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ABSTRACT In stochastic computing (SC) systems numbers are represented with mean values of random
binary sequences. This paper introduces a novel fuzzy inference architecture, in which the computational
mechanism is based on stochastic logic (SL). First, the basic concept of SL is described, then the architecture
of the SL-based fuzzy logic controller (SFLC) is built up systematically using the derived stochastic
elements. The second part of the paper demonstrates the application of the proposed techniques, where
the SFLC-based control performance is evaluated on a real mechatronic system. The results show that
the SL-based approach provides effective and robust control performance, simple architecture and high
noise tolerance. The proposed method is also benchmarked against conventional FLCs indicating that
the robustness of the stochastic architecture allowed to outperform the benchmark controllers in noisy
environments.

INDEX TERMS Stochastic logic, fuzzy logic controller, fuzzy hardware, self-balancing robot.

I. INTRODUCTION
A. RELATED WORK
SC makes the hardware architecture less complex, provides
simple components for arithmetic operations and enables the
execution of big number of parallel computations [1], [2].
The computing robustness, fault tolerant nature, scalabil-
ity and reduced consumption footprint are among the key
characteristics that made this fruitful technology become
popular in recent research works. The investigations aim to
develop effective SC-based architectures that can be ben-
eficially applied in image processing algorithms [3]–[6],
general purpose digital filter structures [7]–[10], error correc-
tion hardware solutions [11], and artificial neural networks
(ANNs) [12]. The cost of the aforementioned attributes is a
trade-off between precision and latency in signal represen-
tations, since the longer the processed bit stream the higher
precision is achieved. For the relaxation of this trade-off novel
processing methods are proposed in the literature, which aim
to both exploit the advantageous features and overcome the
difficulties of this computing paradigm [13]–[15].

The fundamental concept of the application of random
binary sequences belongs to Brian R. Gaines [16]–[18].
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Gaines introduced the stochastic computer which uses the
probability of switching a digital circuit as an analog quan-
tity. In the proposed concept different representations were
described, and the basic stochastic computing elements
(inverter, multiplier, summer and integrator) were built by
the help of standard logic elements. The stochastic computer
was proposed as a low-cost computational system that can be
used in applications where high speed (and inherently high
resolution) is not required. However, nowadays technology
with the tendency fromMHz to GHz clock rates of electronic
circuits makes the concept possible to provide both accurate
and robust computations.

ANNs are one of the key areas that have been inspired
by SL [19]. The massive parallelism that can be achieved
by simple computational elements with reduced hardware
complexity is among the important issues that SLwas applied
for in computer science [20]. The information processing
of SL-based ANNs, moreover, both the architectural and
functional features of ANN design have already been studied
in the earlier years of SC in reference [21]. Investigations
were continued in [22], where SC techniques were used for
implementing large parallel ANNs on field-programmable
gate arrays (FPGAs). Reference [23] also recommended a
concept to design random-pulse ANNs whose architecture is
well suited for very large-scale integration (VLSI). In [24]
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several state machine-based computational elements were
elaborated to perform both linear gain and exponentiation
functions by the use of stochastic binary signals. Recently,
massive attention was given to Deep Convolutional Neural
Networks (DCNNs) [25], [26]. References [27], [28] pro-
posed advantageous hardware implementations, which pro-
vide both optimized hardware footprint (i.e., minimized area
and power consumption) and high network accuracy. One
of the industrial applications was presented in [29], where
both SC and ANNs were used to control an FPGA-based
induction motor drive system. The work showed that SL
enhances the arithmetic operation of FPGAs, requires less
resources, and provides easy implementation of both NNs
and classical algorithms on a single low-complexity FPGA.
Similar FPGA-based implementation results were proposed
in [30], where SC aided feed-forward ANNs were utilized
for the control of wind turbine systems. Moreover, refer-
ences [31], [32] proposed novel approaches with enhanced
SC-based arithmetic operations for prediction, function fit-
ting and machine translation problems, where noise-tolerant
ANNs were derived with both reduced hardware constraints
and improved accuracy compared to binary designs. The
proposed solution even outperformed the binary counterpart,
when significant noise disturbed the computation. Several
recent works have addressed the efficient implementation
of ANNs with the aim to provide highly parallelized accel-
erators that are characterized by reduced consumption and
latency along with improved accuracy, thereby enabling the
efficient implementation in embedded systems. Recent solu-
tions propose new computing methods [33], different cod-
ing schemes [34], efficient arithmetic units and simplified
architectures [35], [36]. Comprehensive overviews of recent
solutions are provided in [37].

The generation of statistically independent binary
sequences with arbitrary ratios of 1’s to 0’s using simple
digital circuits was investigated in the early years of SC [38].
In [39] different approaches were described for both analog
to digital (AD) and digital to analog conversions (DA).
These techniques were used in data acquisition circuits of
meteorological supervision centers, where the random binary
sequences were processed in VLSI circuits. A space-efficient
(i.e., few AND, OR, NOT gates and flip-flops) fully parallel
SC architecture was proposed in [40] for large number of
arithmetic calculations; the architecture provided high effi-
ciency in terms of consumed area and delays. An extended
set of SC-based arithmetic operations was proposed in [41],
moreover, the interfaces between analog and stochastic
domains were addressed. SL has also been investigated by the
instrumentation and measurement community. A stochastic
instrument for true root mean square (RMS) measurements
was presented in [42], where 0.1% full scale inaccuracy was
demonstrated. References [43]–[45] proposed SC-based iter-
ative decoding architectures. It was shown that the stochastic
decoder outperformed the conventional analogue decoders by
its high operational speed, low power consumption, techno-
logical independency and near-optimal performance based

on simulation results for low-density parity-check (LDPC)
codes. In reference [46] the effectiveness and fault tolerance
of SL-based reconfigurable architectures implemented for
processing operations on a datapath were studied, moreover,
the error sources were also analyzed. Reference [11] both
provides a great overview of SC-based accelerators and
describes important design guidelines for development of
energy-optimized hardware architectures.

The efficient hardware implementation of FLCs was also
studied and different fuzzy-logic chips were proposed using
both analog and mixed-digital circuits [47]–[51]. In refer-
ences [47], [48] FLCs were designed using CMOS tech-
nology. Simple SL-based digital architectures with short
response time were designed for the implementation of arith-
metic functions in the deffuzification process. A SL-based
center-of-gravity defuzzifier circuit was proposed, where
both the firing strength of rules and singleton output vari-
ables were represented with random sequences. A stochastic
architecture was described in [49], where the inference pro-
cess was also represented with binary bit streams, moreover,
the SL-based fuzzy operators (i.e., min and max operators)
were introduced as well. A possible implementation of FLCs
for FPGAs was described in [50]. In the proposed prototype
architecture both look-up tables and parallel-serial convert-
ers were utilized for producing random binary bit streams;
the defuzzification process was realized with accumulators,
serial-parallel converters and a divider algorithm. A SL-based
fuzzy inference method was described in [51]. The authors
proposed a novel fuzzification method, i.e., new conditions
were described for the evaluation of inputs for represent-
ing the membership values with random binary bit streams.
References [52], [53] provide detailed overviews of different
fuzzy hardware solutions. Moreover, an excellent review of
SL-based applications is given [54].

B. CONTRIBUTION OF THE PAPER
The aforementioned papers highlight that SL provides a
new perspective to realize complex computational architec-
tures with simple hardware elements. Nowadays technology,
i.e., GHz frequency ranges, high integration and low power
solutions, provides the opportunity to both design and apply
control techniques that consist of simple logic gates. As a
result, this article both combines different methods intro-
duced in the literature [17], [18], [39], [49], [51] and con-
structs a novel SFLC architecture which consists of simple
logic gates, counters and comparators. Furthermore, a com-
prehensive experimental validation is outlined, where the
proposed architecture is utilized for the stabilization of a real
self-balancing robot (SBR). Namely, we apply the stochastic
architecture and design a two-loop SL-based fuzzy control
scheme for the plant. Then, the performance is both evaluated
and compared with the conventional FLC-based counterpart.
In this comparative analysis, the fuzzy parameters (i.e., mem-
bership functions, rules, ranges and defuzzification) were
identical at both control methods.
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The experimental results highlighted that the SFLCs pro-
vide more robust performance than their conventional coun-
terparts, especially when noisy measurements are present in
the control loop. Therefore, the proposed SFLC architecture
is characterized by both high noise tolerance and flexible
design. Moreover, it can easily be interfaced in embedded
systems as either a simple program code or fuzzy hard-
ware accelerating engine consisting of analog, digital or
mixed-signal circuits. The recommended architecture is effi-
ciently applicable in FPGAs, where the control circuit can be
made adoptable anytime to the application. As to the authors’
best understanding, the performances of similar SFLC
architectures were evaluated only with simulation results
[47]–[51]. Therefore, this paper aims to demonstrate both a
novel SFLC architecture and its first implementation results
on a real mechatronics system. Moreover, the proposed full
architecture of stochastic FLCs has not been published yet.
The paper presents the robustness of the SFLC-based archi-
tecture with both simulation and experimental results.

The remainder of the paper is organized as follows.
In section II a brief summary of SC, SC elements and fun-
damental methods is given. Section III deals with the fuzzy
logic related stochastic elements. In section IV the applied
SBR and its mathematical model are described. The refer-
ence fuzzy control scheme is discussed in section V. Then,
beginning with section VI the design of the equivalent SFLC
architecture is presented. Sections VII and VIII highlight
the achieved control performances and experimental results,
while in section IX our conclusions and recommendations for
future studies are given.

II. BASIC CONCEPT
SC systems are composed of three parts. First, the input
interface performs the conversion from conventional deter-
ministic signal representation domain to stochastic repre-
sentation. Then, the stochastic processing system executes
the arithmetic operations on stochastic sequences. Finally,
the output interface converts back the calculation results
from stochastic domain to deterministic signal representation
domain. This section gives a brief summary about the concept
of SC, SC elements, and techniques employed for arithmetic
operations. The summary focuses only on the standard SL
solutions, since those will be used in the formulation of
SFLCs later.

