IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 31, 2021, accepted February 8, 2021, date of publication February 12, 2021, date of current version February 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3059251

A Novel Approach of loT Stream Sampling and
Model Update on the loT Edge Device for Class
Incremental Learning in an Edge-Cloud System

SWARAJ DUBE *, WONG YEE WAN, AND HERMAWAN NUGROHO ", (Senior Member, IEEE)

Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia

Corresponding author: Swaraj Dube (kecy3dsm@nottingham.edu.my)

This work was supported in part by the University of Nottingham Malaysia Campus, and in part by the Fundamental Research Grant
Scheme (FRGS) by the Ministry of Higher Education, Malaysia under Grant FRGS/1/2018/ICT02/UNIM/02/4.

ABSTRACT With the exponential rise of the number of IoT devices, the amount of data being produced
is massive. Thus, it is unfeasible to send all the raw data directly to the cloud for processing, especially
for data that is high dimensional. Training deep learning models incrementally evolves the model over
time and eliminates the need to statically training the models with all the data. However, the integration
of class incremental learning and the Internet of Things (IoT) is a new concept and is not yet mature. In the
context of IoT and deep learning, the transmission cost of data in the edge-cloud architecture is a challenge.
We demonstrate a novel sample selection method that discards certain training images on the IoT edge
device that reduces transmission cost and still maintains class incremental learning performance. It can be
unfeasible to transmit all parameters of a trained model back to the IoT edge device. Therefore, we propose an
algorithm to find only the useful parameters of a trained model in an efficient way to reduce the transmission
cost from the cloud to the edge devices. Results show that our proposed methods can effectively perform
class-incremental learning in an edge-cloud setting.

INDEX TERMS Incremental learning, convolutional neural network, IoT edge device, cloud, data sampling.

I. INTRODUCTION

In the computer vision domain, deep learning has shown a
great amount of success and in some tasks even surpassing
the level of human accuracy. A lot of this success has been
obtained in an offline setting whereby all the data is already
present on a machine before training starts and also deep
learning models are trained on big datasets just once and then
they are deployed. In the real-world, however, not all the data
can be present with us beforehand. Even if all the data is
available, it is challenging to train deep learning models as it
requires powerful hardware to train such models and it is also
time-consuming to train on a huge amount of data altogether.
Another problem with training a deep learning model offline
is that once it is trained and deployed, the model will not learn
any more parameters in the future. However, deep learning
models should be able to learn in a continuous environment

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin

29180

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

whereby new data arrives over time. The learning of a new
task is dependent on the previous task [1].

One of the main challenges of incremental learning is
a phenomenon known as catastrophic forgetting [2], [3]
whereby representations of the old classes are lost when
the model is fine-tuned on new data. The most basic way
to mitigate this problem is to use a combination of both
the old and new data when new data arrives and use this
combined dataset to train the model. However, if such process
is performed on the edge-cloud architecture, this indicates
that all of the data from each class will need to be sent
to the cloud for incremental training. This leads to a more
expensive transmission cost from the IoT edge device to the
cloud [4], [5].

While there have been several applications of deep learning
in the Internet of Things (IoT) [6]-[13] but for incremental
learning, the majority of the research is being carried out on
a centralized computer [14], [15], i.e., incremental learning
has not been explored in the context of IoT where a model
has to be partitioned in an edge-cloud architecture [16]. There

VOLUME 9, 2021

https://orcid.org/0000-0001-8571-718X
https://orcid.org/0000-0002-8779-3116
https://orcid.org/0000-0001-8768-9709

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

is a clear for incremental learning to be integrated with IoT
because in the real-world, smart devices that are collecting
raw data can be geographically spread and new data belong-
ing to new tasks can also be collected over time. In practice,
a large number of IoT devices are highly dependent on cloud
assistance for deep neural network training [18]. However,
in a real IoT environment where there are a huge number of
devices that are collecting data at a high rate, it is infeasible
to make the devices send all the raw data to the cloud because
bandwidth costs would be very high. This would result in a
sheer amount of load the cloud would have to handle. Fur-
thermore, the IoT edge device is the first device that receives
new raw data. Therefore, it would be a much more feasible
solution to deploy certain parts of a deep learning model to
the IoT edge device in an effort to assist the cloud in the entire
continuous learning process instead of relying completely on
the cloud [19]. When a given deep learning model is trained in
a distributed manner between two or more devices, this will
present certain challenges such as deciding how many and
which specific layers of a model must be run on the edge and
the cloud (this is known as offloading [20]-[23]), dealing with
the transmission load between the IoT edge device and the
cloud [24] and evaluating whether it is important for the loT
edge device to transmit all of the data to the cloud for model
training or whether some of the data be discarded [25]. These
challenges have not yet been addressed in a distributed incre-
mental learning scenario which is what this paper attempts
to do. This paper largely extends the work of [16] whereby
data sampling is performed at the IoT edge device, however,
in [16], the new data samples do not belong to novel classes.
Our data sampling algorithm is capable of sampling data from
completely novel classes without any need for hyperparame-
ters by automatically selecting the number of samples needed
per incremental training round which is the core novelty of
our data sampling algorithm.

