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ABSTRACT Gestures are an important way to conduct human-computer interaction. The key problem of
gesture recognition depending on sEMG (surface electromyography) is how to achieve high recognition
accuracywhen there aremany types of gestures to classify. To solve this problem, first, two basicmodels were
constructed. One is the ConvEMG model based on dense connectivity, the Inception module and depthwise
separable convolution; and the other is the LSTMEMG model based on a bidirectional LSTM (Long Short-
Term Memory). Then, the basic models were improved with a multistream fusion strategy which utilizes
the correlation between gestures and muscles and the complementary advantages of models. To facilitate
comparison with others’ models, the models proposed in this paper were tested on the public dataset NinaPro
DB5, and the improved model named MultiConvEMG achieves an accuracy of 92.83% for 41 gestures,
which is superior to its counterparts in the literature on the same dataset. In addition, experiments containing
signal acquisition and gesture recognition were carried out for further testing and evaluation. Experimental
results show that all models can achieve an accuracy of more than 95% for 31 gestures, and these models
have their own strengths in accuracy, immediacy or training cost. All models built in the paper support using
sEMG for end-to-end recognition, which means that artificial features are not needed in the processes and
data augmentation or IMU devices are not relied on. In other words, our models outperform and have lower
application costs than many known models.

INDEX TERMS Deep learning, gesture recognition, human computer interaction, surface electromyography.

I. INTRODUCTION
As an important method of human-computer interaction, ges-
tures are widely used in the fields of medical rehabilitation,
robot control, sign language translation and others. Improving
the gesture recognition accuracy helps to rehabilitate post-
stroke patients, improves the quality of life of hand amputees
and people with language disorders, and produces better
effects in other areas where gestures are used as an interactive
medium.

At present, the research on gesture recognition using
sEMG has achieved satisfactory results when there are fewer
types of gestures to classify. Muhammad et al. [1] achieved
a gesture recognition accuracy of 97.6% by using a CNN to
extract the features of the original sEMG signals of 6 gestures
from 7 volunteers. Wu et al. [2] constructed the LSTM-CNN
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neural network on the basis of complementary advantages to
recognize 5 gestures and achieved a recognition accuracy of
98.14%. Samadani [3] applied a gradually decreasing learn-
ing rate to train a bidirectional LSTM, and the recognition
accuracy of the method for 17 gestures on the NinaPro DB2
dataset reached 86.7%.

The high-accuracy recognition of a small number of types
of gestures cannot meet the requirements for gesture recogni-
tion performance in the field of human-computer interaction.
The goal is that more gestures can be accurately recognized
in the human-computer interaction process to achieve richer
functions. However, the more types of gestures that need to
be recognized, the lower the recognition accuracy [2], [4], [5].
In most known methods, when there are many types of ges-
tures to be recognized, the recognition rate is not satisfac-
tory. The LSTM-CNN series neural network constructed by
Wu et al. [2]. achieved a low recognition accuracy of 61.4%
for 18 gestures. Shen et al. [4] constructed multiple classifiers
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and used a stacking mechanism, but the recognition accuracy
for 40 gestures was only 72.09%. Geng et al. [5] built a neural
network for gesture recognition on the basis of a single sEMG
frame and achieved a recognition accuracy of 77.8% for
52 gestures by performing majority voting on multiple results
within a time window. Sun et al. [6] achieved a recognition
accuracy of 63.86% for 52 gestures with a generative flow
model (GFM). A few models relying on auxiliary inertial
sensors and feature engineering can achieve high recognition
accuracy. For example, the multiview deep learning method
proposed by Wei et al. [7] requires the careful construction
of artificial features. With the aid of inertial sensor data,
the recognition rate for 41 gestures in NinaPro DB5 reached
91.31%. Currently, the model with the highest recognition
accuracy on DB5 is that of Josephs et al. [8] This model also
uses inertial sensors to achieve 92% recognition accuracy for
41 gestures.

