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ABSTRACT This paper improves the level of urban traffic control by creasing the dimension of control
variables. It focuses on roads rather than vehicles. A new space-time resource schedulingmodel and a bi-level
optimization control method for urban intersections are developed in this study. In traditional concept, the
properties of lane are fixed. Nowadays, it changes with the development of new technologies, which increase
the dimension of the control variables in the control model and expand the control capability. To this end, the
space-time resource scheduling model for intersections includes spatial variables (lane genes, phases, and
phase sequences) and time variables (green light time of phases). Then, a new bi-level optimization control
method is developed, in which there are an upper layer for lane control based on reinforcement learning and
a lower layer is a two-layer optimal control method of phase control based on the model predictive control
idea. Finally, the proposed method is proved more efficient than traditional methods after comprehensive
experiments.

INDEX TERMS V2I, time-space resource scheduling model, lane genes, dual-layer optimization, reinforce-
ment learning, model predictive control.

I. INTRODUCTION
The essence of traffic flow change is that the traffic demand
matches the space-time resources [1]. The traffic control [2]
at the intersection is a way to allocate space-time resources
on the basis of ensuring traffic safety. Therefore, the space-
time resource variables which can accurately describe the
characteristics of intersections directly affect the flexibility
and advancement of traffic control.

Today, the most widely used traffic signal control systems
(such as SCOOT [3], [4] and SCATS [5], [6]) use expert
experience to design static variables (lanes, phases, and phase
sequences) at intersections, and then the model and algorithm
are used to implement the control strategy with the green
light time as the main variable. However, the dynamic char-
acteristics of the traffic flow often do not match well with
the capacity of the road, which makes the traditional traffic
control based on the allocation of time resources difficult
to effectively allocate road space resources. Unfortunately,
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The insufficient allocation of space resources is one of the
important reasons for traffic congestion.

In recent years, with the development of vehicle-road col-
laboration [7], [8], autonomous driving [9]–[11], artificial
intelligence [12], [13] and other technologies, new ideas
have been provided for the efficient scheduling of space-
time resources at intersections, especially in terms of enabling
precise control of lanes and vehicles. Surprisingly, although
the new technology has been widely used in the field of traffic
control [14], [15], it is still mainly based on the allocation
of time resources in the traditional theoretical framework of
traffic control, and no one has tried to increase the dimension
and further research on extended control capabilities. If we
treat all entrance lanes at intersections as dynamic variables
and control them, this can provide two new changes for
intersection control: 1)Change the capacity and phase order
by adjusting the properties of the lane to better match the fluc-
tuation of the traffic flow, including the mixing of multiple
traffic flows, as shown in figure 1.(a) and figure 1(b); 2) By
adjusting the attributes of the lanes, the distribution pattern
of the traffic flow can be changed, and then the OD matrix
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FIGURE 1. New changes brought by lane variables to intersections.

of the road network is changed, as shown in figure 1(b) and
figure 1(c). It can be inferred that this will greatly expand the
control capacity of the intersection.

In this way, themain content of this paper is to use the time-
space resource scheduling model and two-layer optimization
to achieve the future urban intersection traffic control. The
main contributions of this paper include:

• We propose a time-space resource scheduling model for
future city intersections. The model describes the lane
as a control variable, so the phase and phase order in
the model has also changed greatly. The increase in the
dimension of the control model variable can expand the
ability of the control model. The ability of the control
model can be extended by increasing the dimension of
the control model variables.

• We have carefully considered the three constraints of
lane variable expression, phase division, and model to
ensure the rationality of the model. At the same time,
a two-level optimization method is designed for lane
control based on reinforcement learning and phase con-
trol based on model predictive control.

• We further prove the superiority of this method. Specif-
ically, it has advantages over traditional methods in
terms of the effectiveness and flexibility of intersection
control.

The remainder of this paper is organized as follows: Section II
presents a literature review of related work. Section III
designs a time-space resource scheduling model for future
city intersections, where the space variables are lane genes,
phases and phase sequences, and the time variables are phase
green time. The three constraints of the model are determined
in detail. Section IV proposes a two-layer optimization con-
trol method. The upper layer is lane control based on rein-
forcement learning and the lower layer is phase control based
on model predictive control ideas. Section V describes the
simulation experiments and presents the experimental results.
Section VI concludes this paper and discusses directions for
future research.