A. STOCHASTIC REPRESENTATION
In SL, signals are represented with random binary bit streams
(stochastic bit streams) in which the information is codi-
fied in the probability of any given bit is being 1 in the
stochastic sequence. Therefore, a random binary bit stream is
a Bernoulli sequence, a sequence of randomly varying ones
(1’s) and zeroes (0’s), where the probability of a bit being 1 is
independent of any previous bits. This stochastic represen-
tation enables to perform complex arithmetic operations by
using simple digital circuits (i.e., combination of AND and
OR gates) on binary bit streams.

Random binary sequences are produced by the help of a
comparator and random number generator (see the left side of
Fig. 1) [17], [18], [55]. The codification procedure compares
the input signal x to a random number r generated in every
clock cycle. In this manner, if the input signal x ∈ [0, 1]
is compared to a uniform random number r ∈ [0, 1], then
the generating probability p that a pulse is produced at the
output of the comparator is simply equal to the input signal,
i.e., p = x where P (Xi = 1) = p, and i = 1, . . . ,N . Thus,
the signal value is representedwith the generating probability.
This is the unipolar representation of real numbers, where
the analysis is restricted to signals in range [0, 1]. The other
common representation is the bipolar encoding format, which
also enables to represent the negative numbers, i.e., the real
number is x ∈ [−1, 1] and the generating probability is
P (Xi = 1) = (x + 1) /2. Larger ranges can also be encoded
in SC with the application of scaling functions. Hereinafter,
we focus our analyses to unipolar arithmetic operations, since
those are employed in the SFLC architecture.

Once the stochastic representation is available, it gives
only an approximation of the input signal x. The estimation
(or approximation) x̂ of the original signal is given as the
relative frequency of 1’s in a sufficiently long bit stream. Let
Xi and N denote the ith element and length of the sequence,
respectively, then the estimation is given as

x̂ =
1
N

n∑
i=1

Xi. (1)

As Eq. (1) indicates, the statistical average of the binary
stream gives the estimation of the signal x (i.e., the estimation
of the generating probability, since p̂ = x̂), thus the longer
stream is processed, the better accuracy is obtained (x̂ = x
only if N → ∞). The accuracy of estimation is defined by
its variance; it is considered as a coding noise that decreases
by time [3], [17], [18]:

Exp
(
x̂
)
= x, Var

(
x̂
)
=
x (x − 1)

N
. (2)

The aforementioned inverse-proportional relationship results
in that the precision is directly influenced by the length N
of stochastic sequences in SC systems. However, processing
longer bit-streams results in longer data conversion time (i.e.,
a trade-off between precision and latency), thus higher clock
rates are required to achieve satisfying performance.

B. RANDOM NUMBER GENERATION
Linear feedback shift registers (LFSR) are used most com-
monly for random number generation in digital domain. The
LFSR is a shift register whose most significant bit is calcu-
lated as a XOR function of a certain set of bits. The n-order
(flip-flop based) shift register produces 2n−1 long sequences
of pseudo-random numbers [18], [39]. The LFSR constitutes
the most basic approach, however the literature also proposes
more advancedmethods to generate high accuracy bit streams
that represent random numbers with the application of mixed
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analog-digital noise sources in feedback configurations [18],
[56]–[58].

C. ARITHMETIC OPERATIONS
Arithmetic and logic operations (e.g., multiplication and
addition) can easily be performed on stochastic bit streams by
the help of simple logic gates.We limit our discussion to those
arithmetic units that are relevant in our study. A complete
analyses is provided in [59].

1) MULTIPLICATION AND DIVISION
Multiplication is the most common arithmetic operation. Let
X1 and X2 denote the input bit streams that encode the deter-
ministic values x1 and x2 in stochastic domain, moreover, let
Y denote the output bit stream, i.e., P (Y = 1) = y. If p1 and
p2 represent the corresponding generating probabilities of the
two uncorrelated input stochastic sequences, then a simple
AND gate executes the multiplication, since

y = P (X1 = 1 ∧ X2 = 1)

= P (X1 = 1) ∧ P (X2 = 1) = p1p2. (3)

Therefore, the probability of being high level at the output of
the AND gate equals to p1 p2, i.e., the product of the input
signals is both encoded and realized.

Division is a more difficult to implement in stochas-
tic domain due to the inherent nonlinearity and range
maintenance issues. The approximated division is real-
ized with a simple JK flip-flop, namely, at output
of the flip-flop p1/ (p1 − p2) is provided in stochastic
domain. More advanced divider circuits are described in
[16], [41], [60].

2) ADDITION AND SUBTRACTION
Stochastic summation constitutes the other elementary oper-
ation. A simple OR gate produces probabilistic addition,
i.e., the generating probability at the output of OR gates
equals to

P (Y = 1) = P (X1 = 1 ∨ X2 = 1)

= p1 + p2 − p1p2. (4)

The addition p1 + p2 can be approximated with an OR gate
only if the pulse densities are kept very low (i.e., p1 p2 � p1+
p2). The extra p1 p2 term in Eq. (4) can be compensated for
with a multiplexer (MUX), which performs scaled addition.
Let p3 denote the probability of the select line of MUX, then
the output stream is

P (Y = 1) = P (X1 = 1 ∧ X3 = 1) ∨ P (X2 = 1 ∧ X3 = 0)

= p1p3 + p2 (1− p3) . (5)

Therefore, the scaled additionwith factor of 2 is realized if the
select input is driven with a stochastic bit stream of p3 = 0.5
generating probability. As a result (p1 + p2) /2 is executed
with the MUX.

It is worth mentioning that the XOR gate is also employed
for similar arithmetic operations [13]. Namely, if the input

stochastic bit streams X1 and X2 are unequal, then the XOR
gate produces 1 at its output, i.e.:

P (Y = 1) = P (X1 = 1 ∧ X2 = 0) ∨ P (X1 = 0 ∧ X2 = 1)

= p1 + p2 − 2p1p2. (6)

Similarly, the NOT gate (inverter) provides 1− p if the input
stream x is characterized by generating probability p. Various
approximating circuits have been designed which execute
more accurate addition and subtraction operations, see the
references [12], [16], [37], [40] for more detail.

3) COMPARISON
The comparison of signals in stochastic domain can also be
performed with simple logic gates. Namely, if the stochastic
representations are generated by a shared random number
generator, then their comparison can be realized in stochastic
domain. Namely, the stochastic sequences shall be produced
by comparing the input signals to the same random number.
The minimum operation (selecting the least of the available
signals) is performed by a simple AND gate. The maximum
operation (selecting the biggest of the available signals) is
executed by a simple OR gate [49].

D. STOCHASTIC NUMBER CONVERSION TO
DETERMINISTIC DOMAIN
The third part of the SC system is the output interface which
converts the results obtained in stochastic domain back to
deterministic representation. This conventional (crisp) rep-
resentation can be obtained by estimating the mean value
of a sufficiently long stochastic sequence. Keeping in mind,
that the information is codified in the number of 1’s in a
stochastic sequence, the conversion can be performed by a
simple counter of N + 1 states, which estimates the gener-
ating probability of input stream (i.e., every state represents
a numerical value). Additionally, moving-average converter
circuits can be used to generate continuously updated digital
average of stochastic bit streams [23].

Based on Eq. (1), an n-bit counter accumulates the input
stream X for 2n clock cycles, i.e., N = 2n. Moreover,
the accumulated value s =

∑
Xi represents the number of

non-zero bits in the stochastic bit stream, which can be used
directly to estimate the deterministic value as x̂ = s/2n.
Due to this accumulation process, the estimate x̂ is updated
with a period of 2n clock cycles. The up/down counter is
incremented by a unit count if at a clock pulse its inputs are
INC=1 and DEC=0. Similarly, the counter is decremented
by a unit count if INC=0 and DEC=1. The counter remains
unchanged if its inputs are on the same level (INC=DEC).
In the time domain, the expected value ŝ of the counter can
be given with Eq. (7) if the input lines are driven from a pair
of Bernoulli sequences [18]:

ŝ ≈ s (0)+
1
NT

∫ t

0
w (τ )− e (τ ) dτ, (7)

where s (0) is the initial value of the counter, T is the clock
interval in seconds, N represents the number of states of
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FIGURE 1. The basic structure of SC systems.

the counter, while w and e denote the probabilities that the
counter will be incremented or decremented, respectively.
Therefore, the counter performs integration with gain 1/NT .

On the other hand, the conversion of stochastic numbers to
deterministic representation can also be performed with low
pass filters (LPFs) [39], [59]. This way the DC component of
the stochastic sequence is obtained by standard filter circuits.
The DC component represents the information the bit stream
codifies. Different filter characteristics and filter design con-
ditions have been addressed in [39]. The LPF-based conver-
sion enables to update the estimate of deterministic value in
every clock cycle. The simplest LPF structure estimates the
generating probability from the fast stochastic bit stream X
as:

x̂i+1 = x̂i (1− β)+ βXi, (8)

where Xi denotes the stochastic stream value in the ith epoch
and β defines the step size. The step size represents the
cut-off frequency f0 of the filter; it controls the estimation
convergence, i.e., small β results in slow estimation with
better accuracy and stability.

Fig. 1 summarizes both the basic structure of SC systems
and most fundamental SC components. This section pointed
out, that enormously simplified and space efficient hardware
circuits (or software implementations) can be achieved with
stochastic representation. Furthermore, SC is characterized
by strong error tolerance, e.g., bit-flip errors cause rela-
tively small differences in a sufficiently long stochastic bit
stream, since the information is codified in the mean value
of a stochastic sequence. However, the obtained resolution is
determined by the clock frequency employed to generate the
stochastic representations, therefore the clock rate has to be
much higher than the dynamics of the controlled system.

III. STOCHASTIC FUZZY COMPONENTS
This section introduces the constituent parts of the proposed
SFLC architecture. The stochastic representation of the mem-
bership function values is obtained by the method described
in [51]. Once stochastic sequences are generated, the con-
ventional logic gates introduced in section II are used to per-
form both the inference mechanism and aggregation of fuzzy

FIGURE 2. Coding circuit that generates the stochastic bit stream of
µA (x). The output of comparator = 1 ⇔ µA (x) > r .

rules. The proposed architecture approximates weighted sum
defuzzification. We restrict our analysis on triangular and
trapezoidal membership functions, since those are commonly
used in fuzzy control design. Moreover, singleton fuzzy sets
are employed at the output of the FLC.