Some researchers have successfully optimized the recog-
nition method by constructing artificial features [9]–[12].
However, when feature engineering is applied to feature
extraction, important information in the signal will inevitably
be missed [4]. Additionally, feature engineering takes con-
siderable time and effort, and the use of inertial sensors
increases the costs and involves many requirements related
to the health of the user’s hands. In order to avoid the above
situations, not only is an end-to-end model taking only the
simply processed sEMG signals as input necessary, but also
an excellent model architecture fully extracting the useful
information contained in sEMG signals is critical. First, two
basic models named ConvEMG and LSTMEMG were con-
structed on the basis of some excellent deep learning models,
such as Inception-V4 [13], DenseNet [14], Xception [15],
ResNet [16], and bidirectional LSTM [17]. Then, accord-
ing to the hypothesis regarding the correlation between ges-
tures and muscles that modeling the signals of each channel
separately is more helpful to recognizing gestures and the
different advantages of the two basic models, we establish
two multistream fusion strategies to improve the basic model
and obtain better models, the MultiConvEMG model and the
ConvEMG+MultiLSTMEMG model.

On the NinaPro DB5 dataset, MultiConvEMG can rec-
ognize 41 gestures with an accuracy of 92.83% using a
200 ms time window. This accuracy exceeds that of other
known models tested on the NinaPro DB5 dataset. In order
to further analyze the comprehensive performance of the
models, experiments containing signal acquisition and ges-
ture recognition were conducted. The improvedmodel named
MultiConvEMG+MultiLSTMEMG can recognize 30 ges-
tures with an accuracy of 96.90%, whose recognition result
illustrates that only a few highly similar gestures are difficult
to distinguish effectively. Although other models are slightly
lower than MultiConvEMG+MultiLSTMEMG in terms of
accuracy, they have advantages in immediacy or training
time.

In the remainder of this paper, the second chapter intro-
duces the architecture of the two basic models, the third

chapter introduces the methods that improve the model,
the fourth chapter introduces the model validation based on
the NinaPro DB5 dataset, and the fifth chapter introduces the
experiment based on own data.

II. BASIC MODELS
The CNN and RNN have different advantages related to their
modeling abilities. The CNN is better at feature extraction
while the RNN is better at time series modeling. Two basic
models, one based on a CNN and the other based on an RNN,
were constructed to prepare the improved models.

A. CONVEMG ARCHITECTURE
In recent years, some excellent deep learning models have
been developed, such as Inception-V4, DenseNet, Xception
and ResNet. Inspired by these models, ConvEMG was con-
structed, which is composed of A module, B module, and a
classifier module. The architecture of ConvEMG is shown
in FIG. 1.

DenseNet, which uses dense connectivity and encourages
feature reuse, outperforms ResNet. The application of dense
connectivity and feature reuse not only alleviates the gradient
loss, but it also enhances feature propagation. The archi-
tecture of A module refers to DenseNet, but the difference
between A and B is that A uses different sized convolu-
tion kernels to extract features. According to the research of
Yue [18], in the feature extraction layer (in the ConvEMG,
the feature extraction layer is composed of A module and B
module), the higher the proportion of the high-level parame-
ters to the total model parameters, the better the model perfor-
mance. We set the K values of the three A modules to 16, 32,
and 64, respectively, so that the parameters are increased from
the lower level to the higher level. In the model, the three A
modules are connected via dense connectivity, which means
that the input of any module includes the feature map of the
outputs of all previous modules and the feature map of the
input of the model.

If all feature extraction layers use A module, the feature
dimension of the input of the classifier module will be too
high, causing two problems. One problem is the risk of over-
fitting due to the whole model having too many parameters,
and the other problem is that model performance decreases
as the ratio of the parameters of the layer used for feature
extraction to the total parameters of the model decreases.
In order to avoid the above situation, B module was built
based on Inception-V4. B module uses residual connections
instead of dense connectivity to ensure the effective back
propagation of the neural network.

At the end of the model is a classifier module, which
first uses a maximum pooling layer for downsampling, then
reduces the dimension through three one-dimensional convo-
lutional layers, and finally connects a global average pooling
and SoftMax activation function.

In the entire model, the depth separable convolution of
Xception was used to reduce the number of model param-
eters when the convolution kernel size was greater than 1.
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FIGURE 1. ConvEMG model. (a) is the macroscopic diagram of the model, (b) is the architecture of A module, (c) is the architecture of
B module, (d) is the architecture of Classifier module. SeparableConv1D(i,j,k,l) means that the number of filters is i, the size of the kernel is j,
the step size is k, and the number of padding is l. Conv1D(i,j,k,l) means that the number of filters is i, the size of the kernel is j, the step size
is k, and the number of padding is l; BN+Relu means batch normalization [19] first, then apply the Relu activation function [20]; N is equal to
the number of gesture types to be classified.