II. RELATED WORK
Urban intersections control is an age-old issue that goes back
to the 1950s [16]. This is the most important issue in the field
of urban traffic, even in the future of vehicle-road collabo-
ration [17] and the popularity of autonomous driving [18].
Therefore, it has attracted many scholars. Existing methods
can be divided into two categories.

1) TRADITIONAL INTERSECTION TRAFFIC CONTROL
Based on the traditional urban road traffic control theory,
combining models and algorithms of modern control, intel-
ligent control, artificial intelligence, and other theories have
achieved considerable development and application in the
field of traffic control. Modern control theory assumes that
the mathematical model of the controlled object is known.
Traffic control methods based on modern control theory are
mostly called Model-Based Traffic Control theory and meth-
ods [14], [15], [19]. At the beginning of this century, the
advancement of traffic information and the development of
detection technology have greatly improved the types and
accuracy of traffic detection data. At the same time, the
explosive growth of road traffic travel requirements has made
traditional traffic control methods stretched. People began to
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think about Traffic Control theory and method based on data-
driven [20], [21]. Because when it is difficult to develop a
model for a controlled system, we can use the system input
and output data to implement control and decision-making;
In recent years, breakthroughs in artificial intelligence theory
and methods and the evolution of large-scale cloud com-
puting and edge computing technologies have promoted the
development of new types of intelligent control centered on
artificial intelligence methods. Some scholars have proposed
artificial intelligence-based traffic control theory and method
[22]–[25], which is characterized by advancement, preven-
tion, and initiative.

2) TIME-SPACE RESOURCE COORDINATED TRAFFIC
CONTROL
By analyzing the time characteristics of the traffic flow, the
time-space resource coordinated control is achieved by effec-
tively utilizing the space resources at the intersection. 1) Tra-
ditional coordinated control of space-time resources (variable
lane control or tidal lane control): The study of traffic control
considering the coordination of space-time resources mainly
combines intersection design with signal control, including
intersection channelization or lane function design Dominant
static collaboration and dynamic lane collaboration based on
exclusive lane changes [26]–[28]. 2) Coordinated control of
space-time resources considering vehicle-road collaboration:
Coordinated control of space-time resources based on vehi-
cle speed guidance and signal lights based on vehicle-road
collaboration environment [29]–[32].

However, to the best of our knowledge, it is difficult to
obtain satisfactory results in terms of the effectiveness and
flexibility of current and future intersection control. Themain
reason is that these methods are limited by traditional traf-
fic control theories, which generally only use phase, phase
sequence, period, and green signal ratio as control variables.
Therefore, the traditional traffic control theory studies the
allocation of road time resources and it is difficult to effec-
tively allocate road space resources. However, road conges-
tion is often caused because the dynamic characteristics of
traffic flow often do not match the capacity of the lane. The
study of road time resource allocation in current and future
intersection control has reached the ceiling. Therefore, the
coordinated allocation of space-time resources will be an
effective method to solve this dilemma.

III. IPROPOSED MODEL
A. TIME-SPACE RESOURCE SCHEDULING MODEL
The intersection consists of an internal conflict area and
upstream and downstream connecting sections, as shown in
figure 2(a) and figure 2(a). Let the state equation of link
j in the set of connected links at the intersection by the
equation (1).

nj,a(k + 1) = nj,a(k)+ qj,a,in(k)− qj,a,out (k) (1)

In the formula, nj,a(k) is the number of vehicles in period
k on road j, a, qj,a,in(k) is the number of vehicles in period k

FIGURE 2. Storage and forwarding model of intersection.

entering the road j, a, qj,a,out (k) is the number of vehicles in
period k leaving the road j, a.