Nomenclature
c Class index
L¢ Set of losses of all samples sorted in ascending
order belonging to class ¢
ne Number of samples in class ¢ just before trans-

mission from IoT edge device to cloud
w’ Newly initialized weights of the SoftMax layer
on the IoT edge device

v Newly initialized biases of the SoftMax layer on
the IoT edge device

x{ Feature map output of image i belonging to
class ¢

¥ One-hot label corresponding to x{

Iy Cross entropy loss corresponding to x{

o) SoftMax function

My Median value of set L€

of Deviation that denotes by how much the values
of L deviate from u§

I¢) Indicator function

LS o Cut-off loss of set L°

VOLUME 9, 2021

VC

s mby

tmbn

lab Str
FM,,

E;

(0N

RAM
I

Cold

!
Cupdated

l
Cdiff

sortedCéiff
Accept; g
Aori

q
Tl

Cl

temporary

Clist!

temporary

Atemp
w!

best

Wbest

l
1 best

Test
Me.

Mce

NS
RS

Set containing loss values smaller than
Lgutoff

Total number of samples to be discarded
from n.

Time taken to forward propagate the first
mini batch of images on IoT edge device
Time taken to forward propagate a mini
batch of images on IoT edge device after
first mini batch

Label string format

Feature map tensor at index n of feature
maps of a mini batch

Depth of feature map tensor of FM,,
Width of feature map tensor of FM,,
Height of feature map tensor of FM,,

Size of FM,,

Incremental training round ¢

Output of feature extractor of sample x
belonging to incremental training round ¢
Set of all features at every incremental
training round up until round ¢

Operating System

Random Access Memory

Parameters of layer / of the classifier the on
cloud before training

Parameters of layer / of the classifier on the
cloud after training

Differences of values of parameters
! l
between Cupdel and C,y

Sorted values of Céiff in ascending order
Acceptable training accuracy loss
Training accuracy of the trained classifier
on the cloud

Number of quantiles

List of thresholds of layer [of the classifier
on the cloud

Parameters of layer / of the temporary
model

Parameters of layer [of the temporary
classifier in a list holding every temporary
model

Training accuracy of Cremporary

Useful weights of layer [of the trained
classifier on the cloud

Set of useful weights of each layer of
trained classifier on the cloud

Indices corresponding to Wéest

Set of indices corresponding to Whest
String containing feature maps and labels
transmitted from the IoT edge device to the
cloud

String containing Wyeg and Ipeg transmit-
ted from cloud to the IoT edge device

No Sampling

Random Sampling

29181

IEEE Access

S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

ES Entropy Sampling [17]

MTS Median Test Sampling

WRSTS Wilcoxon Rank Sum Test Sampling
LCS Least Confidence Sampling [17]
DDC Data Discard Counting

Class incremental learning can have many applications.
For example, in social media whereby incremental learning
can be used to learn new contents, behaviors etc.

Instead of a novel Al learning algorithm, the novelty of this
paper is about reducing the transmission load between the IoT
edge device and the cloud without affecting the incremental
learning performance regardless of the model architecture or
the learning hyperparameters. The two main contributions of
this paper are as follows:

« A novel data sampling technique to filter certain training
samples from novel classes on the IoT edge device for
reducing the transmission cost from the edge to the cloud
with a very small effect on the incremental learning
performance.

e An improved version of a novel algorithm [16] for
sending only the useful parameters of a classifier after
training back to the IoT edge device instead of sending
back all the parameters of the classifier.

The rest of this paper is organised as follows: we first dis-
cuss a review of incremental learning approaches in Related
work and Motivation. We then explain about our proposed
system architecture and the working mechanisms in the
Methodology section. Experimental setting explains all the
learning settings used, hyperparameters, and the learning pro-
cedures. In the Results and Discussion section, we show and
discuss our findings, and this is followed by the Conclusion
section and the Future Work section.

Il. RELATED WORK AND MOTIVATION

In the incremental learning context, there are three main
approaches, namely regularisation, rehearsal, and dual mem-
ory system approaches. In the regularisation approach,
the loss function is designed in a way to retain representations
of the old classes, i.e., by not changing the values of the
important parameters much of a given model. In the rehearsal
approach, the focus is on using a mixture of both the old and
new data in appropriate proportions. By using the old data,
the old knowledge is retained.