Depth separable convolution divides the regular convolution
operation into two processes: one is the depthwise convolu-
tion, which convolves different channels with different con-
volution kernels; and the other is the pointwise convolution,
which performs regular convolutionwith a convolution kernel
size of 1 on the depthwise convolution result.

B. LSTMEMG ARCHITECTURE
The LSTM module includes a bidirectional LSTM A modu-
lend a classifier module, as shown in FIG. 2.

The bidirectional LSTM module is based on bidirectional
LSTM. LSTM [21] can predict only the output with past
information; however, in some situations, the output at the
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FIGURE 2. LSTMEMG model. (a) is the macroscopic diagram of the model,
(b) is a schematic diagram of a bidirectional LSTM, (c) is the architecture
of Classifier Module. FC(m) means that the number of neurons is m; N is
equal to the number of gesture types to be classified.

current time is not only related to the previous state, but it may
also be related to the future state. Bidirectional LSTM [17]
can make judgments by combining past and future infor-
mation. The bidirectional LSTM in the bidirectional LSTM
module is used to return the entire output sequence, and the
output of all LSTM units is input to the classifier module to
obtain the recognition result.

III. MODEL IMPROVEMENT
In this chapter, amultistream strategy, the correlation between
gestures and muscles, and their application to improve the
provided basic model are introduced.

A. MULTISTREAM FUSION
In recent years, a series of multistream fusion deep learn-
ing methods have been proposed in the field of pattern
recognition. These methods use multibranch neural networks
to model the information from different sensors, different
spaces or different times. According to Atrey et al. [22], mul-
tistream fusion methods can be divided into three categories:
(1) The feature-level fusion of multiple branch features.

The application cases are as follows: He et al. [23]
used a bidirectional LSTM network and an MLP (mul-
tilayer perceptron) to extract the features of sEMG sig-
nals and then performed feature-level fusion through
concatenation, and Eitel et al. [24] constructed a dual-
stream fusion convolutional neural network to address
the problem of object detection from RGB-D images.
One branch performs feature extraction on RGB images,
and the other branch performs feature extraction on depth
images. Finally, the two branches are fused through
concatenation.

(2) The decision-level fusion of the classification results of
multiple branches. The application case is as follows:
Geng et al. [5] built a model based on a single sEMG
frame for gesture recognition, and the model applies
majority voting to multiple results within a time window
to obtain the final result.

(3) Hybrid fusion containing both feature-level fusion and
decision-level fusion. The application case is as follows:
based on the NinaPro dataset, Josephs et al. [8] used
feature engineering to generate multitype feature maps as
the input of the neural network branches and adopted both
feature-level fusion and decision-level fusion to construct
a model.

B. THE CORRELATION BETWEEN GESTURES
AND MUSCLES
According to Jung et al. [25], in the human forearm, there
are 6 muscle groups that dominate hand movements. Hand
movement is accomplished via the coordination of multiple
muscle groups. Amma et al. [26] used high-density sEMG
electrodes to record the sEMG signals at the human forearm
and found that only a part of the forearm muscles participate
in the movement for a specific gesture and that the muscles
participating in the movement vary depending on the type of
gesture.

In summary, when there are multiple types of gestures
in a time period, gestures are always the result of muscle
coordination, but there are no two muscles always working
together.

C. STRATEGY FOR MODEL IMPROVENT
In general, sparse EMG electrodes are placed at muscles.
Considering the correlation between gestures and muscles,
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FIGURE 3. MultiConvEMG model and MultiLSTMEMG model. (a) is MultiConvEMG model, (b) is MultiLSTMEMG model.

we assumed that taking the signal of each sensor as an inde-
pendent individual to construct a multibranch neural network
is better than the traditional modeling method, which takes
the signals collected by all sensors as a whole to construct the
model. Based on the above assumptions, an improved strategy
was obtained.

Improvement strategy 1: Modules with the same architec-
ture are used to extract the signal features of each sensor sep-
arately, and feature-level fusion is performed through feature
concatenation to build a new model.

By applying improvement strategy 1 to the two basic mod-
els, MultiConvEMG and MultiLSTMEMG were obtained.
The architectures of the models are shown in FIG. 3.

In addition, LSTM and CNN have different princi-
ples and strengths. Decision-level fusion was used to
combine their advantages, and improved strategy 2 was
obtained.

Improvement strategy 2: The average of the output results
of two different principal models is taken as the final result,
as shown in FIG. 4.
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FIGURE 4. Improvement strategy 2.