1) THE SPACE VARIABLES
To accurately characterize the dynamic characteristics of lane
properties, the paper first proposes the concept of ‘‘lane
genes’’. Then the turning properties of the lane change into
a control variable. As shown in figure 3(a), turning properties
of the lane include left turn, straight turn, and right turn, which
are described as L,T , and R.
Further, the smallest unit of traffic scheduling at the inter-

section is composed of the turning attribute of the entrance
lane of the intersection and the downstream link. As shown
in figure 3(b), j, a is the upstream road, o is the downstream
road. Fj,a(k) = {f

(j,a)
r (k)}r=1,2,...,m is the lane gene expres-

sion combination in period k , where f (j,a)r (k) represents the
gene expression of lane r , f (j,a)r (k) = {G(j,a→r)

u (k)}u=1,2,3,
where G(j,a→r)

u (k) is the gene of lane r and G(j,a→r)
u (k) ={

0, if Gene is not express
1, Gene is express

. A lane consists of three genes:

G1,G2, and G3. G1 → L means the first gene map is turned
left, G2 → T means the second gene map goes straight,
G3→ R means the third gene map is turned right.

0j,a(k) = {$j,a,o(k)}o=1,2,...,ωj,a(k) (2)

In the formula, 0j,a(k) is the set of spatial variables.
$j,a,o(k) is control variable, which is a function of the
number of lanes, as shown in equation (3). ωj,a(k) =∑3

u=1GFj,a(k)[∪](u), ωj,a(k) is the number of connections from
road j, a to road o. Fj,a(k)[∪] = f (j,a)r=1 (k) ∪ f

(j,a)
r=2 (k) ∪ · · · ∪

f (j,a)r=m (k), GFj,a(k)[∪](1) is the first gene in the lane set gene
expression,GFj,a(k)[∪](2) is the second gene in the lane set gene
expression, and GFj,a(k)[∪](3) is the third gene in the lane set
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FIGURE 3. Intersection lane genome.

gene expression.$j,a,o(k) =
ω
j,a
o (k)
m

ω
j,a
o (k) = {

∑m

i=1
Gj,a→o
i,u }u=1,2,3

s.t. 0 < $j,a,o(k) ≤ 1 (3)

In the formula, $ j,a
o (k) is the number of identical genes

after lane gene expression.

2) COMPREHENSIVE MODEL
From the spatial variables (2) and the store and forward
model (1), we can get:

nj,a(k + 1) = nj,a(k)+ qj,a,in(k)

−

min{ωj,a(k),ωXxj,a(k)}∑
o=0

$j,a,o(k)·Sj,a · gj,a,o(k) (4)

In the formula, Sj,a is the capacity of the road section,
gj,a,o(k) is the green light time of the phase of the road
section j, a in the sampling period k , and gj,a,o(k) ≥ gj,a,o,min.
gj,a,o(k) is obtained from the following solution space.

3) SOLUTION SPACE
The expression set of lane genome in all directions of the
entrance section of the intersection:

8x(k) = {F
(x)
I (k)}I=1,2,...,ε (5)

A set of phase combinations of lanes in all directions of the
entrance section of an intersection

when expressed in a fixed genome:

P8x (k) = {O
(8x)
II (k)}II=1,2,...,σ (6)

The set of the fixed phase combination time sequence of the
lane in all directions of the entrance section of the intersection
when a fixed gene is expressed:

<P8x (k) = {R
(P8x )
III (k)}III=1,2,...,ς (7)

From equation (5), (6) and (7), the solution space of lane
gene, phase and phase sequence relationship of intersection
is obtained, as shown in figure 4.

FIGURE 4. Solution space.

The solution space shown in figure 4 is described as a
feasible solution of gj,a,o(k) found in the solution space of the
equation (8) of the sampling period k . The feasible solution
can be applied to equation (4) to adjust the time and space
variables of green light. Equation (4) adjusts the time and
space variables of the green light.

Xx =
∑ε

I=1

∑σ

II=1

∑ς

III=1
ℵI ,II ,III

s.t. F (x)
I (k)→ O(8x )

II (k)→ R
(P8x )
III (k) (8)

where, ωXxj,a(k) of equation (4) is to find a feasible solution
in the constrained solution space of {gene, phase, phase
sequence} within the period k , and the number of phases
belonging to road j, a in the phase combination can be
obtained, as shown in equation (9).

ω
Xx
j,a(k) = {Xx : O

(8x )
II (k) ⊂ j|F (x)

I (k),R
(P8x )
III (k)} (9)

In the formula, the o of the green time gj,a,o(k) and the
spatial variable 0j,a(k) are related to the number of phases,
so they can be represented by ωXxj,a(k). min{ωj,a(k), ω

Xx
j,a(k)}

represents that the number of upstream and downstream links
is not the same as the number of phases. The reason is{
ωj,a(k) ≥ 1
ω
Xx
j,a(k) ≥ 0

, the upstream and downstream links cannot be

disconnected, but the phases can not be subordinate to the
phase sequence within the sampling period k .
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FIGURE 5. Gene expression results of lane at intersection entrance.

