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ABSTRACT Under Industry 4.0, manufacturing quality prediction has been gaining increased interest from
researchers and manufacturers. From the analysis of previous studies on quality predictions using machine
learning, it became clear that the high dimensionality and imbalance of data are major and common problems
affecting the learning performance. This work uses a hybridmethod to address this issue, applying a Synthetic
Minority Oversampling Technique & TomekLinks balancing approach to create balanced data and using
Random Forest as the feature selecting measurement to reduce the dimensionality of data. In addition,
a Fine Gaussian Support Vector Machine (Fine Gaussian SVM) based on the representative set of features
selected by the hybrid method utilized is employed in this work to predict product quality. The results of
experimentation demonstrate that the hybrid method proposed in this work performs well for manufacturing
quality prediction and offers a simple, quick and powerful way to address the problem of feature selection
encountered by the imbalanced classification.

INDEX TERMS Imbalanced data, feature selection, quality prediction, Industry 4.0, random forest, fine
Gaussian SVM.

I. INTRODUCTION
With the advent of Industry 4.0, also referred to as the
fourth industrial revolution, smart factory and manufacturing
has become a new trend that seems to be the future for
industrial development. As a result, advances in the Internet
of Things (IoT), Big Data, Cloud, Artificial Intelligence (AI)
and other technology are impelling Industry 4.0 to become
a reality. By processing massive amounts of manufacturing
data (internal and external) and leveraging AI technology it
is possible to enable intelligent and quick decision-making
for manufacturers to enhance product quality, increased yield,
and reduced cost.

In contrast to traditional quality prediction, which relies
on professional or statistical analysis, AI technology offers
an advanced approach and superior performance due to
its self-learning ability without having to consider man-
ufacturing processes. Due to the characteristics of the
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modern manufacturing process, manufacturing quality data
are generally complex, high-dimensional, and skewed, which
causes some problems for constructing an efficient quality
prediction model.

To address the imbalanced classification issue, some
researchers prefer to resolve from the perspective of a data set
adopting a resampling algorithm [1 ∼ 3], while others prefer
to design new algorithms or improve upon existing algorithms
[4 ∼ 6]. On the other hand, for the issue of high-dimensional
features, feature selection [7] or feature extraction [8] are
mostly applied.

This study attempts to investigate the dimension reduction
issue through feature selection algorithms based on the
imbalanced data, taking the manufacturing quality prediction
as an application example. A hybrid algorithm RFSTL,
is proposed based on the SMOTE&Tomek links algorithm
for balancing data, and Random Forest for feature selection.
By this way, the imbalanced and high dimension issues
are solved in the data and feature processing stage, before
model learning. Furthermore, the Fine Gaussian SVM was
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simulated to predict manufacturing quality as a case study.
These experiments demonstrate that, assisted by the RFSTL
algorithm, the conventional classification algorithms can
work effectively in the case of an imbalanced dataset with
a high dimension.

In this paper, Section 2 introduces work related to feature
selection, Section 3 illustrates the methodology being used,
Section 4 describes the simulation and experiments, and
Section 5 concludes the simulation results of this study.

II. RELATED WORK
A. IMBALANCED DATA RECONSTRUCTION
Imbalanced data means there is a disparity in the number
of different classes in the dataset. If one dataset exhibits
an unequal distribution between classes, one class (majority
class) outnumbering the other class (minority class) by a large
proportion, it will be considered as being imbalanced data
implying imbalanced classification.

Imbalanced classification [9] is a learning problem that
results in classification performance deterioration causing
biased predictions for the majority class and would generally
be misleading. The fundamental reason [10] is that traditional
machine learning algorithms are accuracy driven, which
assumes the data set to be balanced and aims at minimizing
the overall error obtained from different classes with the same
cost.

Two measurements [11] are commonly employed to solve
the imbalanced classification problem: one is to reconstruct
imbalanced data and the other is to design a proprietary
algorithm [12]. Compared to the algorithm design [13],
data reconstruction is simpler and more direct. Furthermore,
the core mechanism of data reconstruction is to alter the class
distributions by resampling the data, which can be divided
into three categories:

1. Undersampling

The undersampling (downsampling) [14] method aims to
balance the data set by reducing the number of observations
from the majority class. Typical undersampling algorithms
are introduced below.

• Random undersampling

The random undersamplingmethod is a non-heuristic method
based on randomly selecting observations from the majority
class. It cannot make full use of existing information and may
throw out the potentially useful information pertaining to the
majority class.

• Tomek Links

The Tomek Links algorithm [15] removes the observations
according to a pre-specified criterion by deleting samples
belonging to the majority class in Tomek Links or removing
them all.

• Informed undersampling

The Informed undersampling algorithm can solve the prob-
lem of data loss caused by traditional random undersam-
pling. The best known informed undersampling algorithms

are the EasyEnsemble algorithm and the BalanceCascade
algorithm [16].

2. Oversampling
The oversampling (upsampling) [17] method works by
replicating observations from the minority class to obtain
balanced data. The prominent disadvantage of oversampling
is the likelihood that overfitting may be increased due to the
extra copies of the minority class examples that are created.
Typical oversampling algorithms are introduced below:
• Random oversampling

The random oversampling method is designed to add
replicated observations of the minority class normally, which
can lead to the information learned by the model to be too
specific, not general, and causing overfitting.
• SMOTE

The Synthetic Minority Over-sampling Technique (SMOTE)
[18] generates artificial data and adds observations for the
minority class based on similarities of feature space. First,
it selects a random sample from its nearest neighbor for
each minority sample. Then it chooses a random point along
the line segment connecting these two samples as the new
synthetic sample.