A. FUZZIFICATION
Fuzzification is the process of mapping the crisp mea-
surements to the fuzzy interval [0, 1]. This fuzzy interval
describes the membership of the fuzzy input variable. Let
µA (x) ∈ [0, 1] denote the membership function of fuzzy set
A, where the input space is X and x ∈ X represents the crisp
measurement. Our goal is to represent µA (x) in stochastic
domain in order to simplify the inference mechanism, and
thereby the whole architecture of FLCs.

The basic SC concept states that the stochastic representa-
tion is achieved by comparing the membership function value
µA (x) ∈ [0, 1] to a uniform random number r ∈ [0, 1]
generated in every clock cycle, as it is shown in Fig. 2. The
comparator provides the output pulses whenever the mem-
bership function value is larger than the generated random
number. In this manner, the estimated value (or approximated
value) µ̂A (x) is codified in the statistical mean value of the
resulting pulse sequence.

Based on Fig. 2 a recognition follows. The procedure
that the comparator produces 1’s whenever the membership
function value is bigger than the generated random number
is no other than the procedure of producing 1’s whenever the
instantaneous crisp measurement x is in the strong α-cut set
Aα of the fuzzy set A, where α ∈ [0, 1] is a uniform random
number, the membership function µA represents the fuzzy
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FIGURE 3. Trapezoidal membership function and its parameters.

set and Aα = {x | µA (x) > α}. Therefore, the stochastic
representation of the membership function value µA (x) is no
other than its representation with series of α-cut set function
values evaluated using the crisp x, where α randomly varies
in every clock cycle in the range [0, 1]. Once the stochastic
bit stream of µA (x) is generated, the estimation µ̂A (x) can
be given based on Eq. (1) as:

µ̂A (x) =
1
N

N∑
i=1

χAα (x)i , (9)

where χAα (x) denotes the characteristic function of the α-
cut set of fuzzy set A, and N is the length of the stochastic
sequence.

As a result of the aforementioned discussion, we can trans-
form the problem of producing 1’s based on the comparison
of µA (x) and the uniform random number r to the problem
of checking if the crisp measurement x is in the strong α-cut
set that varies in every clock cycle. The analysis of checking
if χAα (x) equals to 1 strictly depends on the chosen type
of membership function. Let us recall the conditions for
trapezoidal membership functions as it was described in [51].
The trapezoidal membership function is illustrated in Fig. 3
and its definition is given as follows.

µA (x; a, b, c, d) =



0, x ≤ a
x − a
b− a

, a ≤ x ≤ b

1, b ≤ x ≤ c
d − x
d − c

, c ≤ x ≤ d

0, d ≤ x

(10)

It is straightforward to show, that the crisp measurement x
belongs to the instantaneous α-cut set if

a+ α (b− a) < x ∧ x < d + α (c− d) , (11)

or its equivalent form if

b+ a
2

< x − α (b− a)+
b− a
2

∧

d + c
2

> x + α (d − c)−
d − c
2

. (12)

Based on Eq. (11), the codification scheme of the member-
ship function value µA (x) consists of comparing the crisp
measurement x to the generated random number α that is

properly scaled. The problem introduced first in Fig. 2 has
been transformed to the coding circuit shown in Fig. 4. Fig. 4
forms the stochastic fuzzifier, whose output is the stochastic
bit stream representing µA (x).
The architecture of stochastic fuzzifier simplifies further if

symmetrical and triangular membership functions define the
FLC as it will be shown in section VI. Applying the circuit
illustrated in Fig. 4 the stochastic fuzzification is performed.
Once the stochastic representations of membership function
values are available the defined rules can be evaluated in the
inference machine.

FIGURE 4. The stochastic fuzzifier. It generates the stochastic
representation of µA (x) based on the crisp measurement x and the
randomly varying α.

B. INFERENCE MACHINE AND AGGREGATION
The inference mechanism consists of assigning the so-called
firing level to the output fuzzy set defined in each rule. The
fuzzy operator (i.e., t-norm or t-conorm) is applied if the
antecedent of a rule has more than one part. The output of
the fuzzy operator is the firing level of the rule. This firing
level represents the result of the antecedent evaluation. The
antecedent can be combined with AND and ORmethods. The
most common arithmetic functions in the inference machine
are the minimum and product for the AND method, and the
maximum and probabilistic or for the OR method. These
arithmetic functions are used in the evaluation of fuzzy rules.

Keeping in mind that the membership values are repre-
sented with stochastic bit streams, the aforementioned arith-
metic functions can be effectively performed with the logic
gates introduced in section II. Table 1 summarizes both these
logic gates and their functionalities. Moreover, Fig. 5 depicts
the coding schemes for executing the common arithmetic
functions in stochastic domain.

TABLE 1. Summary of the stochastic arithmetic elements.

The aggregation process combines the output fuzzy sets
into a single fuzzy set. This paper focuses on singleton out-
puts, which results in a standard zero-order Sugeno system.
The control design may require the inference mechanism
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FIGURE 5. Coding schemes for the stochastic logic-based fuzzy operators.
(a) Min-max functions are generated with shared random number
generator. (b) Product-probabilistic or functions are generated with
independent random number generators.

to aggregate the fuzzy outputs prior the calculation of the
crisp output. In this case, the process consists of selecting
the biggest firing level for each singleton output. As a result,
the aggregation (i.e., finding the maximum) is performed by
OR gates.

C. DEFUZZIFICATION
The defuzzification process maps the output fuzzy set back
to crisp domain. Since the output fuzzy set is encoded with
stochastic bit streams, therefore the defuzzification can be
performed by a counter whose inputs are driven by the
stochastic signals. In this manner, the crisp output is updated
with a period of N clock cycles. On the other hand, the crisp
output can also be obtained with LPFs. The LPF estimates
the DC component of the stochastic stream. See the detailed
description in section II. Exact techniques and solutions are
described in section VI.

IV. THE SBR EMPLOYED IN THE EXPERIMENTS
A custom made SBR has been employed in the experimen-
tal validation. SBRs are the descendants of pendulum-cart
systems and are characterized by advantageous electrome-
chanical properties. In both education and research, these
mechatronic systems provide wide application spectrum and
are considered as important benchmark tools to verify novel
control approaches [61]. The electromechanical properties,
modeling and control solutions, and applications have been
summarized in detail in recent works [61], [62]. Moreover,
both the employed SBR system and its conventional fuzzy
control approach have been presented in detail in our ear-
lier works [63]–[65]; therefore, only the key information is
described in the following paragraphs.

A. MECHATRONIC SYSTEM
Fig. 6 shows a photograph of the SBR. The hardware con-
struction is built around two 16-bit ultra-low-power Texas
Instruments MSP430F2618 microcontrollers (hereinafter
MCU1 and MCU2). Low cost micro-electro-mechanical
(MEMS) accelerometer and gyroscope sensors measure
the IB dynamics, and additionally current sensors and
two-channel incremental encoders are attached to both DC
motors. The embedded electronic configuration has been
described in detail in [63]–[65]. MCU2 is programmed as
an inertial measurement unit (IMU). It collects the measure-
ments from MEMS sensors and executes the Kalman filter to
obtain the IB angle [66]. MCU1 executes the control tasks,
i.e., it collects the measurements and drives the motors based
on the applied control algorithm. Additionally, it continu-
ously sends the instantaneous measurements to the PC via a
wireless communication module.

FIGURE 6. Photograph of the employed mechatronic system (SBR).

B. MATHEMATICAL MODEL
The system dynamics ẋ = h (x, u) is described with an 8-
dimensional nonlinear state space model as [61]:

ẋ(t) =


q̇

M (q)−1
(
τa − τf − V (q, q̇)

)
1
L

(
u− kEk

[
1 0 −1
0 1 −1

]
q̇− RI

)
 ,

y(t) = Cx(t), (13)

where x8×1 = (q, q̇, I )T denotes the state vector, q =
(θ1, θ2, θ3)

T is the vector of generalized coordinates. More-
over, M (q) is the 3-by 3 inertia matrix and V (q, q̇) is the
3-dimensional vector term including the Coriolis, centrifugal
and potential force terms. The exact elements of these matri-
ces have been derived in [63]. The output matrix C of the
state space equation maps the state values to the output vector
y = (s, ν, θ3, ω3)

T , where s = r (θ1 + θ2) /2 is the linear
displacement, ν = ṡ and ω3 = θ̇3. The main parameters of
the robot are summarized in Table 2.
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TABLE 2. Notation of robot parameters.

V. CONVENTIONAL FUZZY CONTROL SCHEME
First, the conventional fuzzy control (i.e., the reference con-
trol method with standard FLC architectures) is designed for
the stabilization of the plant. This reference control scheme
forms the basis for both the introduction of the equivalent
SFLC-based control approach (discussed in section VI) and
comparative analysis of the conventional solution and novel
SFLC-based approach.

A. CONTROL STRATEGY
The control scheme realizes a closed-loop system, therefore it
contains the plant (i.e., the dynamical system to be controlled)
and the FLCs that provide the stabilizing control actions
based on the feedback signals. The control scheme is required
to simultaneously ensure the linear position of the robot and
stabilize the inverted pendulum around the unstable upright
position. An effective realization of this control task involves
the application of three independent FLCs (i.e., FLC1 for lin-
ear position control, FLC2 for IB stabilization and FLC3 for
yaw angle-based orientation control). This control scheme is
described in detail in our earlier work [61]. Since the yaw
angle control does not influence the relationship between
the linear position and resulting IB oscillations significantly,
therefore this paper omits the control of yaw angle of the
robot and focuses on the design and implementation of
FLC1 and FLC2.

Fig. 7 depicts the MATLAB/Simulink implementation of
the employed control scheme. Since the controllers are imple-
mented in digital domain, therefore both the data acquisition
and control action calculation are executed at fixed fs = 1/Ts
sampling rate. The cascade-connected scheme contains two
PD-type FLCs, where FLC1 is responsible for the position
control of the robot and FLC2 performs the stabilization of
the inverted pendulum (IB). Both the membership functions
and rule bases of these controllers have been introduced
in [61]. The inputs of FLC1 are the linear position error es
and its time derivative eν , while the output of the controller

FIGURE 7. The applied fuzzy control scheme implemented in
MATLAB/Simulink environment.