B. CONSTRAINTS ON SOLUTION SPACE
The solution space of the model needs to be given constraints
to make it reasonable.

1) CONSTRAINTS ON LANE GENE EXPRESSION
According to the design requirements of road grade and
road canalization in the standard, the maximum number of
genome expression combinations for a lane is eight, which are
{0,0,0}, {0,0,1}, {0,1,1}, {1,0,1}, {0,1,0}, {1,1,0}, {1,0,0},
and {1,1,1}.Where {0,0,0} has the same attributes as {1,1,1},
that is, the lane allows vehicles to turn left, go straight, and
turn right. o the maximum lane genome expression combina-
tions are seven. The requirements for lane gene expression
are: when all lanes are performing gene expression at the
intersection entrance, the intersection which has the least
conflicts after expression should be given priority.
Remark 1: Although lane gene expression is generally

based on the above requirements, that is, the number of
intersections is not increased or decreased, it is also necessary
to consider the role of the control of some intersections with
special traffic requirements during design process, such as
shown in figure 5.

2) CONSTRAINTS ON PHASE DIVISION
Assuming that a traffic flow occupies at least one lane, it can
be seen that the phase is composed of the signal status of the
traffic flow on one or more lanes. According to the gnomic
expressions of all lanes on the road section of the intersection,
the set P8x(k) = {O

8x
II (k)}II=1,2,...,σ of intersection phase

combinations can be obtained. The requirements of phase

division are: the number of severely conflicting intersections
of one or more traffic flows in the same signal status is zero.

3) CONSTRAINTS OF THE MODEL
According to the dynamic allocation model of space-time
resources, for each optimization cycle T , an optimization
scheme for lane gene expression can be calculated. When the
optimization scheme is inconsistent with the current opera-
tional scheme, it is necessary to judge whether to adopt the
optimization scheme or maintain the status. Not every time a
different lane gene expression needs to be generated. This is
because, on the one hand, when the change in traffic demand
is small, the benefits brought by lane control may be small;
on the other hand, changing lane functions will cost more,
which may cause driver confusion and cause hidden safety
risks. Therefore, in lane control, as a more stable part (slow
variable) of intersection control, the lane function should
be distinguished from the more easily changeable parameter
(fast variable) such as signal control [33]. Lane control should
be used only when the supply and demand relationship at
the intersection changes significantly, such as tidal traffic,
emergency rescue, emergencies, traffic congestion, intersec-
tion deadlock, bus priority, etc., and for general fluctuations
in traffic demand can be signaled Control to adjust. Generally,
the following factors need to be considered:

a: CONSTRAINTS ON THE FREQUENCY OF SCHEME
CHANGES
Lane control is different from the dynamic optimization
of signal control. The former is a reallocation of space
resources at intersections, and the latter is a reallocation of
time resources at intersections. Lane control will bring intu-
itive feelings to drivers by changing lane attributes. It has a
direct impact on its driving behavior. Therefore, lane control,
as a more stable part of intersection control, should limit its
changing frequency. Here, the highest changing frequency is
set to 10mins. It is expressed as follows:

h1(t) =

{
1, t > 600s
0, t ≤ 600s

(10)

In the formula, t is the running time of the current scheme.
h1(t) is the constraint condition for the frequency of program
changes, 1 means satisfied, 0 means not satisfied.

b: CONSTRAINTS ON THE STABILITY OF TRAFFIC FLOW
CHANGES
Small fluctuations in traffic demand are very common in
actual operation. The implementation of lane control can have
a good effect. It needs to have a more obvious development
trend when the flow direction of the intersection or the current
traffic demand has a relatively stable change. Decision condi-
tions for dynamic lane control limiting at least n consecutive
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sampling cycles are the same. It expresses as following:

h2(t) =


1, if A(T ) = A(T − 1) = A(T − 2)
= · · · = A(T − n)

0, else

(11)

In the formula, A(T ) is the lane control scheme calculated
at the control period T . h2(t) is the stability constraint for
the change in traffic demand, 1 means satisfied, 0 means not
satisfied.

c: CONSTRAINTS ON SPECIAL TRAFFIC DEMAND
When special needs such as emergency rescues and emergen-
cies occur, in order to respond to them quickly and effectively,
lane control can be implemented through human intervention
or special event index parameters. It expresses as following:

h3(t) =

{
1, if Z = 1
0, else

(12)

In the formula, h3(t) is a constraint of special needs,
1 means satisfied, 0 means not satisfied. Z ∈ [0, 1], 1 means
special event occurred, 0 means special event did not occur.