Several methods have been developed to improve the
original SMOTE algorithm such as borderline-SMOTE1 and
borderline-SMOTE2 [19], as well as Synthetic Minority
Over-sampling Technique Nominal (SMOTE-N) and Syn-
thetic Minority Over-sampling Technique Nominal Contin-
uous (SMOTE-NC).

3. Combined sampling
The SMOTE&TomekLinks method [20] has been proposed
for study on the protein classification in bio-informatics using
a decision tree where the SMOTE&TomekLinks method
performs well for imbalanced data.

B. FEATURE SELECTION
Feature selection, a frequently-used measurement to deal
with high dimensionality, can decrease the data dimension-
ality by removing irrelevant features from the raw data.
It automatically selects features from the raw data (input
of one machine learning model) that contribute most to the
prediction variable (output of this machine learning model).
In this way, three benefits can be obtained for modeling:
shortening the training time, reducing the risk of overfitting,
and improving the performance of the model. According to
the different learning algorithms, feature selection methods
can be primarily divided into three categories:

1. Filter methods for feature selection
Filter methods [21] for feature selection act as a
pre-processing step that independently selects the feature
subset and runs quickly. Some widely applied filters
for feature selection are methods based on correlation
coefficients, methods using Fisher ratio, methods based on
ReliefF, methods utilizing minimum redundancy maximal
relevance and so on.
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• Feature Selection based on Correlation Coefficient
Feature selection based on correlation coefficient [22],
a simple filter algorithm, ranks feature subsets according to
an evaluation formula measuring the correlation coefficient
computed by the linear correlation coefficient, Pearson’s
correlation coefficient, etc.. In addition, a heuristic search
strategy is utilized to identify relevant features that are highly
correlated to the target.
• Feature Selection based on Fisher Ratio

Fisher Ratio (FR) scores are estimated to identify the subset
of features in the data space spanned by those features. The
distance between data points in the same class should be as
small as possible, while the distance between data points in
different classes should be as large as possible.
• Feature Selection based on ReliefF

Feature selection based on ReliefF [23] is an extension
method of the original Relief algorithm [24]. In contrast to
the original Relief method designed for binary classification
problems, ReliefF has no limitations on the number of
classes, and is capable of dealing with incomplete and noisy
data. On the other hand, similar to Relief, ReliefF is aware
of the contextual information and can correctly estimate the
quality of attributes in problems with strong dependencies
between attributes.
• Feature Selection based on Minimum Redundancy and
Maximum Relevance

Minimum Redundancy and Maximum Relevance (mRMR)
[25], [26] measures the similarity between features and
targets according to the mutual information and aims to select
a subset of features where each feature has the maximum
relevance between the feature and the target, as well as the
minimum redundancy among the rest of the features in the
subset.

2. Wrapper methods for feature selection
Wrapper methods for feature selection [27] work like a
black box. Regardless of the chosen learning machine, they
can assess and score features depending on the prediction
performance of a given learning machine to find the relative,
useful variables. Some popular wrappers for feature selection
are methods based on each single feature’s prediction
accuracy, methods adopting sequential forward selection,
methods applying the genetic algorithm, and so on.
• Sequential Forward Feature Selection

The Sequential Forward Selection (SFS) algorithm is one of
the heuristic algorithms commonly used to choose the repre-
sentable features by adopting the methodology of K-Nearest
Neighbor as classifier, and the approach of leave-one-out as
the recognition rate estimate method. It sequentially selects
a feature as the candidate feature until the addition of further
features does not decrease the criterion.
• Feature Selection based on Genetic Algorithm

Genetic algorithms (GAs) [28], a form of inductive learn-
ing strategy, are employed for feature selection which is
treated as a combinatorial optimization problem. Yang and

Honavar [29] has demonstrated that searching the ‘‘optimal’’
features for targets by Genetic algorithm is a substantial
improvement on a variety of random and local search
methods.

3. Embedded methods for feature selection
Embedded methods for feature selection have recently been
proposed as competition to filters and wrappers. They
perform in the process of training and are usually specific
to the given learning machines. Some typical embedded
methods for feature selection are methods using random
forest, methods based on stepwise fitting, methods applying
SVM-recursive feature elimination (SVM-RFE), such as the
original linear version of that, or the kernel version, and so on.
• Feature Selection based on Random Forest

The Random Forest (RF) [30] is an ensemble predictor
consisting of numerous weak classifiers (decision trees).
It can be used to measure the importance of an attribute as
a straightforward method for feature selection. It has been
successfully applied to do feature selection for high dimen-
sional data, arising from microarrays [31], time series [32],
and even on spectra [33]. The most widely used measures
to calculate the score of importance for feature ranking are
the mean decrease accuracy (MDA) and the mean decrease
Gini (MDG). MDA quantifies the importance of a feature by
measuring the change in prediction accuracy when values of
features are randomly permuted and compared to the original
observations. MDG adds up all decreases in Gini impurity
due to the given feature which forms a split in the Random
Forest.
• Feature Selection based on Stepwise Fitting

Feature selection based on stepwise fitting, in contrast to
the general sequential feature selection, normally makes use
of optimizations that are only possible with least-squares
criteria.
• SVM-recursive feature elimination

SVM-recursive feature elimination (SVM-RFE) [34] is a
feature selection algorithm based on SVM that calculates
weights of features, removes features with the lowest weights
iteratively and ranks features’ importance according to the
removing sequence. The linear SVM-RFE [35] is applied to
select critical features by overall ranking or class-specific
ranking. Moreover, the Gaussian kernel SVM-RFE performs
better than the linear SVM-RFE when dealing with complex
and nonlinear issues.