TABLE 3. The properties of the employed FLCs.

is the control action us. Similarly, the inputs of FLC2 are
the pendulum angle error eθ3 and its time derivative eω3 ,
while the output of the controller is denoted with uθ3 . The
sum of these outputs constitutes the stabilizing control action
and is supplied to both motors, i.e., the control action in the
ith epoch is ui = us,i + uθ3,i, where the subscript i refers
to the discrete time domain equivalent of the signals, e.g.,
ui = u (iTs).
The design of these controllers have been described in

detail in [61], therefore only the important results are dis-
cussed as follows. Table 3 summarizes the properties of the
employed FLCs. Three membership functions characterize
the input ranges for each FLC; these functions are uni-
formly distributed across the universes of discourse as shown
in Fig. 8. The fuzzy sets N (negative), P (positive) and Z (zero)
are used to define 9 fuzzy rules for each controller. The
effective universes of discourse for the errors are defined with
the following constants: θ3m = 10 deg, ω3m = 150 deg/s,
sm = 0.2 m and νm = 0.12 m/s, while the output singleton
values are defined with uP,θ = uP,S = 1 V and uN ,θ =
uN ,S = −1 V values (see Fig. 8). The inference table (rule
base) for these PD-like FLCs is defined in Table 4. Based on
the controller properties indicated in Tables 3 and 4 and Fig. 8,
the crisp control action applied to the motors in the ith epoch
is given as:

ui =
9∑

k=1

κkFLC1 ·min
(
γ k
(
es,i
)
, γ k

(
eν,i
))

+

9∑
k=1

κkFLC2 ·min
(
γ k
(
eθ3,i

)
, γ k

(
eω3,i

))
, (14)
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FIGURE 8. Membership functions of the IO variables of FLC1 and FLC2.

TABLE 4. Rule base of the employed FLCs.

where γ k (·) denotes the kth-rule fired membership func-
tion value for the corresponding error signal (es,i, eν,i for
FLC1 and eθ3,i, eω3,i for FLC2) and κ

k represents the single-
ton value of the consequent of the kth rule (see Table 4 and
Fig. 8). Based on the expert knowledge, the heuristic infer-
ence system may require to execute the aggregation of output
fuzzy sets. In this case, the implication process outputs, trun-
cated output functions κk ·γ k for k = 1, . . . , 9, are combined
into a single fuzzy set. The maximum, probabilistic or and
sum operations are among the methods that are commonly
used for aggregation.

B. CONTROL ANALYSIS
The characteristics of the control strategy introduced in the
previous subsection is obtained using linear control synthesis
tools. It is important to carry out this analysis, since the
approximate stability margins determine the parameters of
the stochastic defuzzifier, which is elaborated in subsec-
tion VI-C. Based on the heuristically defined fuzzy control
strategy (see Fig. 7), the aim is to approximately obtain the
lower bound of acceptable sampling frequency and the upper
bound of acceptable time delay in the closed loop system.
These values directly influence the accuracy of stochastic
defuzzifier and thereby the accuracy of the estimation of crisp
output from stochastic streams.

First the linear approximation of the control scheme is
obtained. The nonlinear state-space representation (Eq. (13)
with u1 = u2 = u) is linearized by evaluating the Jacobian
matrix of system around the equilibrium point (xe, ue) =

(0, 0), i.e., ẋ = h (xe, ue) = 0. The system dynamics can
be written with its Taylor expansion [67]:

ẋ =
(
∂h
∂x

)
(xe=0,ue=0)

x +
(
∂h
∂u

)
(xe=0,ue=0)

u+ hh.o.t (x, u) ,

(15)

where hh.o.t indicates the higher-order terms in x and u.
Denoting with A the Jacobian of h with respect to x at the
equilibrium point, and with B the Jacobian of h with respect
to u at the same point, Eq. (16) describes both the linearization
of the nonlinear system at the equilibrium (xe, ue) = (0, 0)
and the system transfer matrix G (p) for the output vector
y = C ′x = (s, θ3)T [68]:

ẋ = Ax + Bu,

G (p) = C ′ (sI − A)−1 B+ D. (16)

Let the transferG1 (p) denote the input-output relationship
between the linear position S (p) and control input U (p) in
frequency domain. Similarly, let the transferG2 (p) denote the
relationship between the pendulum angle 23 (p) and control
signal U (p), where p is the Laplace operator, i.e.:

G1 (p) =
S (p)
U (p)

, G2 (p) =
23 (p)
U (p)

. (17)

In order to obtain the open- and closed-loop transfer func-
tion, the fuzzy PD controllers (FLC1 and FLC2 introduced
in section V) are converted to nonfuzzy PD controllers.
If [−emax , emax], [−ėmax , ėmax], and [−umax , umax] denote
the effective universes of discourse for the errors e, ė, then the
fuzzy PD controller is equivalent to the following nonfuzzy
PD controller [69]:

uPD (t) =
umax
emax

e (t)+
umax
ėmax

ė (t) . (18)

Denoting the transfer functions of FLC1 and FLC2 with
C1 (p) and C2 (p), respectively, and using the membership
function parameters {sm, νm, θ3m, ω3m} illustrated in Fig. 8,
C1 (p) and C2 (p) are obtained by expanding Eq. (18) to
FLC1 and FLC2. Namely:

uC1 (t) = −
es (t)
sm
−
ės (t)
νm

, thus

C1 (p) = −
1
sm
−

1
νm

p
τp+ 1

, (19)

uC2 (t) = −
eθ3 (t)
θ3m

−
ėθ3 (t)
ω3m

, thus

C2 (p) = −
1
θ3m
−

1
ω3m

p
τp+ 1

, (20)

where the pseudo-derivative was introduced with the filter
constant τ . Once the transfer functions G1 (p), G2 (p), C1 (p)
and C2 (p) of the control scheme illustrated in Fig. 7 are
known, the open-loop and closed-loop transfer functions can
be obtained. LetWol,S (p) andWcl,S (p) denote the open loop
and closed loop transfer functions related the output S (p),
then:

Wol,S = C1 (p)W23 (p)G1 (p) , (21)
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Wcl,S =
C1 (p)W23 (p)G1 (p)

1+ C1 (p)W23 (p)G1 (p)
, (22)

where W23 (p) =
1

1+C2(p)G2(p)
denotes the inner dynamics

related to 23 (p).
The phase margin (PM) is inspected first, since this value

describes the damping of the system, moreover, it gives the
bound for adequate stabilization. PM describes the acceptable
extra phase lag in the closed-loop system before it becomes
unstable. The Bode diagram of Wol,S shows that the system
is characterized by PM ≈ 52.7 deg and ωc ≈ 2.33 rad/s
crossover frequency. Based on this result, the acceptable time
delay can be deduced in the system. The delay GD (p) =
e−pTd does not influence the magnitude (i.e., |GD (p)| = 1
for all ω frequencies, where p = jω), but it shifts the control
signal in time, where the phase is 6 GD (jω) = −ωTd . This
enables the calculation of the bound of stability in terms of
time delay. Namely, the ratio of PM and crossover frequency
results in PM/ωc = 0.395 s delay margin in our problem. Let
PMmin = 40 deg be the lowest adequate PM value, which
is a general rule of thumb in control engineering problems,
then the acceptable bound of time delay Td is obtained as
Td1,max = (PM − PMmin) /ωc ≈ 0.1 s for FLC1. This result
is verified in Fig. 9. Based on similar findings, the acceptable
time delay for FLC2 is obtained as Td2,max = 0.1 s. These
results give crude approximations for the acceptable time
delays in the closed-loop system. Fig. 10 both highlights
the effect of the delay on the system dynamics and verifies
the aforementioned estimation process. It can be observed
that 0.2 s time delay is the bound of stabilization, i.e., this
delaymargin results in oscillatory behavior. Since the feasible
LPF effect was inspected in the aforementioned investigation,
therefore the crude approximation of e−Td s ≈ 1

1+Td s
was

utilized in the step response simulation in Fig. 10.
Next, the sampling frequency fs is analyzed. Note that the

sampling frequency equals to the control frequency, i.e., the
rate at which measurements are sampled is the same as the
rate at which control actions are supplied to the plant. In gen-
eral, too fast sampling results in decrease in accuracy [70].
This fact is especially true for the proposed stochastic archi-
tecture, since the amount of data used in stochastic defuzzifier
is inversely proportional to the sampling frequency (see the
details in subsection VI-C). Therefore, the lower bound of
sampling frequency fs,min is inspected, which maximizes the
stochastic bit stream length in the defuzzification process
and thereby determines the feasible accuracy of the crisp
output estimate. As it was already discussed at the end of
section II, this represents a trade off between accuracy and
system dynamics, since the lower the control frequency the
more accurate control signal estimate is generated, however
the inherent time delay poses constraint on the achievable
bandwidth.

The lower limit for acceptable sample rate which satisfies
all performance specifications is obtained as follows. Both
the reference tracking performance and effect of prefiltration
determines fs. It should be also considered that a Kalman

FIGURE 9. Bode diagram of Wol,S for different time delays.

FIGURE 10. Step response of the closed-loop system for different time
delays.

filter estimates the pendulum orientation in the closed loop
system. To both cancel out system instabilities and provide
the desired performance the sample rate should be bigger
than 100× ωBW , which is a common choice in these control
engineering problems [70]. The bandwidth of the closed loop

29904 VOLUME 9, 2021



Á. Odry et al.: SFLC: First Experimental Results of a Novel Architecture

system Wcl,S is ωBW = 4.14 rad/s, therefore the theoretical
lower bound for sampling rate is fs,min = 65 Hz.

VI. DESIGN OF THE SL-BASED FLCs
This section introduces the equivalent stochastic-based fuzzy
architecture of the control scheme introduced in the previ-
ous section. During the design procedure the same mem-
bership functions, ranges, rules, input-outputs and inference
properties are employed (see Fig. 8 and Tables 3 and 4),
moreover, the same control scheme is realized as the one
introduced in Fig. 7. However, instead of the conventional
FLCs, the stochastic fuzzy elements described in section III
are applied to realize the equivalent SFLCs. Since FLC1 and
FLC2 are characterized by identical structures, we present
the design steps of the equivalent stochastic architecture for
FLC1. Then, at the end of the section, the architecture is
expanded to FLC2.