IV. OPTIMIZATION METHOD
The dual-layer optimization algorithm is designed to take
into account the different control frequency of lane attribute
variables and phase, phase sequence, and green light time
in the dynamic allocation model of space-time resources at
intersections. The upper layer of the algorithm is lane control
based on reinforcement learning and the lower layer is phase
control based on model predictive control ideas, as shown in
figure 6.

FIGURE 6. Dual-layer optimum algorithms.

When the initialization scheme starts executing, the full red
phase is inserted at the end of the initialization scheme, then
JS is started to judge and execute lane control. If JS ≥ 0,
the lane remains unchanged and phase control is performed.
If JS < 0 and n consecutive Ts have JS < 0, lane control
is activated. According to the indicator, an action is selected
from the gene expression action set of the tunnel, complete
the adjustment within the full red time, and then execute on
the phase control.

The capacity factor is one of the constraints, and it is related
to the capacity of intersections [34]. The traffic flow balance
constraint ensures that each traffic flow (signal group) has
sufficient green light time, that is, the actual capacity of each
vehicle traffic flow is greater than its average flow. However,
a certain signal schememust be selected so that the conditions
can be satisfied even if the flow rate changes. There are
several situations in flow rate change: some traffic flow will
decrease, some increase and some will remain unchanged.
In order to make it practical, the capacity factor is introduced
as the basis for signal switching of the intersection. The
capacity factor is as follows:

JS = JM − JN (13)

In the formula, JS is the capacity factor of the intersection.
JM is the passing rate of the intersection, which is the ratio
of the number of passing vehicles to the total number of
vehicles. JN is the blocking rate of the intersection, that is,
the ratio of the remaining queued vehicles to the total required
vehicles. 

JM =
Pcontrol

Pcontrol +1nqueue

JN =
1nqueue

Pcontrol +1nqueue

s.t.

{
JM ≤ 1
JN ≤ 1

(14)

In the formula,Pcontrol =
∑n

o=1 Sj,a · gj,a,o(k) is the capac-
ity of the intersection. 1nqueue =

∑n
o=1

nj,a,o(k)
nj,a

is the total
number of remaining queued vehicles at the intersection.
Remark 2: Under the conditions of input flow and con-

trol step size, when JS < 0, it means that the capacity of
the intersection is insufficient, so the traffic jam rate at the
intersection will continue to increase. The control effect of
the intersection continues to deteriorate under the current
control scheme. If no other measures are applied, the queue
will be overflow, that is, no signal scheme can meet the
capacity requirements. At this time, the intersection capacity
is considered to be very poor. When JS = 0, it means that
the traffic capacity at the intersection is equivalent, but the
vehicle passing rate and the blocking rate at the intersection
remain unchanged, and the queue length at the intersection
is stable. At this time, the intersection is considered to had
better traffic capacity. When JS > 0, it means that the traffic
capacity at the intersection is sufficient, the vehicle passing
rate at the intersection continues to increase, the control effect
at the intersection continues to improve, and the queue length
at the intersection is gradually reduced. At this time, the
traffic capacity at the intersection is considered to be better.

A. LANE CONTROL BASED ON REINFORCEMENT
LEARNING
1) STATE SPACE
The maximum queuing length N (k) = max{ni(k)|i =
1, 2, . . . ,m} of phase at all entrances of the intersection is
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used as the state matrix when there are n consecutive Ts where
JS < 0. The maximum queuing length of all entrance phases
at the intersection is taken as the state of the intersection when
n consecutive Ts.