In addition, there are many hybrid methods that compre-
hensively apply multiple feature selection algorithms belong-
ing to the different types mentioned above. For instance,
the hybrid feature selection of combining filters and wrappers
is applied in some of the researched methods [36], [37].

C. CLASSIFICATION BY SUPPORT VECTOR MACHINE
Support vector machine (SVM), first introduced by Vap-
nik [38], is a successful modeling technique based on
machine learning for classification (especially the binary
classification) and regression. Because of the Structural Risk
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Minimization (SRM) principle [39], SVM has a powerful
ability to handle overfitting by minimizing the upper limit
of error generalization. In addition, SVM can be classified
in general categories due to the kernel functions adopted,
for example, the linear, Radial Basis function, Polynomial
function, and Gaussian functions.

The Fine Gaussian SVM utilizes the Gaussian function
as a kernel and has a high model flexibility to decrease
scale setting. It can make finely detailed distinctions between
classes, with kernel scale set to

√
P/4 where P is number of

predictors.

III. METHODOLOGY
Due to the reality of manufacturing under Industry 4.0,
the production data collected from manufacturing generally
have a high dimension and the product data, identifying
the defective product and qualified product, have a skewed
class distribution. These two issues have been considered and
resolved through two different approaches: feature selection
and data resampling.

In this paper, the Random Forest algorithm is used
to evaluate the importance of each feature, and on this
basis, select feature variables from the original data satis-
fying the following conditions: (1) highly correlated with
the dependent variable; (2) fully predict the results of the
dependent variables with a small number. In this way,
the dimensionality of feature space can be reduced and
the performance of the algorithm or the model can be further
improved.

In this paper, a combination of resampling methods,
SMOTE&TomeLinks, is used to solve the classification prob-
lem of imbalanced data sets and generate reasonably balanced
data. This is done so that the standard machine learning
classification algorithm can be directly and successfully
implemented on the generated data set, without the need to
design an exclusive imbalanced classification algorithm.

Therefore, a hybrid method, RFSTL (Random Forest com-
bined with SMOTE&TomekLinks), is proposed for doing
feature selection based on imbalanced data. This method
implements data resampling using the SMOTE&TomekLinks
method and uses Random Forest for feature selection. The
flowchart of RFSTL is shown in Fig 1.

As is shown in Fig. 1, there are two crucial modules in
the RFSTL method, one is for generating balanced data and
another is for selecting optimal features for classification.

A. DATA BALANCING
Problems often criticized in the single use of over-sampling
or under-sampling methods are:

1. Deviation: sampling may change the distribution of
initial data which will lead to deviation. Most oversampling
methods will make the variance of variables appear smaller
than it actually is, while under-sampling will make the
variance of independent variables appear higher than it
actually is.

FIGURE 1. Flowchart of the method RFSTL.

2. Overfitting: it is difficult to increase the information
contained in the data by oversampling to increase the amount
of data of a small number of samples, which is easy to cause
overfitting of the model.

3. Overlapping: when there is too much overlapping
of data, especially the noise, the classification effect may
become worse because the noise is also repeatedly used.

Due to the respective defects of oversampling and under-
sampling, this work combines these two methods to ensure
the data’s quality after resampling,and to guarantee that
the data points are as diverse as possible (non or less
overlapping) in data sets, in order to avoid or solve problems
listed above. Therefore, the main steps for implementing the
data balancing module of the RFSTL method are illustrated
below:

1. Create artificial samples for minority class by SMOTE
utilizing the similarity between the existing samples belong-
ing to the minority class in the feature space based on
bootstrapping and k-nearest neighbors.

• Let Smin be the subset of samples for minority class and
let Smaj be the subset of samples for the majority class.

• Identify the K-nearest neighbor based on Euclidean
Distance for each observation xi belongs to Smin.

• Randomly choose a few neighbors, the number of
neighbors depends on the rate of over-sampling.