A. FUZZIFICATION
Fig. 8 shows that both inputs are classified into three triangu-
lar fuzzy sets, namely, P (positive), N (negative) and Z (zero)
fuzzy sets characterize the input ranges. The fuzzy sets for
the displacement error es are defined as N = [−∞,−sm, 0],
Z = [−sm, 0,+sm] and P = [0,+sm,+∞], while the fuzzy
sets for the velocity error eν are given as N = [−∞,−νm, 0],
Z = [−νm, 0,+νm] and P = [0,+νm,+∞]. Since the AND
method is executed with minimum operator (see Table 3),
therefore the fuzzification procedure requires eight compara-
tors (two for each zero fuzzy set, and one for each positive or
negative fuzzy set), and a shared random number generator
whose output is properly scaled.

Based on Eq. (11), the conditions to check if the inputs are
in the α-cut set can be evaluated. As an example, the input
es,i in the ith epoch is in the α-cut set of the fuzzy set Z if and
only if

χZα
(
es,i
)
= 1

⇔
(
es,i > smα − sm ∧ es,i < −smα + sm

)
. (23)

Similarly for P and N fuzzy sets, one obtains the conditions
as:

χPα
(
es,i
)
= 1 ⇔ es,i > smα, (24)

χNα
(
es,i
)
= 1 ⇔ es,i < −smα. (25)

The conditions are similar for the second input eν ,
i.e., Eqs. (23), (24) and (25) can be directly applied, only the
corresponding constant vm is used instead of sm. The realiza-
tion of the stochastic fuzzification scheme is straightforward
based on the aforementioned conditions and is shown for both
inputs (es and eν) in Fig. 11. The outputs of the stochastic
fuzzifiers are stochastic bit streams that represent the mem-
bership function values of each input for the fuzzy sets N,
Z and P. Once the membership values are represented with
randomly varying bit-streams the logic operators introduced
in section III can be applied to perform the chosen inference
mechanism.

FIGURE 11. Fuzzification scheme for the inputs es and eν .

B. INFERENCE MECHANISM AND AGGREGATION
In the reference FLC structure, the minimum logic operation
is employed for the AND method (see Table 3). Moreover,
Table 1 summarized that if the stochastic bit streams are
generated with a shared random number generator, then these
signals can easily be compared with simple logic gates. As a
result, theminimum operation is performedwith simple AND
gates in the implication phase. Additionally, the aggregation
of firing levels consists of selecting the biggest firing value for
every singleton output. Therefore, the maximum operation is
performed with a simple OR gate for every output fuzzy set.

Based on the rule base defined in Table 4, the scheme of
the stochastic-based inference machine along with its aggre-
gation phase are illustrated in Fig. 12. This architecture can
be directly expanded for FLC2 using the inputs eθ3 and eω3
and membership function parameters θ3m and ω3m.

C. DEFUZZIFICATION
In order to obtain the control action estimate, the stochastic
representation has to be converted back to crisp domain.
This process is the task of the defuzzification unit. The
inputs of the defuzzification are the aggregated stochastic
bit streams that represent the crisp control action. Let finf
denote the inference frequency, i.e., the clock rate at which
the stochastic bit streams are generated. Moreover, let fcon
denote the control frequency, i.e., the rate at which control
action is supplied to the plant. Essentially, fcon = fs in our
application, however it is reasonable to use separate notations,
since these variables can be different in stochastic control if
the application requires.
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FIGURE 12. Architecture of the stochastic FLC (SFLC1): from crisp inputs, over fuzzification, to inference and aggregation.

The stochastic defuzzifier uses sequences of bit streams
that represent the singleton outputs in stochastic domain at
the input rate finf = Nfcon (e.g., see uP,S and uN ,S stochastic
streams at the right side of Fig. 12). A decimation process
should be executed, which estimates the crisp output sig-
nal at the lower fcon output rate. This decimation process
performs both averaging and rate reduction of the input
stochastic bit streams. As it was discussed in section II,
the literature describes different methods for this decimation
process, i.e., it can be realized by simple counters and LPFs.
In this article both methods have been implemented and
evaluated.

It is concluded based on Figs. 7, 8 and 12 that the aggre-
gation process generates two parallel stochastic stream lines
for each controller. These signals represent the singleton
outputs in stochastic domain (i.e., uP,S and uN ,S for FLC1,
and uP,θ and uN ,θ for FLC2). Therefore, the inputs of the
stochastic defuzzifier are the SL-based singleton outputs at
finf frequency; these signals are combined via simple logic
gates, then the counter performs the accumulation. Namely,
if uP,S is 1 and uN ,S is 0, then the counter is incremented, else
if uP,S is 0 and uN ,S is 1, then the counter is decremented;
in other cases the counter value is not changed. If the deci-
mation process is performed solely with a counter, then the
accumulated value is normalized by N = finf /fcon and the
counter value is reset to 0. Therefore, the size of the counter
is defined by the decimation ratio N = finf /fcon, and the
counter is reset at fcon rate. The actual value of the counter
defines the associated crisp output (i.e., the voltage value to
be applied for stabilization). The counter is less tunable to
the dynamics of the system compared to a LFP. The forward
Euler method-based transfer function is characterized by only
the decimation ratio:

H (z) =
fcon
finf

1(
1− z−1

) . (26)

In case of LPF-based decimation process, first the counter
is used to accumulate the input stochastic signals, i.e., it is
reset at finf rate. Then, the LPF characterized by f0 cut off
frequency executes the information processing and provides
the crisp output signal. The transfer function of a digital first
order LPF is given as:

H (z) =
1+ z−1

ω0Tinf+2
ω0Tinf

+
ω0Tinf−2
ω0Tinf

z−1
, (27)

where ω0 = 2π f0 and Tinf = 1/finf indicates the inference
period.

In both cases, the control signal estimate (ûs in case of
SFLC1 and ûθ3 in case of SFLC2) can be updated at fcon
rate. However, the LPF-based method enables the finf -based
update rate as well. The control signal estimate can be char-
acterized by different error metrics, e.g., the mean error µe
(ME), mean absolute error µ|e| (MAE), and standard devi-
ation σe (STD) describe the estimation performance. More-
over, the effective bit depth L of the approximation can be
inspected for different fcon, finf and f0 configurations. The
structure of the defuzzification unit for SFLC1 is depicted
in Fig. 13. The output of this unit is the approximation (or
estimation) ûs of us, i.e., SFLC1 provides ûs, while the refer-
ence FLC1 generates us. The same structure is employed for
SFLC2, only the input stochastic signals are uθ3,N and uθ3,P
in that case.

1) COUNTER-BASED DEFUZZIFICATION
It is easy to deduce, that the bigger the decimation ratio N =
finf /fcon, the higher resolution (i.e., more precision) of the
control signal ûs is obtained. If feasible inference frequency
finf and proper control frequency fcon are selected, then the
precision of the control signal can be determined. The accept-
able minimal control frequency fcon,min satisfies the Shannon
Theorem, prevents signal distortion due to aliasing,moreover,
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FIGURE 13. The stochastic defuzzification unit for SFLC1.

it keeps the PM in order to ensure stability. In subsection V-B
it was obtained that the lower bound of the control frequency
is fcon,min = fs,min = 65 Hz. It is interesting to inspect the
achievable control signal precision for a particular fcon.
For the analysis, let the control frequency be fcon = 100Hz,

which maintains an appropriate PM at the crossover fre-
quency (see Fig. 9). Fig. 14 depicts the evaluation of the
SFLC output for different inference frequencies, i.e., finf =
{5, 50, 500} kHz frequencies were selected for the analysis.
This step response simulation well indicates that the approxi-
mation of the reference FLC (FLC1) becomes more and more
precise as the decimation ratio increases. The first row of
Fig. 14 shows the linear position and pendulum angle values
during the stabilization process, respectively. The second row

FIGURE 14. Crisp output estimate ûs for different inference frequencies
during the step response of the fuzzy control scheme.

highlights the crisp output us generated by the reference FLC
(see the black curve) and the SL-based approximations ûs
for different inference frequencies (i.e., red curve shows the
outcome for N = finf /fcon = 50, yellow curve corresponds
to N = 500, while the purple curve is related to N = 500).
Finally, the third row highlights the approximation error e =
us− ûs, i.e., the difference between the reference FLC output
and stochastic approximation for different finf configurations.
It is also interesting to observe how the stochastic fuzzy

surface gets distorted with different decimation ratios com-
pared to the original fuzzy surface. The fuzzy surface of
FLC1 was evaluated in Fig. 15. It can be observed that
the SL-based approximation becomes more precise as the
inference speed is increased. The top-left corner shows the
reference fuzzy surface, where the crisp control action us is
generated as a function of the inputs es and eν . This smooth
surface was evaluated in 40 × 40 points, i.e., the output was
obtained by raking through the input ranges point-by-point.
The top-right corner highlights the approximation of the ref-
erence control surface for decimation ratio finf /fcon = 50.
It is seen that the SFLC well reconstructs the characteristics
of the reference FLC, however notable approximation errors
are present. The bottom-left plot highlights the approxima-
tion for finf /fcon = 500, which clearly provides improved
approximation quality, i.e., significantly less imperfection
characterizes the control surface. Finally, the bottom-right
plot shows the approximated surface for decimation ratio
finf /fcon = 5000, where basically no visible difference can
be observed compared to the reference control surface (top
left plot).

The approximation errors e = us − ûs are highlighted
for different decimation ratios on histograms in Fig. 16,
where the difference between the reference fuzzy surface
and its SL-based approximation was evaluated on a 100 ×
100 grid. This analysis also highlights that the inference
speed directly determines the achievable precision. It can be
observed in Fig. 16 that by increasing the decimation ratio
the STD (σe) significantly decreases from 59 mV to 1.8 mV .
Similarly, the range of error e is reduced from ±200 mV to
±5 mV . The ME (µe) tends to converge to zero as the deci-
mation ratio is increased; this is confirmed in each scenario.
In addition, the MAE (µ|e|) also follows the same tendency,
i.e., µ|e| = 45 mV in case of the crude approximation of
finf /fcon = 50, while at a high inference frequency this value
is decreased to 1.4 mV . The tendency of error metrics is
depicted in Fig. 17.
The effective bit depth of the crisp output estimate was also

inspected, see the results in appendix B. The mean value µL
of the achieved bit depth L can be approximated as:

µL ≈
1
2
log2

(
finf
fcon

)
+ exponent, (28)

where the exponent is 8 or 11 for single-precision or
double-precision representation, respectively. This approx-
imation is verified empirically in Fig. 27, where both the
reference fuzzy controller (FLC1) and its stochastic approx-
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FIGURE 15. Fuzzy surface as a function of finf : (a) surface of reference controller (FLC1), (b) stochastic
approximation of FLC1 at decimation ratio 50, (c) stochastic approximation of FLC1 at decimation ratio 500 and
(d) stochastic approximation of FLC1 at decimation ratio 5000.