Using strategy 2, four new models were obtained:
ConvEMG+LSTMEMG, MultiConvEMG+LSTMEMG,
ConvEMG+MultiLSTMEMG, and MultiConvEMG+

MultiLSTMEMG.

IV. MODEL VALIDATION BASED ON NINAPRO DB5
There is no doubt that the recognition accuracy is seriously
affected by the signal quality. In order to facilitate compari-
son with others’ models, our model is validated on a public
dataset NinaPro DB5. This chapter uses four subsections
to provide the experimental details and results. The first
section introduces the dataset used for model verification,
including the sEMG sensor used in the collection process and
the gestures involved in the dataset. In the second section,
the data processing methods including the signal processing
methods and the data normalization methods are introduced.
The details of the model training including the division of the
training set and test set, the model training methods and the
experimental conditions are presented in the third section.
Finally, the fourth chapter presents the experimental results
and the comparison with other models validated using the
NinaPro DB5 in recent years.

A. DATASET
The Myo armband made by Thalmic Labs is an sEMG sen-
sor with a low cost of only $200. The MYO armband has
8 channels for signal acquisition using dry electrodes, and its
sampling frequency is 200 Hz. Other research-grade sensors
used to collect sEMG signals rely heavily on professional
knowledge to determine and calibrate the electrode positions,
which prevents gesture recognition from being more widely
used in production and life.

NinaPro [27] is the largest data collection project in the
field of gesture recognition based on sEMG. The project
contains 10 large datasets that use multiple sensors to col-
lect data from amputees and complete subjects. The sEMG
signals in NinaPro DB5 [28] were collected from two MYO
armbands. This dataset contains three subsets: exercise A,
exercise B, and exercise C. Exercise A contains 12 basic fin-
ger movements and relaxed states; exercise B contains 8 hand
extension movements, 9 basic wrist movements and relaxed
states; and exercise C contains 23 grasping and functional

movements and relaxed states. The dataset was collected from
10 volunteers.

B. DATA PROCESSING
The signal processing method is consistent with that of the
dataset publisher Pizzolato et al. [28]. That is, first, the orig-
inal sEMG signal is rectified, and then the rectified signal is
filtered with a first-order low-pass Butterworth filter. Finally,
a 200 ms time windowwith a 100 ms overlap is used to divide
the signal, as shown in FIG. 5. If there are multiple types of
gestures in a window, the label of the window is determined
by the result of the majority voting.

FIGURE 5. Single channel signal windowing.

The processed signal needs to be u-law converted before
it’s input to the deep learning model [29]. This normaliza-
tion method was recently applied to the field of gesture
recognition based on sEMG signals by Rahimian et al. [30],
showing equally effective and superior to traditional min-max
normalization, however it was generally used in the field of
speech and communication. The specific formula is shown
in (1). U is 256.

F (xt) = sign(xt )(ln(1 + u|x|)/ln (1 + u)) (1)

The change of the signal waveform during the whole pro-
cess is shown in the FIG. 6.

C. MODEL TRAINING
The division of the training set and test set is also the same
as in Eitel et al. [24], that is, the data of the third repetition
and fifth repetition in exercise B and exercise C are used in
testing, and the others are used in training.

ConvEMG and MultiConvEMG were trained for
200 epochs with the Adam optimizer with a learning rate
of 0.0001. LSTMEMG and MultiLSTMEMG adopt the SGD
optimizer. The learning rate of the SGD optimizer combines
the step-down rate with cyclical learning rates [31]. In one
cycle, the learning rate is 0.1 for epochs 1 to 3, 0.01 for
epochs 4 to 13, 0.001 for epochs 14 to 23, and 0.0001 for
epochs 24 to 35. Five cycles are performed.
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FIGURE 6. Changes in waveform.

To perform our training and tests, an AMD3800XCPU and
an RTX2070s GPU with the Keras deep learning framework
were used.

D. RESULTS
The average recognition accuracy of ten volunteers was taken
as the accuracy of the model. The accuracies of all models in
this paper are shown in TABLE 1, and the model with the
highest accuracy is marked with black. It can be seen that the
two models applying improvement strategy 1 are better than
the basic model, and MultiConvEMG has the highest recog-
nition rate among all models. Among the models applying
improvement strategy 2, only ConvEMG+MultiLSTMEMG
exceeds the sub models using decision-level fusion.