• Generate the synthetic samples for minority class
and spread them along the line joining the K-nearest
neighbor to its nearest neighbors.
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The algorithm to generate artificial samples based on SMOTE
is illustrated as follows:

Algorithm 1 Generate Artificial Samples
Input:M;O; n\
/∗M : number of samples belong to the minority class; O:

amount of SMOTE O%; n: number of nearest neighbors∗/
Output:S_synthetic

// S_synthetic: synthetic samples belong to the minority class
Process:

1: if O < 100 then
2: Randomize theM samples belong to the minority class
3: M = M ∗(O/100)
4: O = 100
5: end if
6: Compute: O = (int) (O/100)
7: Create: S_minority[][]
//array for samples of the original minority class
8: Create: S_synthetic[][]
//array for synthetic samples
9: Create: nn[][]
//array for nearest neighbors
10: Define: na = number of attributes
11: Define: new_index = 0
/∗number of synthetic samples generated and initialized to
0∗/
12: Define: i = index of original samples
13: fori←1 to Mdo
14: while O 6= 0 do
15: Define: index = random(1,n)

// a random number between 1 and n
16: Compute: nn_index = nn[index]

//index for one of n nearest neighbors of i
17: for j←1 to na do
18: Compute:

diff = S_minority [nn_index] [j] − S_minority [i] [j]
19: Define: gap = random(0, 1)

// a random number between 0 and 1
20: Compute:

S_synthetic[new_index][j]= S_minority [i] [j]
+gap∗diff

21: end for
22: new_index ++
23: O −−
24: end while
25: end for
26: return S_synthetic

The SMOTE algorithm is blind in the selection of nearest
neighbors. As can be seen from the above algorithm process,
it is necessary in the process of algorithm execution to
determine the n value, that is, how many nearest neighbor
samples to select. This must be solved by the users
themselves. From the definition of n-value, we can see that
the lower limit of n-value is the number of neighbor samples

randomly selected from k nearest neighbors, which can be
determined by the number of negative samples, the number
of positive samples and the final balance rate of the data set.
However, there is no way to determine the upper limit of n
value, so we can only test repeatedly or use the empirical
value according to the specific data set.

2. Cleaning duplicate instances from the sampling data
based on Tomek Links.

• Definition:

Tomek links (T-Links) are defined as connections between
a pair of nearest-neighbor samples from the opposite-class.
Given an instance pair: d(xi, xj), where xi is an instance of
minority class I and xj is an instance of majority class J which
belongs to different classes.

• Criteria:

If for any instance xk, d(xi, xj) < d(xi, xk) or d(xi, xj) <

d(xj, xk), then the (xi, xj) will be denoted as a T-Links.
Furthermore, if any two samples constitute a T-Links then
one of them will be either a noise or both will be located on
or close to the boundary of classes.

The Tomek links are utilized in this work to remove
unwanted duplicate samples after synthetic sampling by
SMOTE. Two different operations are performed on the
sample pair in Tomek links:

1. Under-sampling: If the sample pair contains theminority
class sample of the original imbalanced data set, then
the sample belonging to the majority class in the pair is
eliminated.

2. Data cleaning: If the sample pair does not contain the
minority class samples of the original imbalanced data set,
then remove both samples in the pair.

The algorithm to clean duplicate instances from the
sampling data based on Tomek Links is illustrated as follow:

B. FEATURE SELECTION
The ordinary Random Forests, an ensemble of CART (Classi-
fication and Regression Tree) Decision Trees, is constructed
to measure the feature importance score and select the most
predictive features for classification. The main steps are
illustrated as follow:

1. Generate the Random Forest to maximum size and do
not prune.

First, CART, acting like an individual learner, is combined
to form the Random Forest [40]. In each CART, incoming
observations are divided and sent from the root, or the parent
node, to their child node according to a specific split rule. This
recursive partitioning process aims at purifying the incoming
observations to ensure that it only contains one class of
observation.

2. Measure Feature importance based on the Mean
Decrease in Gini Impurity (MDG)

As a general indicator of feature relevance, the Mean
Decrease in Gini Impurity (MDG) [41] can be adopted to
measure the feature importance. TheMDG for a given feature
is the average of the difference between the Gini Impurity
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Algorithm 2 Clean Duplicate Instances
Input: S_SMOTE,S
/∗ S_SMOTE: a balanced data set obtained by the algorithm

SMOTE; S: original imbalanced data set∗/
Output: S_STL
/∗ S_STL: a balanced data set obtained by the algorithm

SMOTE removing duplicate instances contained in the
Tomek_Links. ∗/
Process:

1: Create: \ S_minority,SS_minority
/∗S_minority: array store instances of the minority class in
S; SS_minority: array store instances of the minority class in
S_SMOTE∗/
2: Create: SS_majority
/∗array store instances of the majority class in S_SMOTE∗/
3: Create: Distance
/∗array store distances between each instances from
SS_minority, SS_majority, and S_SMOTE denoted as d (xi,
xj), d (xi, xj), and d (xi, xk)∗/
4: for each instance xi in SS_minority, xj in SS_majority do
4: Compute: d (xi, xj)
5: Store d (xi, xj) in Distance
6: end for
7: for each instance xi in SS_minority, xk in S_
SMOTE do
8: Compute: d (xi, xk)
9: Store d (xi, xk) in Distance
10: end for
11: for each instance xj in SS_majority, xk in S_ SMOTE
do
12: Compute: d (xj, xk)
13: Store d (xj, xk) in Distance
14: end for
15: for all instances in the Distance do
16: if d (xi, xj) < d (xi, xk) or d (xi, xj) < d (xj, xk) then
17: if instance xi is\in S_minority then
18: Delete the xj from S_majority.
19: else
20: Delete the xi from S_minority and the xj from
S_majority.
21: end if
22: end if
23: end for
24: Create: S_STL
25: Store S_minority and S_majority into S_STL
26: return S_STL

of the parent node and the Gini Impurity of the child nodes
over from all trees in the forest for that feature. The higher
the MDG value of a given feature, the more important that
feature is, making it more effective.