2) ACTION SPACE
Using the gene expression set of lanes at all intersections as
an action space, when a state is observed, an action must be
selected from the currently alternative action set, that is, a set
of gene expressions is selected from the intersection set of
genomes. The principle of action selection: the mean square
error between the gnomic expression in the previous state and
the current selected gnomic expression at the intersection is
small, and the direction capacity is increased by increasing
the JS to determine the phase.

3) REWARD FUNCTION

r =

{
0 |[JS (k + 1)]2 − [JS (k)]2| < 0
1 |[JS (k + 1)]2 − [JS (k)]2| ≥ 1

(15)

4) AlGORITHM STEPS
Step1 Initialize Q to an arbitrary value.
Step2 The initial states consists of the queuing state N (k)

at the intersection at time k .
Step3 Using the experience of the Q value, an action a is

selected according to the strategy in the feasible lane genome
action set A corresponding to the state s.
Step4 Perform action a. Observe the reward function r and

the new queue state s′ at the intersection.
Step5 Update

Q.Q(s, a)← Q(s, a)+ α[r + γ max
a′∈A

Q(s′, a′)− Q(s, a)].

Step6 Assign s′ to s.
Step7 JS < 0 exists when there are n consecutive Ts.
Step8 Repeat steps three and six until Q value converges.
Note: r is the reward of the intersection capacity coeffi-

cient, α is the learning rate, γ is the discount factor.

B. PHASE CONTROL BASED ON MODEL PREDICTIVE
CONTROL IDEAS
1) MODEL PREDICTIVE CONTROL IDEAS
The phase control algorithm is designed using model pre-
dictive control ideas [35], as shown in figure 7. The inputs
are the traffic and queuing at the intersection when a phase
is executed in the period k . In the solution space, n phases
matching the current execution phase are selected as candi-
dates for the next execution phase, and m successive phases
for each candidate phase are selected as the control chain.
Construct the objective function J , and use genetic algorithm
to optimize n control chains. The resulting J of the n control
chains are sorted, and the first phase of the control chain
with the smallest J is used as the next execution phase of the
current phase. The obtained interval time, phase and green
time are used as outputs.

FIGURE 7. Phase control based on model predictive control ideas.

2) ALGORITHM STEPS
Step1 Execute current phase and green time. When Gilock is
executed, the traffic flow and queuing status of each section
of the current intersection are output.
Step2 Start the phase control chain prediction, and select

the compatible control chain scheme group of the currently
executed phase from the set phase control chain scheme
groups. Take traffic flow and queuing status in Step1 as input.
With J as the objective function and the genetic algorithm as
the optimization algorithm, all the schemes in the compatible
phase control chain scheme group are executed separately.
Rank the J obtained by all control chain schemes and out-
put the first phase, green time and interval time of the first
compatible phase control chain scheme. This process uses an
asynchronous mufti-threaded calculation and the calculation
time is Gilock .
Step3 Output the interval time, phase, and green time

calculated in Step2 to the main process. It is executed when
Gilock of the current phase ends.

Remark 3: Execute the current phase and green time.When
Gilock is executed, the traffic flow and queuing status of each
section of the current intersection are output. The concept
of control chain is proposed for the first time, which is
different from the cycle in traditional intersection control. The

constraint
{∑n

i=1Gi = C − L
Cmin ≤ C ≤ Cmax

of cycle in traditional control

is not established in this paper. The control chain describes
the dynamic behavior of intersection control. It consists of
phase, phase green light time, and phase interval time, which

satisfies constraint
{
Cmin ≤ C ≤ Cmax

Li ≥ 0
. The phase expres-

sion is the control chain element, and the green light time and
the phase interval time are the control chain element length,
as shown in figure 8(a). The model in this paper does not have
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FIGURE 8. Control chain and decision step.

TABLE 1. Basic parameters of simulation.

periodic characteristics, so the control step size of the model
cannot be determined. To this end, the decisive step size
consisting of decision points and decision time is calledGilock .
Generally takeGilock = 5s. It canmeet the requirements of the
length of calculation and decision-making time, and meet the
computing power limit and decision-making effectiveness.
As shown in figure 8(b).