The summary of the gesture recognition researches based
on NinaPro DB5 that has been conducted in recent years is
shown in TABLE 2. The existing model proposed by other
researchers with the highest recognition rate is the model
proposed by Josephs et al. [8]. The recognition accuracy

TABLE 1. The accuracies of all models proposed in the paper.

TABLE 2. Models verifying on ninapro DB5.

of the MultiConvEMG model is slightly higher than that of
the model proposed by D. Josephs et al. MultiConvEMG
and ConvEMG+MultiLSTMEMG are far superior to other
models that use only sEMG for gesture recognition.

V. EXPERIMENT BASED ON OWN DATA
In order to further evaluate and test the comprehensive per-
formance of themodels, experiments containing signal acqui-
sition and gesture recognition were conducted. To introduce
the experiment, three subsections are used in this section. The
first subsection introduces the process of signal acquisition.
In the second subsection, modeling process are introduced.
The results of experiment and results-based analysis are pre-
sented in the third subsection.

A. SIGNAL ACQUISITION
This experiment uses self-developed device to collect sEMG.
The device collecting sEMG is shown in FIG. 7. The device,
contains eight differential acquisition channels with 360 Hz
sampling frequency. The electrodes were sticked at the the
shown positions of the upper and lower arm armbands. The
collected objects are 30 gestures of the left hand of a healthy
26-year-old man, as shown in FIG.8. The entire collection
process is the same as the previous section.
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FIGURE 7. Experimental device.

B. MODELING PROCESS
The modeling process of experiment is the same as the pre-
vious chapter except for signal filtering. In this experiment,
mean filtering is used to calculate the mean value of all
points within 100ms as the actual value of the point (In order
to perform mean filtering, 36 zeros are added before each
signal). This method is better than Butterworth filtering in
terms of real-time performance, which is more conducive to
the use of the model in real environments.

C. RESULTS
In view of the fact that the actual application of the model
must consider not only the accuracy rate but also immediacy
and training time. Also, the models and the model improve-
ment strategies should be comprehensively evaluated and
tested.

The accuracy of the models are shown in TABLE 3.
All models in the paper can achieve higher than 95% accu-
racy. MultiConvEMG+MultiLSTMEMG is the model with
the highest accuracy among all the models, reaching 96.90%.
More over all models obtained through improved strategies
perform better than the basic model. Although other models
are slightly lower than MultiConvEMG+MultiLSTMEMG
in terms of accuracy, they have better results in immediacy
(inference time is mainly considered) or training time.

FIG. 9 is drawn to evaluate the model and improvement
strategy more easily. The x-axis is the increase in accuracy of
the improved model compared to the model with the highest
accuracy in the basic model. The y-axis is the increase in time
of the improved model relative to the model with the lowest
training time or lowest inference time in the basic model.
The larger the y value and the smaller the x value indicate
that the corresponding improvement strategy would be more

FIGURE 8. Gestures and its labels.

TABLE 3. Experimental results.

cost-effective, which provides reference for choosing suitable
improvement strategy.

Compared with the average recognition rate, the recogni-
tion accuracy of each gesture in the model is also worthy
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FIGURE 9. Gestures and its labels.

FIGURE 10. The recognition accuracy of each gesture.

of attention. MultiConvEMG+MultilSTMEMG is the model
with the highest recognition accuracy. The recognition accu-
racy of each gesture is shown in Figure 10, which indi-
cates that only a few highly similar gestures are difficult to
recognize effectively, and the overall recognition effect is
satisfactory.

VI. CONCLUSION
The work and contributions of this paper are as follows:

1. High-performance end-to-end models were built. The
models in this paper do not use feature engineering or inertial
sensors. Furthermore, a 92.83% recognition accuracy was
achieved for 41 gestures from the NinaPro DB5 dataset,
exceeding the recognition accuracy of other models that use
feature engineering and inertial sensor; and this is the highest
accuracy among the studies using this dataset.

2. Excellent model architectures were constructed. The
architecture of the models in this paper incorporated the
advantages of existing models and followed some rules of
thumb.

3. A modeling method that can be extended to other fields
was proposed. In this paper, first, sEMGwas used as a general
timing signal to build two basic models, and then the human
hand movement mechanism and the performance character-
istics of the models were combined to improve the models.
For pattern recognition problems, the modeling method that
generalized basic models are constructed first and then the
basic models are improved according to the laws existing in
the field of the problem and the characteristics of the basic
model can be extended to other fields.
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