The vital indexes of the Mean Decrease in Gini Impu-
rity (MDG) to calculate the feature’s importance score are
described as follow:

• Gini index
If the incoming data set of node v contains samples from
c classes, the Gini index Gini (v) for the node impurity is
defined as the Formula 3.1.

Gini(v) = 1−
c∑
j=1

p2j (3.1)

pj represents the proportion (relative frequency) of class
j (value from 1 to c where c is the number of class) in the
incoming data set of node v. Gini (v) is minimized if the
classes in j are skewed.

If the node v is split into two child nodes vl (left child)
and vr (right child), whose sample size are denoted as D(vl)
and D(vr ), the Gini index of the split data is defined as the
Formula 3.2.

Ginisplitted (v) =
D(vl)
D(v)

Gini(vl)+
D(vr )
D(v)

Gini(vr ) (3.2)

The feature providing smallest Ginisplitted(v) is chosen to
split the node.
• Decrease in Gini Impurity

Decrease in Gini Impurity is measured by Formula 3.3, which
identifies the change in impurity of a node caused by data
splitting. A high Decrease in Gini Impurity implies that the
node and its corresponding feature are valuable to separate
the classes.

1Gini(v) = Gini(v)− Ginisplitted (v) (3.3)

• Importance score of features
Importance score of the feature Xj in a decision tree Tk is

defined as the Formula 3.4.

IS(Xj) =
∑
v∈Tk

1Gini(v) (3.4)

Importance score of the feature Xj overall K trees in a
Random Forest are defined as in Formula 3.5.

IS(Xj) =
1
K

k∑
k=1

IS(Xj) (3.5)

C. STOPPING CRITERIA FOR FEATURE SELECTION
The stopping criteria adopted to determine when the feature
quantity can reach the optimal number and stop the process
of feature selection is defined as follows.
Step 1: Input N features according to the importance score

measured in a descending order recursively to the classifica-
tion model Fine Gaussian SVM, where N ∈{1,2,. . . ,n} and is
increased from 1 to n (sum of all features):
Step 2: Evaluate the value of F1-Measure and Area Under

the Curve (AUC) achieved by the classification respectively.
Whenever the criteria 1 or 2 is satisfied the loop of feature
selection will stop and features currently selected will be
identified as the optimal subset of features for classification.
Criteria1: The maximum value of F1-Measure achieved

by the minimum number of features. In other words, features
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selected are identified as the optimal subset when the highest
value of F1-Measure occurs at the first time, before the
value of F1 decreases, while the number of features selected
increases.
Criteria2: The value of AUC is approximately equal to 1 at

the first time.
The algorithm to perform feature selection based on

Random Forest, is illustrated as follow:

Algorithm 3 Feature Selection Based on Random Forest

Input: S = {(Xi,Yi)Ni=1|Xiini
M ,Yi ∈ {1, 2, . . . , c}};K

/∗S: data set obtained after data balancing described
in section 3 where Xi represents predictor variables, Yi
represents the class response feature, N is the number of
training samples and M is the number of features; K is the
number of trees∗/

Output:VF
// VF: the most valuable features selected.

1: for k ← 1 to K do
2: Draw a bagged subset of Sk from S
3: while (stopping criteria of tree construction is not
satisfied) do
4: Construct a CART Tk
5: end while
6: end for
7: Combine all K CART together to form a Random Forest
RF
8: for j← 1 to N do
9: Compute importance score of the feature Xj

/∗compute the importance score of the feature by
Formula 3.5∗/
10: end for
11: Rank features according to its importance score in a
descending order and store them in SF
12: for f ← 1 to M do
13: Select IFi from Xi according to top f features

from SF
14: Generate new data set S ′ by combine IFi with Yi

S = {(IFi,Yi)Ni=1|IFi ∈ i
f ,Yi ∈ {1, 2, . . . , c}}

15: Input S ′ into the Fine Gaussian SVM for classification
16: Evaluate F1 and AUC of the Fine Gaussian SVM
17: while (stopping criteria of feature selection is

satisfied) do
18: Define: VF= top f features from SF
19: end while
20: end for
21: return VF

IV. SIMULATION AND EXPERIMENT RESULTS
To evaluate the performances of the hybrid method proposed
in this study, a complete simulation plan was designed
and performed taking manufacturing quality prediction as
a research case. The flowchart of the simulation is shown
as Fig.2.

FIGURE 2. Flowchart of Simulation performed in this study.

A. DATA PREPROCESSING
The data set (Secom) adopted in this work is achieved from
the website of the University of California Irvine [42]. It con-
tains 1567 instances, 590 features and 1 yield. There are a lot
of missing data denoted as ‘‘NAN’’ in this data set, because it
is collected during a real semiconductor manufacturing. Two
different missing data processing strategies were proposed to
generate a complete data set in order to prevent the adverse
effects on the model performance.

1. Observations Filter

Calculate the percentage of the missing value for each
instance and delete instances if its missing percentage is
greater than 10%. Finally, 34 instances were deleted in which
only 1 instance was included in the minority class (defective
products) and 33 instances were included in themajority class
(qualified products).

2. Missing data imputation

K Nearest Neighbor (KNN) algorithm [43] is implemented
to generate a complete data set, described in Table 1. Taking
into account that observations in this data set are collected in a
short time interval; the nearest neighbor is selected according
to the minimum Euclidean distance. In addition, the missing
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TABLE 1. Description of data set for simulation.

value is estimated utilizing the weighted average value of the
nearest neighbor.