The incremental classifier and representation learning
(iCaRL) [15] techniques both use rehearsal and regularisation
approaches. This approach uses exemplars of the old classes
together with the new training data for learning and to retain
the old knowledge. Since it is not feasible to continue storing
exemplars of all the old classes every time a task is learnt,
the number of exemplars per class is decreased by selecting a
limited number of exemplars that is closest to their respective
class mean. The downside of this approach is that the greater
the number of classes that are observed, the lesser the number
of exemplars will be available for each old task, and also, [15]

29182

stores raw images as exemplars which tends to have high
memory demands and may not be feasible for either [oT edge
devices or the cloud. Other researchers have developed an
incremental classifier learning with a generative adversarial
network (GAN) (ICwGAN) [26]. In [26], a similar approach
to iCaRL [15] is used except that instead of using real images
as exemplars, GANs are used to generate images that repli-
cate the original exemplars. Although this approach solves the
issue of privacy, the drawback is the computational overhead
of training and running a GAN. In addition, the system needs
to store the original images as well as a GAN to gener-
ate images and such a process is memory demanding. The
REMIND approach in a neural network that can be used to
prevent catastrophic forgetting [27] is another Convolutional
Neural Network (CNN)-based model that tackles the problem
of catastrophic forgetting using rehearsal. Unlike the prior
work where raw images of the previous classes are stored,
these methods store quantized tensors for rehearsal, which
is less memory demanding. As the model learns incremen-
tally, at the end of each incremental training step, instead
of storing raw images, the images are passed through the
convolutional layers and these output features are quantized
and stored in the memory as exemplars. However, this work
does not address how the model can be distributed between
the cloud and IoT edge devices. Other researchers developed
an Autoencoder-Based Incremental Class Learning without
Retraining on Old Data method [28] which uses an autoen-
coder as a classifier instead of the traditional SoftMax classi-
fication layer. The main reason for this is that when using a
SoftMax layer, neurons must be added to the layer whenever
a new class is encountered. By using an autoencoder, this
issue can be avoided. For classification, the mean of the
feature maps of the respective classes is stored as code vectors
thus reducing memory and computation cost. However, this
work requires base training. Base training is conducted when
the model is trained on a few initial classes, and only after
this stage, the incremental learning begins. Synaptic intelli-
gence [29] or Memory aware synapses [30] loss methods are
added to reduce the effect of forgetting.

Federated learning [31], [32] is a new upcoming area of
research in decentralized training in an edge-cloud setting i.e.,
there is a common shared model that is trained on millions
of IoT devices using the local data that is present on the
device itself. The updated model is then sent to the cloud for
global model aggregation. This work greatly reduces commu-
nication with the cloud and ensures data privacy by training
models on IoT edge devices. This method only transmits the
encrypted updated model to the cloud instead of sending the
data to the cloud. However, there are several drawbacks if
this work is applied in the incremental learning context. First,
the training time taken on the edge devices to learn patterns
from high dimensional data such as images is very long.
It is reported in [33] that for a simple dataset such as the
Canadian Institute For Advanced Research (CIFAR)-10 [34],
it takes 8 hours 41 minutes to train a MobileNets [35] model
for one epoch on a Raspberry Pi. Moreover, Raspberry Pi is

VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

considered a high-end IoT device but if the same model is
split between the Raspberry Pi and the cloud i.e., some layers
running on the IoT edge device and the remaining layers on
the cloud, then the training time for one epoch is be reduced
to 2.5 hours. Therefore, when dealing with high dimensional
data such as images, local training of the entire model may
not be feasible. Such data requires sheer processing power
for training which can only be fulfilled by powerful hardware
such as the graphics processing unit (GPU)s which generally
reside on the cloud.

A common technique to accelerate training of deep neural
networks without degrading accuracy is by discarding data
samples that have very low loss values after a number of
training epochs where the loss values of such samples do
not decrease further [36]—[38]. This is because once the loss
values of certain samples do not decrease, it means the model
already understands such samples very well, and thus training
is accelerated by focusing on samples that have high loss val-
ues that are yet to be understood by the model. However, such
approaches can only perform the data sampling after model
training begins, whereas we aim to perform data sampling
before training starts. Another way to perform data sampling
is by eliminating redundant images from a given dataset [39].
The downside of this approach is the slow computational
speed because every image has to be compared with every
image in the dataset to find out all the dissimilarities.
When training support vector machines (SVM) on large-scale
datasets, pre-selecting support vectors is a solution to acceler-
ate SVM training [40], techniques include using genetic algo-
rithms [41], clustering to select scattered samples because
samples that are densely clustered are deemed redundant [42],
enclosing samples in a convex hull and selecting boundary
points [43], [44]. However, our work focuses on pre-selecting
data for reducing the number of samples being transmitted to
the cloud and accelerating neural network training.