FIGURE 16. Error metrics for different decimation ratios (N): (a) N = 50, (b) N = 500, (c) N = 5000 and
(d) N = 50000.
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TABLE 5. The characteristics of the crisp output for different
configurations.

imation (SFLC1) were evaluated in 106 different input com-
binations.

Based on both the aforementioned analysis and results
depicted in Figs. 17 and 27, it is concluded that the defuzzi-
fication process should satisfy two contrary requirements.
On one hand, the higher the control frequency fcon the
less stability decrease is realized (i.e., PM is not decreased
during the decimation process significantly), however this
also results in decrease in control signal precision. On the
other hand, the motivation for lowering the inference rate
finf is cost, since the digital hardware should be capable of
processing the calculations. However, the lower inference
speed finf also results in decrease in control signal precision.
The choice of finf and fcon depends on the microproces-
sor, peripherals used for digital analog conversion and the
driving circuits employed in the embedded system. In our
case, a general purpose timer peripheral is used to generate
the PWM signals, which drive the H-bridge motor driver
circuit. Therefore, the resolution of the PWM generator both
poses another constraint and sets also an upper bound for
the acceptable approximation error. Some notable numbers
that satisfy the aforementioned contrary requirements are
summarized in Table 5, where the control frequencywas fixed
at fcon = 100 Hz.

2) LPF-BASED DEFUZZIFICATION
If LPF performs the defuzzification, then it shall have small
impact on the PM. The LPF supplies the average of the
stochastic input stream via integration, moreover, it also
reduces the modulation of high-frequency noise to lower
frequency components (aliasing). The dynamics of the filter
is determined by two parameters based on Eq. (27), i.e., the
inference and cut-off frequencies (finf and f0) determine both
the smoothness and precision of output control signal. Simi-
larly to the counter-based defuzzification method, the afore-
mentioned two parameters pose constraints on the design
process. Since the DC component of the stochastic stream
represents the approximation of the reference crisp output,
therefore finf should be increased to enable the integration
of many stochastic pulses. In addition, the accurate estima-
tion requires f0 to be decreased, i.e., the LPF should be
characterized by slow dynamics. The cut-off frequency f0
determines the filter dynamics, whose lower bound should be
analyzed from control systems standpoint, since the lower the
cut-off frequency the more stability and performance issue
may present in the closed loop system.

FIGURE 17. Error characteristics for different decimation ratios (N).

From control systems perspective, the cut-off frequency
of the filter should be significantly higher than the system
bandwidth, thereby the filter dynamics does not decrease
the closed loop performance quality (i.e., the phase lag will
not be detrimental to the system stability). It was obtained
in subsection V-B that the maximum time delay introduced
by the filter stage is Td,max = 0.1 s, which decreases the
PM to 40 deg. At Td,max = 0.1 s the corresponding filter
cut-off frequency can be calculated as f0 = 1/

(
2πTd,max

)
≈

1.6 Hz. However, it should be also noted that this filter
configuration is characterized by τs = 4 Td,max = 0.4 s rise
time. An f0 = 6 Hz cut-off frequency is a more reasonable
choice, since the dynamic response of the estimation pro-
cess is faster. Moreover, the influence of the filter can be
ignored in the closed-loop, since breakpoint will be located
at 10 times the system bandwidth ωBW . This reasoning is
verified clearly by the results of subsection V-B. Namely,
theminimum sampling ratewas obtained to be fs,min = 65Hz,
which is approximately 10 times higher than f0 = 6 Hz,
therefore appropriate reduction in the high-frequency noise is
achieved at fs,min/2. The higher cut-off frequency f0 requires
higher inference frequency finf as well, since the output ripple
magnitude is directly influenced by the ratio finf /f0.
Fig. 18 depicts the performance of LPF-based defuzzifi-

cation, where the LPF cut-off frequency was set to f0 =
6 Hz and finf = {5, 50, 500} kHz inference frequencies were
utilized in the SFLC architecture. The first row shows the step
response for sd = 0.1 m, where the blue curve corresponds
to the realized linear position s and the red curve highlights
the pendulum angle θ3 during the stabilization process. The
second row of Fig. 18 shows the crisp output signals of the
controllers (both for FLC1 and SFLC1). Namely, the black
curve corresponds to the original FLC (i.e., the reference crisp
output us), the other three curves highlight the approximation
ûs for different finf /f0 defuzzification configurations. Finally,
the third row depicts the approximation errors (e = us − ûs).
It can be concluded that the f0 = 6 Hz cut-off frequency
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FIGURE 18. Crisp output estimate ûs for different finf /f0 configurations
during the step response of the fuzzy control scheme.

introduces an acceptable time delay in the system. Moreover,
the LPF-based defuzzification stage provides the approxima-
tion of reference crisp control signal to satisfactory degree.
As it was expected, the inference speed finf determines the
deviation of the approximated crisp outputs ûs, i.e., the higher
the inference frequency the less ripple magnitude character-
izes the filter output. The characteristics of the approximation
error is left open to be analyzed in our future study.

VII. SIMULATION RESULTS
The simulation of the proposed control schemes was per-
formed in MATLAB/Simulink environment. The nonlin-
ear state space representation of the plant (Eq. (13)) was
implemented using an S-Function block, while the refer-
ence FLCs were designed with the Fuzzy Logic Toolbox
of MATLAB. Then, the equivalent stochastic-based con-
trollers (SFLCs) were designed and implemented in MAT-
LAB function blocks based on the reference fuzzy parameters
(see Eqs. (23), (24), (25), Fig. 8 and Table 3). Both the LPF
and counter-based defuzzification methods were evaluated
in the simulation environment. The control frequency was
set to fcon = 100 Hz; finf = {5, 50} kHz inferences fre-
quencies were evaluated during the stabilization of the plant.
The LPF was characterized by f0 = {1.6, 6} Hz cut-off fre-
quencies which both prevent the aliasing effects and provide

limited PM decrease. Regarding the counter-based decima-
tion, the ratio finf /fcon determined the length of the counter;
the output signal was obtained by normalization (see Fig. 13).
The dynamics of the robot was sampled at fixed fs =
100Hz sampling frequency. The samemembership functions,
ranges, and control scheme were applied for the both fuzzy
architectures. Hence, the influence of the stochastic approx-
imation on the closed-loop performance can be observed
in Figs. 19 and 20.

The simulation results depict the step response of
the closed-loop system for both the reference fuzzy
control approach and its SFLC-based approximations in
Figs. 19 and 20. In these figures, the first row shows the
reference tracking dynamics for the linear position of the
robot (the black curve is the desired position sd , the blue curve
corresponds to the robot position s realized with the refer-
ence fuzzy scheme, while the red, yellow and green curves
correspond to the robot position achieved by the stochastic
control circuits). The second row depicts the robot velocity ν
during the stabilization process. The third row highlights the
resulting pendulum angle θ3, while the fourth row shows
the angular velocity of the IB (ω3). Finally, the last row
depicts the crisp output u = us + uθ3 (i.e., the applied
voltage to the DC motors) for the reference fuzzy control
and its approximations. The simulation results show that the
applied fuzzy control schemes (both the reference controllers
and their stochastic approximations) successfully stabilize
the system, fulfill the control requirements and provide an
acceptable reference tracking performance.

In case of counter-based defuzzification (see Fig. 19),
the decimation ratio N = finf /fcon = 50 resulted in a slightly
poorer control performance (red curve). It can be observed
that this configuration stabilized the system successfully,
however notable oscillations were produced at around 4 s,
after the pendulum was returned to the vertical upright
position. This outcome was expected, since the resolution
of the control signal (i.e., the crisp output of SFLC) was
relatively small. Namely, the smallest increment in the crisp
output signal was 0.02 V , which kept the pendulum in the
vicinity of the upright position. A much higher performance
was achieved with N = finf /fcon = 500 decimation ratio
(see the yellow curve), since this configuration enabled to
approximate the crisp output with higher resolution. In this
case the smallest increment was 0.002 V in the control signal,
and it can be seen that there is no notable difference between
the performance of reference FLC and SFLC-based control
schemes. Basically, the provided output signal resolution
enabled to provide both the same system conditions and
control performance as the reference control approach.

The stochastic scheme, which employed LPF-based
defuzzification in the SFLCs, also produced satisfying con-
trol performances (see Fig. 20). This approach slightly
decreased the PM of the closed-loop system, however this
decrease did not have notable impact on the reference
tracking performance. It can be seen in the first row, that
each configuration (i.e., both the 1.6 Hz, and 6 Hz cut-off
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FIGURE 19. Simulation results: stabilization of the SBR with the
stochastic control scheme employing counter-based defuzzification.

frequency-based LPFs) ensured the desired linear position
with the same dynamics as the reference FLC-based scheme.
However, the impact of both f0 and finf can be clearly
observed in the third row, which highlights the resulting
pendulum angle for difference parameter sets. The red curve
corresponds to the f0 = 1.6 Hz cut-off frequency LPF and
finf = 5 kHz configuration, where the phase lag resulted in
notable increase in the pendulum angle compared to the refer-
ence fuzzy performance, i.e., the LPF increased the overshoot
to 10 deg, while the reference fuzzy control ensured 5 deg IB
angle overshoot. Indeed, this LPF configuration resulted in
PM=40 deg and was the boundary condition for acceptable
stabilization in our application, as it was discussed in sub-
sections V-B and VI-C. Nevertheless, even the PM=40 deg
along with finf = 5 kHz configuration ensured satisfying
control performance, since the reference tracking was not
influenced, moreover, the pendulum angle was effectively
stabilized without oscillatory behavior. Less PM decrease

FIGURE 20. Simulation results: stabilization of the SBR with the
stochastic control scheme employing LPF-based defuzzification.

was produced by the f0 = 6 Hz LPF configuration, see the
yellow curve for finf = 5 kHz and the green curve for finf =
50 kHz in the third row. This configuration confirmed our ear-
lier discussion about selecting the suitable cut-off frequency
for the LPF-based defuzzification process. As it can be seen,
the overshoot for θ3 was increased by only 1 deg and the sys-
tem states settled quickly to the reference system states (see
the blue curves). This experiment highlights that equivalent
system states are achieved with LPF-based defuzzification,
therefore the SFLCs are accurate and well-founded. It is also
noticeable, that the output ripple was completely suppressed
in case of finf = 50 kHz (see the green curve), however
even the finf = 5 kHz inference frequency ensured satisfying
control performance with minor ripple magnitude (see the
yellow curve).