3. Normalization
Since the unit of features in the data set was unknown,
the measurement value of each feature was dramatically
different. To eliminate the limitation of the data unit,
the feature value was converted into the dimensionless
number which facilitated the comparison and weighting
of features in different units or magnitudes. This study
specifically scaled the data in the data set and normalized the
measured value of each feature to a value range from 1 to -1.

B. FEATURE SELECTION BASED ON AN IMBALANCED
DATA USING THE RFSTL METHOD
The RFSTL method proposed in this study is simulated to
select features from an imbalanced data set, and various
feature selection methods are simulated for comparison.

1. Data Balancing
The data set after preprocessing, including 1430 instances for
qualified yield (majority class) and 103 instances (minority
class) for defective yield, shows a typical characteristic of
between-class imbalance whose sample ratio of majority
to minority is 14:1. The RFSTL method proposed in this
study is adopted to achieve a balanced data set containing
2860 observations in total in which there are 1430 instances
for the majority class and 1430 instances for the minority
class, The sample ratio of majority to minority is 1:1, which
is detailed in Table 1. The vital parameters for RFSTL are
choosing a typical K value as 5 for regular SMOTE sampling
and applying two different removing criteria for T-Links.

2. Feature Selection
To evaluate the RFSTL method, 10 feature selection methods
are simulated adopting typical parameters for comparative
study shown in Table 2.

All of the feature selection algorithms in Table 2 are
simulated to select the most valuable 10 features from the
data set Secom1 (imbalanced data set) and Secom2 (balanced
data set) described in Table 1. In addition, the results of

TABLE 2. Feature selection methods selected for simulation.

TABLE 3. Results of feature selection based on the imbalanced data set
Secom1.

feature selection experiments on different data sets are listed
in Table 3 and Table 4 respectively.

As shown in Table 3, the top 10 valuable features chosen
from the imbalanced data set Secom1 by the different feature
selection algorithms listed in Table 2, are totally different
from each other.

Moreover, the execution times of these feature selections
are not the same except for the two feature selection methods
based on correlation coefficients and Fisher ratio which have
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TABLE 4. Results of feature selection based on the balanced data set
Secom2.

the shortest execution time. The top 2 most time-consuming
algorithms are the wrapper feature selection method based
on each single feature’s prediction accuracy and the method
adopting sequential forward selection. The accuracy of
feature selection methods based on the imbalanced data set
Secom1 is discussed through simulation of the Fine Gaussian
SVM as a classifier. The simulation result is listed in Table 6.

Analyzing Table 4, it can be summed up that the top
valuable features chosen by feature selection algorithms
above are different from each other, except for the method
based on correlation coefficients and the method based on
the Fisher ratio, which have the same results. However, their
execution time is not the same.

Moreover, these two feature selection methods run faster
than the other 9 methods. The top 3 most time-consuming
algorithms are the feature selections utilizing the genetic
algorithm, the feature selections using sequential forward
selection, and the kernel version of SVM-recursive feature
elimination (SVM-RFE). The accuracy of the feature selec-
tion methods based on the balanced data set Secom2 is
discussed after simulation of the classifier, Fine Gaussian
SVM. The classification performance is compared in Table 7.

From a comparison between the feature selection results
(listed in Table 3 and Table 4) adopting the same method
based on different data sets (one imbalanced, another
balanced), it can be found that, excluding the feature selection
method based on stepwise fitting, which obtained the same
top 10 representable features regardless of whether the data
set is balanced or not, all other feature selection methods
achieved the top 10 representable features which had a
significant change. Fig. 3 and Fig. 4 are two scatter plot
images that illustrate the distinctive results obtained when

FIGURE 3. Scatter plot of the top 2 features selected by the method RF
based on the imbalanced data set Secom1.

FIGURE 4. Scatter plot of the top 2 features selected by the method RF
based on the balanced data set Secom2.

doing feature selection for an imbalanced data set and a
balanced data set. The top 2 features selected by the RF
method based on Secom1 and Secom2 are shown in Fig. 3 and
Fig. 4, with the blue points identifying instances for qualified
products (labeled as -1), and the red points identifying
instances for defective products (labeled as 1). It is not
difficult to infer from the differences in the two figures that it
is very important and necessary to design an effective feature
selection method for an imbalanced data set.

C. CLASSIFICATION USING FINE GAUSSIAN SVM
1. Divide Data for 10-fold Cross-validation

The 10-fold Cross-validation (CV) [44] method is applied
to train the Fine Gaussian SVM model for evaluating the
predictive performance of defective products. The original
data set Secom is equally partitioned into 10 folds that
k-1 folds are adopted for the training model and 1 fold left out
is provided to test model. On these partitioned folds, training
and testing as described above is executed in 10 iterations
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TABLE 5. Performance metrics.

TABLE 6. Prediction performance of the fine Gaussian SVM model using different predictors obtained from different feature selection algorithms on the
same imbalanced data Secom1.

while the 1 fold selected for training changes one-by-one
in each iteration until all partitioned folds have been chosen
for testing once. The whole classification performance of the
model is obtained by averaging the model performance of
each iteration.