Active learning [17] also has several query strategies that
are used to select samples based on a given criteria, for
example, samples with least confidence, highest loss, highest
expected model change, etc. However, these methods do not
mention how many such samples should be selected from a
given data distribution in a way such that the selected data
samples can still yield nearly the same learning performance
if trained on a given model as compared to using all of the
data distribution.

The FitCNN [16] approach proposes a cloud-assisted
framework to run deep learning models on IoT devices. The
method proposes two main strategies as follows: firstly, a data
sampling algorithm i.e., to reduce data transmission to the
cloud during incremental learning and secondly, to select
useful weights of the new model trained on the cloud and
to update the old model on the 10T edge device only based
on these useful weights. To reduce the amount of data trans-
mission to the cloud, a CNN runs inference on the IoT edge
device and only sends the samples to the cloud for further
learning [45]-[47] if the confidence of the samples is less than
a certain threshold value. To keep the CNN model on the IoT

VOLUME 9, 2021

devices up to date, after carrying out model training on the
cloud, a weight difference is computed between the trained
model and the old model. The weight difference is then used
to select which updated parameters of the model should be
sent back to the IoT edge device.

In general, FitCNN [16] is the most closely related work
to ours except that [16] is a single task incremental learning
system i.e. the model learns examples of the same class
in an incremental learning manner. Our method is a mul-
titask incremental learning system i.e., learning completely
new classes incrementally. That is why it is of paramount
importance to have efficient data streaming techniques in
place for the multi-task incremental learning scenarios. Next,
the parameters of the trained model on the cloud must
also be transmitted back to the IoT edge device effectively.
FitCNN [16] has already achieved this by sending back only
the important parameters. We propose to improve this algo-
rithm by finding the important parameters much faster.

ill. METHODOLOGY

Fig. 1 shows our system flow chart. The design is capable of
running on multiple IoT edge devices. The blocks highlighted
in Fig.1 are our contributions. To explain the methodology
from a high-level perspective, an ImageNet [48] pre-trained
feature extractor is run on the IoT edge device along with
a classifier. The classifier on the IoT edge device, however,
is used only for inference. The training of the classifier
takes place on the cloud. The weights associated with the
newly added neurons in the SoftMax layer of the classi-
fier are randomly initialized on both the IoT edge device
and the cloud for the new classes to be learnt. The learn-
ing rate of the feature extractor is set to O i.e., the CNN
feature extractor layers are frozen. This indicates that the
feature extractor parameters will not be modified any further
and implies that once backpropagation takes place on the
cloud, there is no need to transmit the gradients back to the
IoT edge device.

At every incremental training round, n number of classes
are trained together at a time. Data sampling takes place
per class therefore, all samples in each class are forward
propagated through the model to obtain the loss values of
all the samples. The samples with very low loss values with
respect to the losses of training samples are counted on the
IoT edge device based on which data sampling takes place.
After forward propagating the selected samples through the
feature extractor of the CNN, the output feature maps of
the selected samples are converted from tensor to a string
format and stored on the IoT edge device. As the tensor
converted strings are stored on the IoT edge device, RAM
consumption increases which can slow down the process-
ing on the IoT edge device, and as soon as a slowdown is
detected, the tensor strings are transmitted to the cloud via the
Transmission Control Protocol (TCP/IP). Otherwise, trans-
mission takes place once data sampling has been performed
for a given class. The cloud listens for the incoming data
streams and converts the strings into tensor feature maps and

29183

lEEEACC@SS S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

IoT edge device

Input

v

Data sampling

v

Convert each selected
feature map to string and
store on device

Is process slowing?

Transmit string to GPU

C101_1_d

Receive incoming byte stream
from IoT edge device

Yes
Start training?

TCP/IP

Append tensors and save in
memory (data concatenation) and
send acknowledgement back to
IoT edge device

Use SMOTE and perform

server IP and port via
TCP/IP

Current training

TCP/IP

oversampling on minority samples

Train the classifier

A

round processed?

Yes

Send remaining samples to

Weight extraction

Increase number of neurons in

cloud via TCP/IP along with
message to start training

Receive updated parameters
from cloud and update
parameters on IoT edge
device

SoftMax layer

Convert weights and indices in a
TCP/IP string format and transmit back to
IoT edge device via TCP/IP

FIGURE 1. Our proposed system flow chart. Incremental learning system partitioned between an loT edge device and the cloud.

saves them. The training on the cloud only starts once all
the classes belonging to an incremental training round have
arrived. As new classes are sent to the cloud for training, if
an imbalanced dataset is detected then the minority classes
are oversampled using the Synthetic Minority Over-sampling
Technique (SMOTE) [49]. The features of all the previous
classes are used as exemplars for incremental learning. So,
when learning new tasks, all the features of the previous
classes are used together with the features of the current

29184

samples belonging to the new classes to train the classifier
on the cloud.