V. EXPERIMENTAL VERIFICATION
A. SIMULATION CONDITIONS
VISSIM was used to compare the proposed method with
timing control to verify its effectiveness. The input data for
VISSIM is the filed data of the intersection of Shengli East
Street and Siping Road in Weifang City, Shandong Province,
China. Each simulation cycle is 36000s and the average value
of ten simulations is calculated for the comparison. Evalua-
tion indicators are the total travel time at the intersection and
the total queue length. The details are given in table 1 and
table 2.

B. EXPERIMENTAL VERIFICATION
Traffic control of the intersection with given traffic
flow is simulated, the undersaturation and supersaturation

TABLE 2. Basic parameters of the control plan.

requirements of the intersection are simulated with different
input flows. The control method in this paper compares to
the timing control. The timing control is achieved by offline
calculation.

Analyze the flow, density and speed at the entrance and exit
sections of the intersection, as shown in figure 9(a)-9(f).

In the figure above, road 1, road 3, road 6 and road 8 are
intersection entry roads, road 2, road 4, road 5 and road 7 are
intersection exit sections. As shown in figure 9(a) and 9(b), at
the beginning of the simulation, the flow at the entrance road
is large, and the flow at the exit road is small. In response
to the change in simulation time and input flow, timing
control and control in this paper make the input and output
flow at the intersection have similar trends, but observations
found Under the control method in this paper, the changes in
the flow rate of road 1 and road 8 are larger than those of
the timing control. As shown in figure 9(c) and 9(d), at the
beginning of the simulation, the density of the entrance road
is relatively high, and the density of the exit road is relatively
small. As the simulation time and the input flow change, the
timing control and the control of this paper make the density
of the entrance road of the intersection have a similar trend,
but it is observed that Under the control method in this paper,
the density changes of road 3 and section 6 are larger than
those of timing control. As shown in figure 9(e) and 9(f),
the speed of the entrance and exit roads of the intersection
is relatively small during the simulation process. The timing
control and the control of this paper make the speed trend
of the exit section relatively the same. However, it is found
that the entrance road 3 is affected by the control method
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FIGURE 9. Variation of traffic parameters at entrance road of the intersection.

in this paper the speed of road 6 is higher than the timing
control speed. In summary, the changes in the entrance and
exit flow, density, and speed of the intersection conform to the
law of traffic flow changes, and the traffic flow parameters of
the intersection are better when the control of this paper is
adopted.

Table 3 are compared the total travel time and average
queuing length of vehicles at intersections under different
control methods (The paper method and [36]). Table 3 shows
that the total travel time of the vehicle passing through the
intersection when using the control method in this section is

lower than the total travel time of the vehicle passing through
the intersection when using the reference 38. The average
speed on the road is higher. The average queuing length of
intersections in the control method in this section is lower
than the average queuing length of intersections. It can be
obtained that the control in this section has a better control
effect than the reference 38. However, the average queue
length at the intersection under reference 38 is longer than the
average queue length at the intersection under control in this
paper when the simulation time is 8100s, as shown in table 3.
The reason is that the input flow at the intersection changes

VOLUME 9, 2021 49289



L. Zhang et al.: Urban Intersection Signal Control Based on Time-Space Resource Scheduling

TABLE 3. Effect comparison for fixing control and this control.

greatly, and the traffic flow needs a certain adaptation time
when the control method in this paper is adopted.

VI. CONCLUSION
In this paper, we propose a method to build a space-time
resource scheduling model and a double-layer optimal con-
trol algorithm for future urban intersections, which takes the
road as the main control measure inspired by the vehicle road
coordination technology. A detailed process of space-time
resource modeling is given. The space-time model variables
are designed to increase the dimension of model variables and

expand the control ability. Furthermore, a two-level optimal
control method based on reinforcement learning for lane con-
trol andmodel predictive control of phase control is designed,
and a comprehensive experiment is carried out with simu-
lation data. The results show that the method is superior to
the traditional traffic control method in both control effect
and control flexibility. In addition, the potential of the space-
time resource schedulingmodel is also reflected in the control
of more complex mixed traffic flow at intersections, such
as emergency vehicles, bus priority, etc. However, there are
still two shortcomings in this paper: 1) the influence of lane
change on driver’s driving behavior is not considered; 2) the
chain connection of lane control and phase control is designed
by using the method of artificial experience, that is because
the calculation cost of traversing all combinations in solution
space is too high. In the future, we will study the above two
problems in detail, and try to extend the method to the area
of traffic control.
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