2. Construct a Fine Gaussian SVMmodel for classification
Fine Gaussian SVM is used for empirical simulation,

which is an SVM that makes fine distinctions between classes
with the help of the Gaussian kernel. The kernel scale is set
to
√
P/4 where P is the number of predictors.

Core parameters of the Fine Gaussian SVM model are set
as follows: Kernel function: Gaussian; Kernel scale: 0.79;
Box constraint level: 1; Multiclass method: One-vs-One;
Standardize data: true.

D. QUALITY PREDICTION
1. Performance metrics

The vital performance metrics applied in this work for
classification based on the imbalanced data set are Precision,
Recall, F1-Measure, Receiver Operating Characteristic curve
(ROC curve.), and Area Under the Curve (AUC). Related
calculation formulas are listed in Table 4.

• Precision

Precision is the ratio of correctly predicted positive observa-
tions to the total predicted positive observations.

• Recall

Recall (Sensitivity) is the ratio of correctly predicted positive
observations to all observations in the actual class.
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TABLE 7. Prediction performance of the Fine Gaussian SVM model using different predictors obtained from different feature selection algorithms on the
same data Secom2.
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TABLE 7. (Continued.) Prediction performance of the Fine Gaussian SVM model using different predictors obtained from different feature selection
algorithms on the same data Secom2.
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• F1-Measure
F1 measure (F1 Score) is the weighted average of Precision
and Recall, which is usually more useful than accuracy,
especially for an imbalanced classification.
• The Receiver Operating Characteristic curve (ROC
curve)

The ROC curve [36], a plot shows the True Positive Rate
(Recall or Sensitivity) against the False Positive Rate (FPR)
for different cut-off points of a diagnostic test. In the ROC
curve, an increase of Sensitivity is often accompanied by a
decrease of Recall. A curve in the ROC space higher than the
45-degree diagonal line identifies the result as meaningful.
The closer the curve is to the left vertex, the more accurate
the result is.
• Area Under the Curve (AUC)

The area under the ROC curve (AUC) is a measure of
how well a parameter can distinguish between two classes.
A larger AUC value demonstrates a better classification per-
formance. The AUC value of 1 means a perfect classification
effect; the AUC value of 0.5 indicates the classification effect
to be equivalent to a random guess.

2. Performance evaluation
• Performance evaluation of manufacturing quality pre-
diction applies the same model inputting of different
data achieved by different feature selection algorithms
on imbalanced data set Secom1

The performance of classification using Fine Gaussian
SVM, which inputs different subsets of features achieved
by various feature selection methods from the imbalanced
data set Seom1, are listed in Table. 6. The results of the
experiment indicate that these feature selection algorithms
cannot perform effectively on the imbalanced data set which
represents an obviously biased classification prone to the
majority class. Almost all examples in the minority class
are mistakenly classified into the majority class and this
situation appears commonly for all feature selection listed
in Table 6. The classification results appear to be a slight
change when applying the feature selection methods based
on the correlation coefficients and random forest respectively.
Two examples for the majority class are classified into the
minority class by mistake. Unfortunately, this is not what we
need at all.
• Performance evaluation of manufacturing quality pre-
diction applying the same model inputting different data
achieved by different feature selection algorithms on
balanced data set Secom2

The classification performance using Fine Gaussian SVM
is listed in Table 2. Inputs with different feature dimen-
sions are applied which are obtained by various feature
selection methods based on the same balanced data set
achieved by resampling method SMOTE&TomekLinks. The
experiment’s results illustrated that these feature selection
algorithms performed well on the balanced data set and
achieved dimensionality reduction. With the increase in the
number of selected features, manufacturing quality prediction

FIGURE 5. Performance of imbalanced classification by Fine Gaussian
SVM inputting different dataset with different vital features achieved by
RFSTL method based on Secom1.

improved at first, but deteriorated when the number of
features exceeded a certain limit. These feature selection
algorithms achieved the best classification before the number
of selected features was increased to a certain point, which
is the optimal feature dimension for classification (detailed
in Table 8).

In Table 8, two different criteria are applied to determine
the optimal subset of features based on the experiments listed
in Table 7. One way is to determine optimal features when the
maximum value of F1 is achieved by the minimum number of
features. Another way is to determine optimal features when
the value of AUC is equal to 1. In the process of finding the
optimal subset of features, the two different determination
criteria are performed at the same time. Whenever one of
them is satisfied the optimal feature search will be stopped
immediately, and the currently selected features will be
denoted as the vital features for classification.

Taking the quality prediction effect of the classification
model applying RFSTL method on the data set Secom1
(illustrated in Table 7 described as RF method based on
Secom2) as an example, the value of F1 is 95.6 when the
number of selected features is 10, while the value of F1 is
95.4 when the number of selected features is 11. When the
number of selected features is increased from 10 to 11, the F1
value has a slight decrease. Therefore, the top 10 features
ranked by RF is the optimal feature subset to obtain the best
classification performance. Fig. 5 shows the change trend of
classification performance (Accuracy, Precision, Recall, and
F1) brought by the different feature subset selected by RFSTL
method.

