 to 18 nm varies the energy barrier about
4 meV, which is smaller than thermal voltage (25.9 mV at
300 K) and is not effective. Ion and Cgg variations as a func-
tion of Lsj are similar to the previous studies in FinFETs [23],
[24], [26]; longer Lsj degrades the SCEs and increases the
Cgg, but shorter Lsj loses the amount of inversion carriers at on
state (not shown). Thus, there is an optimumLsj at 10 nm/dec.

To achieve high RF FoM, the devices should have highGm.
So, FtGm/Ids is maximum in the saturation region where the
maximum Gm is formed. As Lsps or Lspd increases, all the
factors (Ft , Gm, Ids) decrease, and RF FoM decreases (not
shown). RF FoM as a function of Lsj and Ldj is explained
similarly as RC delay. Longer Ldj decreases Ft by larger
Cgg and decreases transconductance efficiency (Gm/Ids) by
smaller electric field, thus decreasing RF FoM. There is a
trade-off between Ft and Gm/Ids as a function of Ns and Lsj,
so the maximum RF FoM is formed at the Ns of 2·1020 cm−3

and the Lsj of 10 nm/dec.
Fig. 9 shows Gm/Ids, Ft, and RF FoM of n-type NWFETs

with respect to Dnws and Dnwd. P-type NWFETs have the
same device characteristics as n-type ones. Considering
velocity saturation for nanoscale devices, Ids and Gm are
simplified as [34],

Ids = vsatQn = vsatWCox(Vgs − Vth) (3)

Gm ≡
dIds
dVgs

= vsatWCox (4)

where vsat is carrier velocity,Qn is carrier density,W is device
width, Cox is oxide capacitance, Vgs is gate-source voltage,
and Vth is threshold voltage. According to the eqs. (3) and (4),
Gm/Ids is given by 1/(Vgs – Vth). Since Dnws than Dnwd affects
the SCEs much, it decreases Vth and thusGm/Ids. Larger Dnws
decreases Gm/Ids, Ft , and thus RF FoM greatly. On the other
hand, Dnwd from 7 to 9 nm maintains high RF FoM because
Ft increases despite the decrease of Gm/Ids. The reason that
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FIGURE 9. Gm/Ids, Ft (= Gm/2πCgg), and RF FoM (= Ft · Gm/Ids) of
n-type NWFETs with respect to Dnws and Dnwd.

FIGURE 10. Carrier velocity and density of n-type NWFETs with respect to
Dnws and Dnwd at the maximum RF FoM.

larger Dnwd increases Ft is because the increasing rate of Gm
is greater than that of Cgg. Larger Dnws increases Gm as well,
but it is not large enough to increase Ft .
The difference of RF FoM between Dnws and Dnwd can

be understood by vsat and Qn with respect to Dnws or Dnwd
(Fig. 10). vsat and Qn are calculated by averaging the NW
channel at maximum RF FoM [35]. For both n- and p-type
devices, larger Dnws (Dnwd) increases Qn (vsat ) but decreases
vsat (Qn). Larger Dnws supplies more amount of inversion car-
riers, whereas larger Dnwd lessens the gate-to-drain coupling
and expands the channel regions where high lateral electric
field is formed, inducing high average vsat . According to
eq. (4), Gm is proportional to vsat , but not directly related to
Qn. Using eq. (3), Qn is represented as WCox(Vgs – Vth), but
because larger Dnws increases Vgs – Vth, WCox increase is
compensated by larger Vgs – Vth. Therefore, Dnwd increases
Gm much compared to Dnws.

IV. CONCLUSION
Vertical NWFETs are optimized for digital and analog appli-
cations using fully-calibrated TCAD and ML approach.

Neural network adopted fully-connected MLP with one hid-
den layer having 20 nodes and tanh as an activation func-
tion. ML accurately predicted the input parameters which
minimize the RC delay or maximize the RF FoM. Each of
the input parameters were varied to understand the device
physics of vertical NWFETs and to validate ML optimization
results. All the predicted NWFETs have smaller Dnws to
reduce the SCEs by tightly controlling the energy barrier.
Smaller Ldj and larger Dnwd also increase the vsat by larger
lateral electric field, but too large Dnwd loses the gate-to-
channel controllability. Longer Lsps and Lspd decrease both
Ion and Cgg, but the Ion decreases much and thus RC delay
increases. Therefore, ML-based optimization is feasible, fast,
and effective to provide device design guideline for both
digital and analog applications.
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