It can be concluded based on the simulation results
that both the counter-based and LPF-based SFLC archi-
tectures satisfy the control requirements and perform both
the balance and stabilization of the system. These control
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FIGURE 21. Control performance of the conventional fuzzy control scheme: (a) Kalman filter was turned on (θ̂3 was fed back), the external
disturbance is indicated with the framed text, (b) the Kalman estimation was turned off (θraw

3 was employed in the feedback loop).

performances are compared to the conventional FLC-based
control performance in Figs. 19 and 20, and it can be observed
that the proposed stochastic approximation can compete with
the standard fuzzy approach. Based on the aforementioned
results, it is also obvious that the counter-based defuzzi-
fication process is more sensitive to decimation ratio N ,
i.e., the higher the inference frequency finf the more accurate
crisp output approximation is provided. If the decimation
ratio N is small, then the control signal is characterized by
reduced resolution, which can induce oscillation in system
states. On the other hand, the LPF-based defuzzification in
the SFLC architecture provides less impact on the system
behavior. Namely, the smoothed control action results in both
oscillation-free and robust system behavior. The cost of this
approach is a minor PM decrease, however as the simulation
results show, there is no significant impact on the closed-loop
performance in case of an adequate cut-off frequency.

VIII. EXPERIMENTAL RESULTS ON THE REAL SYSTEM
The control algorithms were implemented in a
C language-based embedded software environment, where
floating point calculations were applied to determine the
instantaneous system state values θ3, ω3, s and ν.

As it was already mentioned, MCU2 works as an IMU,
therefore it supplies the measurements θ raw3 , ω3, and θ̂3 to
MCU1 via SPI communication bus, where θ raw3 denotes the
IB orientation measured by the accelerometer (i.e., pen-
dulum angle determined based on the pure accelerations),

ω3 indicates the angular velocity of the pendulum measured
by the gyroscope, while θ̂3 is the Kalman filter-based esti-
mation of the IB orientation. Both the derivation of these
quantities and Kalman filter implementation is described in
detail in [66]. MCU1 collects the measurements at fixed fs =
100 Hz sampling rate, moreover, it obtains the instantaneous
robot position and velocity data (s and ν) based on the incre-
mental encoder measurements in each sampling epoch. Then,
it executes the chosen control algorithm based on the col-
lected measurements (see the control schemes in Figs. 7
and 25). The crisp control signal drives the DC motors via H-
bridges. Furthermore, the measurements are sent to a MAT-
LAB GUI through the wireless module, which records the
measurements. In our experiments the control frequency was
set to fcon = fs = 100 Hz. Moreover, f0 = 6 Hz cut-off
frequency was employed in LPF-based defuzzification based
on the earlier frequency domain analysis. The inference fre-
quency was fixed to finf = 5 kHz.
First the conventional fuzzy performance (Fig. 21) is

addressed, then the performances of different stochastic
architectures are analyzed (Figs. 22, 23 and 24). The control
performances were tested in different environments, i.e., both
static and dynamic behaviors of the proposed control algo-
rithms were evaluated. During the dynamic behavior tests,
the robot was pushed away from its equilibrium position
several times. Moreover, the robustness against uncertain
measurements was also inspected by turning on and off the
Kalman estimation (if the Kalman filter was turned on, then
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θ̂3 was fed back to the FLCs, otherwise θ raw3 was employed
in the feedback loop). The experimental results highlight the
raw pendulum attitude θ raw3 and its estimate θ̂3, the angular
velocity during the stabilization ω3, the linear displacement
s and velocity ν of the robot, and the applied crisp control
signal u.

A. CONVENTIONAL FUZZY APPROACH
The implementation of the standard FLCs described in
section V was based on the fuzzy surfaces. Since fuzzy sur-
faces define the crisp output as a function of the given inputs,
therefore FLCs can be described with simple look-up tables
(LUTs). The LUT is obtained by evaluating the possible input
combinations and registering the crisp output in the table. The
LUT generation process is described in detail in [61]. In our
application the input ranges were partitioned into n = 40
evenly spaced points, therefore 40×40 size LUTswere stored
in the flashmemory ofMCU1. The proposed scheme in Fig. 7
was executed based on the instantaneous error signals es, eν ,
eθ3 and eω3 . Once the error signals were obtained, the crisp
output was calculated as follows:

us = Ls,ij, i = ∗
n
2

(
es
sm
+ 1

)
, j = ∗

n
2

(
eν
νm
+ 1

)
,

uθ3 = Lθ3,ij, i = ∗
n
2

(
eθ3
θ3m
+ 1

)
, j = ∗

n
2

(
eω3
ω3m
+ 1

)
,

u = us + uθ3 , (29)

where Ls,ij and Lθ3,ij are the n × n matrices for FLC1 and
FLC2, respectively. Moreover, i = 1, . . . , n and j = 1, . . . , n
denote the row and column indexes, and ∗ indicates the
rounding to the nearest integer (see the derivation of Eq. (29)
in [61], [65]). Therefore, once the indexes were calculated,
the crisp output was selected in the corresponding LUT.

The control performance of the implemented reference
control scheme is shown in Fig. 21. Two parts of the whole
experiment are highlighted, in which both the control quality
and stabilization performance can be observed. The left side
of Fig. 21 depicts the dynamics of the closed-loop system
when the Kalman filter-based estimation θ̂3 was employed
in the regularization process. It can be seen that the stan-
dard fuzzy approach ensured acceptable performance even if
external perturbation was executed. Namely, around 1.5 s the
robot was pushed about 0.1 m away and it maintained both
the balance of the IB and stabilization of position, moreover,
the robot returned to the desired state. The robustness against
measurement uncertainties was also inspected in the experi-
ment. Therefore, the right side of Fig. 21 indicates the case
when the pure accelerometer-based attitude measurement
θ raw3 was employed in the control loop, i.e., the Kalman

filter was turned off. This experiment enabled to analyze the
robustness of the control loop against uncertain data, since the
attitude realization θ raw3 was manipulated by external acceler-
ations by superimposing additional noise components on the
pure observation (i.e., bigger noise magnitude characterized
the measurements). It can be observed, that these noisy
observations and uncertain measurements highly influenced
the performance of the standard fuzzy approach. Namely,
the experimental results show that in approximately 2 s the
robot left the vicinity of equilibrium and the pendulum fell
off (see the measurements at around 2.5 s in the right side of
Fig. 21).

B. STOCHASTIC FUZZY APPROACH
The proposed SFLC architecture was implemented in the
embedded microcontroller as a simple C function. Let κ =
{es, eν, eθ3 , eω3} denote the set of inputs of the control
scheme. Then, based on Eq. (12), the stochastic fuzzification
is defined for each input κ as follows:

χZα (κ) = 1⇔ −
1
2
≤

κ

κm
−

(
α −

1
2

)
∧
κ

κm
+

(
α −

1
2

)
≤

1
2
, (30)

χNα (κ) = 1⇔
κ

κm
+

(
α −

1
2

)
≤ −

1
2
, (31)

χPα (κ) = 1⇔
κ

κm
−

(
α −

1
2

)
≥

1
2
, (32)

where κ/κm denotes the normalized input variables on their
ranges, i.e., κ/κm = {

es
sm
, eν
νm
,
eθ3
θ3m
,
eω3
ω3m
} (see Fig. 8). The error

signals es, eν , eθ3 and eω3 were obtained in each Ts = 1/fs
sampling epoch based on the measurements, and the quotient
κ/κm was updated. The fuzzification was performed at finf
frequency by the Eqs. (30), (31) and (32). These equations
supplied the stochastic bit streams that represent the member-
ship function values for the linguistic variables N , Z , and P
for each error signal (see the stochastic fuzzifiers in Fig. 25).
The inference machine was composed of 6 AND operations,
while the aggregation process employed 2 OR operations to
represent the output membership function values uP and uN
for each controller. For example the characteristic functions
χPα (us) andχNα (us) of the α-cut set of fuzzy setsP andN for
SFLC1were obtained at finf frequency as given in Eq. (33), as
shown at the bottom of the page, (see the inference machine
in Fig. 25).

Finally, the aforementioned aggregated stochastic
sequences χPα (us), χNα (us), χPα

(
uθ3
)
and χNα

(
uθ3
)
were

supplied to the counter-based or LPF-based defuzzification

χPα (us) =
(
χNα

(
eθ3
)
∧ χNα

(
eω3
))
∨
(
χZα

(
eθ3
)
∧ χNα

(
eω3
))
∨
(
χNα

(
eθ3
)
∧ χZα

(
eω3
))
,

χNα (us) =
(
χPα

(
eθ3
)
∧ χZα

(
eω3
))
∨
(
χZα

(
eθ3
)
∧ χPα

(
eω3
))
∨
(
χPα

(
eθ3
)
∧ χPα

(
eω3
))
, (33)
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FIGURE 22. Control performance of counter defuzzification unit-based stochastic fuzzy approach: (a) Kalman filter was turned on (θ̂3 was
fed back), (b) the Kalman estimation was turned off (θraw

3 was employed in the feedback loop).

units at finf frequency, which provided the stochastic approx-
imations of crisp control signals us and uθ3 . The uniform
random numbers were generated with a 16 bit LFSR. Both the
counter-based and LPF-based defuzzification methods were
tested on the real system. This equivalent SC-based fuzzy
approach was evaluated in four experiments. The experimen-
tal results are discussed as follows.