Seen from Table 8, the two best feature selection methods,
which can achieve the maximum classification performance
(F1) using a minimum number of features, are RF and SRK.
Although the vital features they selected are not the same,
the quantities of vital features are the same (10 features). The
classification performance of Fine Gaussian SVM inputting
the top 10 of most vital features achieved by SRK and RF
method based on balanced dataset Secom2 is shown in Fig. 6.
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TABLE 8. Optimal features selected by different feature selection algorithms based on Secom2 for quality prediction utilizing the Fine Gaussian SVM
model.

FIGURE 6. Classification performance of Fine Gaussian SVM inputting the
top 10 of most vital features achieved by SRK and RF method based on
balanced data set Secom2.

These two feature methods can obtain a similar clas-
sification effect (Accuracy, F1, and AUC) and achieve a
small difference in Precision and Recall. From the view
of classification performance, it is difficult to clearly point
out which feature selection algorithm performs better in
balancing data sets. However, from the analysis of the
algorithm execution time (listed in Table 4 ), it is easily
found that the RF algorithm is more applicable in the face
of large data problems. Because of this, the execution time

of the SRK algorithm is about 6 times as much as that of
the RF algorithm. Hence, compared to other feature selection
algorithms, the RF method is a superior way to obtain less
quantity of value features from a big balanced data set with a
superior classification performance in a short time.

• Performance evaluation of manufacturing quality pre-
diction based on the Fine Gaussian SVM model
inputting different data

Four different data sets are input into the classifier to evaluate
the classification performance listed in Table 2: Secom1,
an imbalanced data set after pre-processing containing
590 features and 1533 observations; Secom 2, a balanced
dataset obtained from the imbalanced dataset Secom1 apply-
ing SMOTE&TomekLinks algorithm containing 590 features
and 2860 observations; Secom3, a imbalanced dataset with
a low dimensionality acquired through the RF method
containing 10 features and 1533 observations; Secom4,
a balanced dataset with a low dimensionality acquired
through the RFSTL method containing 10 features and
2860 observations.

Upon comparison of the experiment’s results, it is obvious
that the Fine Gaussian SVM model cannot run well when
faced by an imbalanced data set (Secom1 and Secom3)
which achieves a misleading outcome that a false high
accuracy is obtained by classifying all defective products
(the minority class) into the qualified products (the majority
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TABLE 9. Prediction performance of the Fine Gaussian SVM model using different input.

FIGURE 7. Classification performance of Fine Gaussian SVM model based
on two different balanced datasets obtained by SMOTE & tomekLinks
method and RFSTL method respectively.

class). On the other hand, if inputting the balanced data set
with high dimensionality (Secom2) obtained by the method
of SMOTE&TomekLinks or the balanced data set with low
dimensionality (Secom4) achieved by the RFSTL algorithm,
this model can acquire a super classification performance
especially for the minority class shown in Fig. 7.

In Fig. 7, some differences occurred in the value of
Precision and Recall. The Precision value of this model
taking Secom2 as input is 2.4% higher than that of Secom4.
Otherwise, the Recall value of this model taking Secom2 as
input is 1.8% lower than that of Secom4. Additionally,
the F1 acquired by the same classifier using different inputs
Secom2 and Secom4 just has a slight difference which
can be ignored. Relative to the differences in classification
performance, the significant difference between this model
utilizing Secom2 and Secom4 is the feature dimensionality
and the training time of the model. When applying RFSTL
algorithm, the dimensionality of feature can be reduced to
only 1.7% of the original features and the training time of
the classification model can be shortened to only one fifth of
that input Secom2.

Furthermore, the value of AUC acquired by the classifica-
tion model applying RFSTL method is almost double to that
obtained without do data balancing. The ROC curve of the
Fine Gaussian SVM taking the Secom4 as input is displayed
in Fig. 8. The ROC curve in this figure is close to the top left,

FIGURE 8. Roc Image of Imbalanced Classification based on the Fine
Gaussian SVM model using RFSTL Method.

which illustrates the classification problems encountered by
this model due to the imbalanced data, which can be resolved
by the RFSTL method.

V. CONCLUSION
Skewed class distribution data and high dimensional features
in the real-world industry pose an intense challenge for
design learning algorithms, and have a high negative impact
on the performance of learning models. This study first
provided an introduction of the research and detailed in some
existing imbalanced handling, feature dimension reduction,
and classification approaches. Secondly, it proposed the
hybrid method, RFSTL, which balanced the data set based
on the SMOTE&TomekLinks approach, then selected the
most valuable features according to the Random Forest
algorithm. Finally, the RFSTL method was simulated on a
realistic imbalanced data set Secom with a high dimension
using the Fine Gaussian SVM to do manufacturing quality
prediction. Some thorough experimental comparisons were
taken and its impact on classification performance was
discussed.
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Experimental results demonstrated that the classifiers
employing the preprocessed data with the RFSTL method,
achieved a high value for F1 (95.6%) and AUC (0.99).
It was more accurate than those employing the raw data
and shifted the classifier learning bias towards the minority
class. Another compelling justification was that it is helpful
to reduce the feature dimension and decrease the training time
of the model. Compared to using the data set after simple
preprocessing, by using the RFSTL method, the feature
dimension was reduced from 590 to 10 and the training time
of the model shortened from 16.43 seconds to 5.03 seconds.
Therefore, the RFSTL method can run effectively for
classification on a large, high-dimensional, imbalanced data
set, and could be applied to intelligent manufacturing for
quality prediction as well as other intelligent applications
under Industry 4.0.
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