Once all of the data of a particular incremental training
round has been sent to the cloud, all the tensor feature maps on
the cloud are used to train the classifier. During the classifier
training on the cloud, the only part of the classifier that
changes dynamically is the SoftMax classification layer on
the cloud i.e., new neurons are added to the SoftMax layer
based on the number of new tasks to be learnt after every

VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

incremental training round. Once the classifier is trained,
weight extraction is performed whereby only the useful
weights of the trained model are chosen to be transmitted
back to the IoT edge device. Together with the useful weights,
the indices of the useful weights are also transmitted to the
IoT edge device. These indices denote the exact connections
of the classifier at the IoT edge device that must be updated
with the useful weights received from the cloud.

A. DATA SAMPLING FROM NOVEL CLASSES ON AN IOT
EDGE DEVICE

The objective of data sampling is to discard certain samples
on the [oT edge device and to reduce the communication load,
in exchange for a very small difference in the incremental
learning performance. This can improve the efficiency of a
deep learning model partitioned between the cloud and an
IoT edge device while retaining the incremental learning
performance. Although data sampling may result in slight
accuracy changes, we found that a 3% difference in classi-
fication accuracy is acceptable. This is because when a given
deep learning model is trained on separate occasions with
the same hyperparameters and model architecture, the model
will yield slightly different classification accuracies. This is
due to the random initialization of the model weights. So,
because of this natural stochastic property of neural network
training in which slightly different classification accuracies
are yielded every time a model is run, a slight difference in
accuracy should also be acceptable due to data sampling on
the IoT edge device. The size of the test dataset can also
vary for different datasets. Consequently, incremental learn-
ing performance can also vary with respect to data sampling.
This is why we choose a margin of 3% for classification
accuracies obtained after data sampling as compared to no
data sampling.

Here, we propose our Data Discard Counting (DDC) algo-
rithm. Let ¢ be the class index of the current class being
processed, n. be the number of samples in each class thus the
number of losses of all samples in class c is also n.. Consider
a set L¢ which contains all the losses for all the samples in the
current training class, such that L € {[g, I{, I3, ... lflc} where
L¢ is sorted in ascending order. L€ is computed using the
cross-entropy loss function and p is the median of the losses
of n. samples. In our method, we use a pre-trained feature
extractor with a single layer neural network whose weights
are completely randomly initialized for data sampling. The
formulas used to discard training samples at the IoT edge
device are described one step at a time below.

If=- Zj 09); - log (p(W'x{ + b)), M

In (1), the cross-entropy values of incoming samples are
calculated as the first step of our DDC algorithm where x{ is
the feature map i of class ¢ coming into the SoftMax layer,
y§ is the one-hot label corresponding to x{. W’ and b’ are
the weights and biases of the new randomly initialized n
neurons in the SoftMax layer on the IoT edge device where n

VOLUME 9, 2021

is the new number of classes to be learnt. ¢ () is the SoftMax
function. j is the index of the newly added neurons (in the
SoftMax layer). [is the loss of the sample i of set L°.

S U — up)?

ne

oy =)

In (2) we propose the term oy that denotes by how much
the metrics [{ differ from the median (1}) of the distribution
of the set L€ of class c. We use the median value instead of
the mean in order to protect our DDC algorithm from skewed
entropy values in L. For example, a skewed value can be an
extremely high entropy value in L¢ that would largely affect
the mean value of L¢. This could greatly increase the value
of LS, in (3) which would lead to an extremely high data
sampling rate and thus affecting the learning performance of
the model on the cloud. However, the median of L¢ does not
get affected by such skewed values. As a result, the data sam-
pling rate remains stable as per (3) and (4). This is the second
step of our DDC algorithm.

e A I(jug—1f] < of)), Ix)=1,i>0
cutoft ™) ge, I(*) =0,i=0

3)

In (3), I(-) is the indicator function whose output is 1 if
the condition inside the indicator function is true or else the
output is 0. The term L{, g is the cut-off loss which also
tells us about the number of samples with low loss values
with respect to the training distribution. Determining the
value of LS, . is the third step of our DDC algorithm. The
total number of samples to be discarded from class ¢ () is
expressed in (4) which is the final step of our DDC algorithm.

In (4), let V¢ be a set containing all loss values smaller than

LC
¢ = Zlevc 1 4)

cutoff”

In (3), if the distance between the low loss values in L€ and
uj is smaller than o7, then we count all such samples that
satisfy this condition. This process repeats iteratively until a
sample is encountered where the distance between its loss and
the median is greater than the standard deviation which means
the largest loss value in L€ that satisfies (3) is considered to
be the cut off 1oss (LS,s) Loyos 1S then used to count the
number of samples to be discarded i.e., the number of values
in L€ that have values less than L{ . is denoted by € i.e.,
the number of samples to be discarded.