1) SFLC PERFORMANCE WITH COUNTER-BASED
DEFUZZIFICATION
Fig. 22 highlights two parts of the experiment, where the
control performance of the counter defuzzification unit-based
SFLC scheme is presented. Similarly to the standard fuzzy
approach, the effects of both external disturbances and uncer-
tain measurements were tested to inspect the robustness of
the control scheme. The left side of the figure shows the
experimental results for the case when the Kalman filter
was turned on, i.e., the smoothed θ̂3 was fed back to the
controller. It can be observed, that the control scheme sta-
bilized the system (both the position and pendulum angle),
however quite modest performance was achieved with finf =
5 kHz inference speed. Namely, the system was successfully
stabilized in the vicinity of equilibrium, however the states
were characterized by significant oscillations. This outcome
was expected, since as was discussed in section VII, the low
decimation ratio results in reduced resolution in the control
signal. This reduced resolution gives rise to an oscillating
error signal around the desired equilibrium, since even if

FIGURE 23. Control performance of LPF defuzzification unit-based
stochastic fuzzy approach. The Kalman was turned on (θ̂3 was fed back).

the system states are close to the desired set point the crisp
output will lead the states to the vicinity with the smallest
incremental change in the control signal.
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FIGURE 24. Control performance of LPF defuzzification unit-based stochastic fuzzy approach. The Kalman estimation was turned off: (a) 80 seconds of
control performance is presented, (b) 10 seconds more detailed illustration.
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The right side of Fig. 22 depicts the achieved control
performance, when the Kalman filter was turned off (i.e.,
the noisy θ raw3 was employed in the feedback loop). It is
highlighted that the control scheme was not able to handle the
noisy measurements robustly, i.e., the pendulum fell off after
6 s of regulation. It can be concluded that the small decima-
tion ratio in the counter-based defuzzification unit resulted in
poor control performance in steady state conditions, more-
over, the performance was unacceptable in dynamic envi-
ronment when increased noise magnitudes characterized the
system states (see the right side of Fig. 22). The control signal
resolution can be increased with higher decimation ratio, e.g.,
the simulation results showed that finf = 50 kHz provided
smooth control action and satisfying control performance
(see Fig. 19). However, the modest resources of the embed-
ded microcontroller limited the experimental verification to
only 5 kHz inference speed in our application, therefore the
performance evaluation of finf = 50 kHz is left open for
investigation in future studies.

2) SFLC PERFORMANCE WITH LPF-BASED DEFUZZIFICATION
The stochastic control scheme, which employed LPF defuzzi-
fication unit-based SFLCs, showed remarkably satisfying
control performance. On one hand, the closed-loop structure
provided robustness against external disturbances. It can be
seen in Fig. 23, that the robot was pushed away from its
equilibrium state around at 1.5 s, and the stochastic control
structure was able to both stabilize the robot and drive the
system states back to the desired set point. In this experiment
the Kalman filter was turned on, therefore the estimated IB
orientation θ̂3 was fed back to the SFLC. It is also shown
that smooth control action was provided by the proposed
stochastic architecture, since the desired set points (both robot
position and pendulum angle) were maintained efficiently
without any oscillatory effects.

The robustness against measurement uncertainties was also
investigated in the LPF-based SFLC architecture. Fig. 24
highlights that the stochastic scheme provided remarkable
control performance, even when the raw and noisy θ raw3 mea-
surements were fed back to the SFLC (i.e., the Kalman filter
was turned off). The control architecture was capable of sup-
plying smooth control signals even in this noisy environment,
moreover, it both effectively stabilized the robot position and
kept the pendulum in the vertical upright position. Addition-
ally to supplying noisy system states, the robot was pushed
away several times and the stochastic controllers robustly
handled the disturbances and efficiently drove back the robot
to the equilibrium. Fig. 24 shows 80 s of the experiment,
where despite the external disturbances and noisy environ-
ment the stabilization was successful, robust and reliable.

It can be concluded that the implemented LPF-based
SFLCs provide smooth control action and are characterized
by robust performance. The experimental results indicate
that the flexibility of the proposed stochastic architecture
enabled it to compete and even outperform the equivalent
standard (FLC-based) control approach. These results were

also observed in the simulation results in Fig. 20, where
despite the small PM decrease, smooth control action was
provided for the stabilization of the robot. The LFP-based
defuzzification stage is a more flexible structure than the
up-down counter-based approach, since the filter can be tuned
to the system dynamics (see Eq. (27)). It has also been proven,
that the frequency domain calculations (discussed in subsec-
tion V-B) provided good basis for stochastic control design,
since satisfying closed-loop dynamics was achieved based on
the obtained results. Namely, the f0 = 6 Hz cut-off frequency
did not influence the dynamics of the closed-loop system.

IX. CONCLUSION
This paper introduced a SL-based fuzzy controller
(i.e., SFLCs) as a new fuzzy technology to establish heuristic
inference machines. The proposed architecture was experi-
mentally validated in a control scheme for the stabilization of
a real SBR. First, the conventional SL and relevant stochastic
fuzzy elements were introduced. Next, the SBR (as the
plant to be controlled) was described and its mathematical
model was presented. Thereafter, two control methods were
designed to stabilize the system. Namely, a conventional
FLC-based control approach as a reference scheme was
utilized for the stabilization of the plant first. Then, based on
both the reference scheme and FLC parameters, the equiv-
alent SFLC-based architecture was established, which is
one of the main results of this article. The whole SFLC
architecture from fuzzification, over the inference system,
to defuzzification was derived in detail. The effectiveness
and robustness of the proposed control method were proven
with both simulation and experimental results. It was found
that the performance of SFLC architecture is determined by
two parameters. Namely, the ratio of inference and control
frequencies determines the resolution of the crisp output in
case of counter-based defuzzification. This decimation ratio
should be defined based on both the control requirements and
plant sensitivity in order to suppress the oscillatory behavior.
On the other hand, the SFLC performance is determined by
the inference and cut-off frequencies in case of LPF-based
defuzzification. In this approach, the LPF should not alter the
stability margins significantly, while the inference frequency
can be increased to reduce the output ripple of the crisp
output. In our experiments, the LPF-based defuzzification
method showed extremely good performance during the
SFLC-based control, where despite both the uncertain mea-
surements and external disturbances, successful stabilization
and robust control performance were achieved. The proposed
SFLC-based control method outperformed the equivalent
conventional FLC-based approach in terms of robustness
against uncertain measurements. Moreover, despite the hard-
ware limitations of the SBR competitive control performance
was achieved regarding the stochastic fuzzy control. Since the
applied SBR was characterized by modest resources and was
not specifically built for the purpose of testing the proposed
stochastic architecture, therefore the future work is focused
on conducting experiments on a more powerful hardware.
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FIGURE 25. The equivalent SC-based complete fuzzy control scheme.

We intend to analyze the approximation errors and robustness
indexes as a function of both increased inference frequencies
and more advanced filter implementations.

APPENDIX A
SC-BASED FUZZY CONTROL SCHEME
Fig. 25 shows the SC-based two-loop fuzzy control scheme
for the stabilization of the plant, where the reference con-
trollers (i.e., both FLC1 and FLC2) have been approximated
with their stochastic counterparts (SFLC1 and SFLC2).
Based on the stochastic structure introduced in Fig. 12 the
definition of SFLC2 was straightforward. The error signals
(eθ3 , eω3 ) and the random number generator drive the stochas-
tic structure, whose output uθ3 is obtained based on the aggre-
gated stochastic bit streams uP,2 and uN ,2 that represent the
consequent fuzzy sets in stochastic domain. The fuzzification
state employs the fuzzy membership function parameters θ3m
and ω3m (see Fig. 8) for the generation of the Z, N and P
stochastic bit streams. In addition, the same random number
generator was applied for both SFLC1 and SFLC2 because
the controllers are independent.

APPENDIX B
EFFECTIVE BIT DEPTH RESULTS FOR COUNTER-BASED
DEFUZZIFICATION
Recall that single-precision floating-point format uses 32 bits
to represent the crisp quantity, where the first bit denotes the

TABLE 6. Number of arithmetic operations for different architectures.

sign, the next 8 bits represent the exponent, and the remaining
23 bits are used for the fraction bits (i.e., significand preci-
sion). Fig. 26 highlights the achieved effective bits numbers
L in stochastic approximation that are consistent with the
reference crisp output according to IEEE 754 standard. It can
be observed that a magnitude increase in the decimation ratio
results in a binary digit increase in the mean value of the
representation. For example in case of finf /fcon = 5000
(see the bottom-left plot of Fig. 26), the mean value µL
of bit depth L is approximately 14 bits, i.e., the sign and
exponent are represented with full precision, while 5 fraction

VOLUME 9, 2021 29917



Á. Odry et al.: SFLC: First Experimental Results of a Novel Architecture

FIGURE 26. The achievable bit depth for different decimation ratios (N): (a) N = 50, (b) N = 500,
(c) N = 5000 and (d) N = 50000.

FIGURE 27. The achievable mean bit depth for different decimation
ratios (N).

bits are consistent (exactly same) with the reference crisp
output representation. Similar analyses can be conducted for
64-bit double-precision floating-point format, where 12 bits
are used for the sign and exponent representation, and the rest
of the bits denotes the significand precision.

APPENDIX C
COMPUTATIONAL COMPLEXITIES
The computation burden of the proposed stochastic con-
troller (SFLC) compared to the conventional FLC in a

standard microcontroller-based implementation is discussed
as follows. Let M, A and C denote the IEEE 754 stan-
dard floating-point multiplication, addition and comparison,
respectively (32-bit or 64-bit, which depends on the employed
architecture). Moreover, let L represent the Boolean logical
operation and B denote the number of branches in the imple-
mentation. Then, the arithmetic operations employed in both
control algorithms are summarized in Table 6. The difference
in computational complexities is significant, however the
requirement of higher inference speed should be noted in
case of the SFLC architecture. Hence, the real architectural
advantage of SFLCs is exploited if simple hardware elements
implement the complete fuzzy inference method in FPGAs.
This analysis forms the next step in our future study.
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