For each class, the loss distribution L€ is sorted in ascend-
ing order. of denotes how far apart the values in L¢ differ
from MZ in general. However, in such distributions, there
can be values in L whose distance from pf is less than o}
and there can also be values in L¢ whose distance from uj
is greater than o] due to the variations in the images per
class which also means varying entropies of images per class
as well. Images with high loss values can be beneficial for
neural network training, because a high loss value implies a
lot of weights will have to be fine-tuned thus improving the
generality of the model as compared to images with low loss

29185

IEEE Access

S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

values. Images with already low loss values cannot have their
values greatly reduced as compared to images with high loss
values. Hence, we must count the low loss values in L¢ that
vary slightly from u§ with respect to oy which is why (3) has
been designed. By doing so, we can determine the number of
samples to be discarded from a class just before transmission
to the cloud.

B. TRANSMISSION OF DATA TO THE CLOUD

Initially, the IoT edge device has no data. However, during
training, when new class data arrives, such data is forward
propagated through a CNN feature extractor. The output fea-
ture map is then converted to a string format and saved in
a buffer along with its respective label. The same process
is applied to the other incoming mini batches of images.
All the output feature maps of images are concatenated to
a buffer which stores all the tensor converted strings. This
buffer (M..) is what is transmitted to the cloud via the TCP/IP
protocol. The format of M. is shown in (7). The description
of “act” is as follows: "a!" (for data concatenation), "t!" (for
training), "d!" (for process termination).

Along with the feature maps, the associated labels must
also be transmitted to the cloud. Since each feature map has
one unique label (denoted by “lab’ in (5)), let N be the total
number of feature maps and thus the label format is shown
in (5).

labg, = lab,,, lab,y1, ... lab,n 5)

A single feature map will have a depth of one and the same
width (W) and height (H,) as the overall feature map of
an image. The string format of a single feature map can be
expressed as shown in (6).

FM,, = val,, ;, val, iy1, val, iy2, ... val, s, (6)

All values are comma-separated when the feature maps and
the labels are converted to a string and each feature map string
is separated by the character ‘k’. The overall message format
is written as shown in (7).

M,.=D,, Wy, Hy,<labgy >, FM,,, k, . FMy, <act>! (7)

On the cloud, the incoming stream is accepted, and the
reading operation continues until the end of message char-
acter ‘I’ is detected. Once the end of message character is
detected, the action character (“‘act”) is obtained, and based
on that action, an appropriate process is carried out. For exam-
ple, if the action character is '@’ then tensor concatenation is
carried out, and if the action character is 't then training is
carried out, and if the action character is 'd’ then the program
on the cloud stops executing. At the end of every incremental
training round on the cloud, only the useful weights of the
trained classifier are sent back to the IoT edge device. Upon
receiving this message, the IoT edge device then proceeds
with processing the next batch in the dataset i.e., converting
the images and labels to strings. This process continues until
all the samples in the dataset are processed.

29186

In (7), the end of message character (“‘act’) is appended
at the end of the tensor converted string because the TCP/IP
protocol is not a message-based protocol but a stream-based
protocol. It means that there is no guarantee that all the
bytes that are transmitted will arrive at the recipient. So,
the recipient must keep listening for the incoming string from
the IoT edge device and only stop reading when the end
of message character ‘!’ is encountered. The character ‘!’ is
always appended at the end of the message, therefore if this
character is encountered, the recipient device knows that all
the transmitted bytes from the sender have been received.

Synchronization between the IoT edge device and the cloud
is ensured by the following steps: firstly, when the IoT
edge device transmits feature maps of the images to the
cloud, the IoT edge device waits for a reply from the cloud.
Secondly, if the reply is not received from the cloud, the IoT
edge device will not carry out any other processes. Thirdly,
the cloud will keep listening for incoming data and will only
proceed once the end of message character is read (‘!').

The amount of memory available in the IoT edge device
hardware is limited and this is a key factor to consider in dis-
tributed processing scenarios. Since we store the CNN feature
extractor output of the input images at the [oT edge device,
this may lead to RAM scarcity which causes a slowdown in
the processing speed. This is because in any modern operating
system (OS), when a program requires more RAM, the OS
will allocate the required memory to that program. However,
when RAM starts to run out, the OS will move some of the
program’s memory to disk. In other words, the OS now needs
to move the data more frequently between disk and RAM,
resulting in a slower response time. For a given deep learning
model, if it is required to store more feature maps on the IoT
edge device, more memory will be consumed with respect to
the number of samples, resulting in a slowdown of the IoT
edge device processing speed. To account for this scenario,
a very simple algorithm is formulated in (8).

K

yes, (fmpy — fmb,) > 1
no, otherwise

transmit =

®

In (8), the time taken to forward propagate the first mini
batch is recorded (denoted by iy,). If the difference between
the time taken to process subsequent mini batches (denoted by
Imb,,) and fmp, exceeds one second, it indicates that the pro-
cessing speed of the [oT edge device is slowing down. In such
a scenario, all feature maps, stored on the IoT edge device
thus far, are sent to the cloud and subsequently, the memory
on the IoT edge device will be cleared.

C. INCREMENTAL LEARNING ON THE CLOUD

In our work, only the SoftMax classification layer grows in
size. The number of neurons added to the SoftMax layer at
every incremental training round is equal to the number of
new tasks to be learnt at every training round. Once the feature
extractor outputs are sent from the IoT edge device to the
cloud, these features are saved on the cloud and as the training

VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

process continues, these features are used as exemplars. The
exemplar set is constructed following (9) below.

E=0X)UP XD UIXi2)U...0Xo) (9

In (9), let X be all the samples of an incremental training
round and @(-) be the output of the CNN feature extractor and
t be the incremental training round. E; is defined as the exem-
plar set at incremental training round ¢ and represents the new
set of samples being fed into the classifier. The new batch of
feature maps and their respective labels are randomly shuffled
after every epoch to maintain the classification accuracy.
Next, the combined feature maps (E;) are passed through the
fully connected layers. During the backpropagation process,
only the fully connected layers are updated (we freeze the
feature extractor layers). This process of training is known as
joint training and is one of the most common techniques to
alleviate catastrophic forgetting.

D. IMPROVED WEIGHT EXTRACTION ALGORITHM

After training the classifier on the cloud, the updated param-
eters of the classifier need to be transmitted back to the IoT
edge device to keep the model on the IoT edge device up
to date. The work in [16] shows that it is not mandatory
for all the weights of a trained model on the cloud to be
transmitted back to the IoT edge device as there are a number
of parameters in a model that do not change after the training
i.e. the difference between the weight value of a connec-
tion in the trained classifier and the pre-trained classifier
is the same. The juicer strategy (proposed in FitCNN [16])
performs useful weight extraction layer by layer. For each
layer, the FitCNN [16] juicer algorithm takes the differ-
ence between the weights of a layer of the trained and the
pre-trained model and divides the weight difference distri-
bution into 30 quantiles to obtain a threshold list. For each
threshold value, if the absolute weight difference between
a classifier’s post-trained weight and pre-trained weight is
greater than the threshold value, then for that particular con-
nection, the post trained weight value will be considered
useful, or else the pre-trained weight value will be consid-
ered useful. A temporary model is then formed that has the
same architecture as the trained model which has a mixture
of useful and non-useful weights. The training accuracy is
then computed on this temporary model. For every thresh-
old value, the constructed temporary model is different in
terms of the number of the useful parameters. Therefore, for
every threshold value, the training accuracy, the number of
useful weights, and the indices of the useful weights of the
temporary model are stored. For a given threshold, as soon
as the difference between the training accuracy of the tem-
porary model and the trained model is greater than the pre-
defined acceptable training accuracy loss, the useful weights
and indices associated with the previous threshold value are
considered useful weights for the layer of the model being
processed. Next, the layer of the trained model being pro-
cessed is frozen, and the next layer of this model undergoes

VOLUME 9, 2021

the same weight extraction process. This is how the useful
weights of a trained model are extracted in FitCNN [16].

However, in the case of class incremental learning,
the number of negative weight differences can increase with
respect to the training rounds due to catastrophic forgetting.
Fig. 2 shows the frequency distribution of the weight differ-
ences where the x-axis represents the value of the weight
difference and the y value represents the frequency i.e.,
the number of times a specific weight difference occurs.
For example, the points highlighted in the red circles in
Fig. 2 show the number of weight differences whose values
are zero. This means the value of such weights before and
after training remain the same. So, it is not necessary to send
such weights back to the IoT edge device.

As shown in Fig. 2b, if the FitCNN [16] juicer strategy
is used in our problem, the threshold list will contain more
negative threshold values which will simply yield the same
number of useful weights. This is because according to the
FitCNN [16] juicer algorithm, if the absolute value of a
weight difference is greater than a threshold, the correspond-
ing weight of the post trained model will be considered
useful. However, we find that the absolute value of any weight
difference value will always have positive values. Hence,
the condition in line 15 of Algorithm 1 will never be satisfied
if the threshold is negative thus all the weights of the trained
model will be considered useful. Choosing negative threshold
values, therefore, yields a lot of redundancy and is also time-
consuming, especially for class incremental learning. In class
incremental learning, the size of the training dataset can be
very large as new tasks arrive which is why there is a clear
need to extract useful weights using as few thresholds as
possible from the weight difference distribution list.

We propose to sort the weight difference distribution of
each layer in ascending order and use only non-negative
threshold values (line 6 of Algorithm 1) in order to speed
up the process of finding the minimum useful weights of
a trained classifier with negligible training accuracy loss.
Algorithm 1 shows our improved version of the original
FitCNN [16] juicer algorithm. In Algorithm 1, all the weight
matrices are converted into 1-D vectors to make it easier to
work with indexing.

For each layer in the model, the weight differences are
computed between the weights of the layers before and after
training which are then sorted in ascending order. Just like
the FitCNN [16] juicer algorithm, we divide the weight dif-
ference distribution into 30 quantiles. However, we store the
weight difference value at every quantile as a threshold only
if the weight difference value is non-negative. Next, a tempo-
rary model with the same architecture as the classifier on the
cloud is created which has the same parameters as the newly
trained model but if the weight difference of a parameter of
the trained model at a specific index is less than the threshold,
the weight of the pre-trained model will be inserted at the
given index into the temporary model. The accuracy of the
temporary model is computed using the data used to train
the model at the respective incremental training round. If the

29187

IEEE Access

S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

706

HOON
g Y
& 500
'gn JUVU
'g E) 400
=R 200)
) kS YUY
8O 2046
e} ZUY
£
=} 1.06)
z TUUVU

0 —
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Weight Difference Values Between Weights of Classifier Before and After Training
(a) 25800
= 3000(C)
ED g ZIOUYU
g % 2000
“ 9 1-500)
e 'C_? 1TOUU
83 o 1-0046)
© TUUU
=
=) 500
Z ALY
= e | B
-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

Weight Difference Values Between Weights of Classifier Before and After Training
(b)

FIGURE 2. Distribution of the weight difference between the classifier on the cloud before and after training when learning (a) the first 10 classes
(b) last 10 classes of the CIFAR-100 [34] dataset with rehearsal (training all samples accumulates so far) using the SqueezeNet [50] model.

difference between the accuracy of the temporary model and
the newly trained model is within Ay, then the process of
finding the useful weights continues using a larger weight
difference threshold value i.e., the next threshold value in
our threshold list. The larger the threshold value, the higher
the chances of the condition in line 15 being satisfied thus
the number of useful weights of a layer decreases, and as a
result, reduces the communication costs when transmitting
only the useful weights of the trained model back to the IoT
edge device.

Once the difference between the accuracy of the temporary
model and the original trained model is greater than Ay, then
the weights of the latest temporary model are considered to
be the final set of useful weights and the iterative process will
stop. Our algorithm reduces the number of iterations needed
to find the useful weights as compared to the FitCNN [16]
juicer algorithm by simply using positive threshold values
of the weight difference distribution. At the same time,
we ensure that the accuracy of the temporary model is similar
to the accuracy of the original trained model. Once the useful
weights are determined for a specific layer in the temporary
model, the parameters of that layer are frozen in order to find

29188

the useful weights in the next layer of the temporary model
that undergoes the same weight extraction process.

Line 11 in Algorithm 1 is another improvement that we
propose. We first use the maximum value in the threshold list
to find the useful weights and check if the accuracy of the
temporary model is close to the accuracy of the trained model.
We do this because, if this is the case, then there will be no
need to iterate through the entire threshold list to find the
useful weights which further reduces the number of iterations
needed to find the useful weights.

Apart from the useful weights, it is also mandatory to
send the indices of the weights of the trained model back
to the IoT edge device. This is to let the IoT edge device
know which specific connections of a layer of the model
must be updated. Indices are chosen depending on the number
of useful weights. If the useful weights are greater than the
number of non-useful weights, then obviously the number of
indices that indicate the position of the useful weights will be
larger. However, to make the communication more efficient,
if the number of useful weights is greater than the number of
non-useful weights then the indices of the non-useful weights
will be sent back to the IoT edge device. The message format

VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

Algorithm 1 Our Proposed Improved Juicer Algorithm

Input: Cypdated> Cold:, ACCEPLys» Aoris ¢
Output: Wyeg and lyeg

1: forl/inL do
2 C(liiff = Clllpdated - Céld

3 sortedC(liiff <« sort (C(Iﬁff)

4: Divider <« lengthofsortedC(lﬁff/q
5: for wyigr in sortedC (lﬁff do

6: if |wgigr| > O then

7 [T!] < wyisr at every divider
8: end if

9: end for

10: max; < Max (TI)

11: T! < Remove max, from the last index of 7! and insert it at the first index of T

12: Ctemporary < Cupdated
13: for threshold in 7! do
14: for way in Cjy do

est

15: if [wgir| < threshold then

16: Ctlemporary <~ C (l)l 4 at respective index

17: end if

18: end for

19: [CliSttemporary] <~ Ctemporary

20: Agemp < Get Ciemporary accuracy on training data

21: if (Aori - Aremp) > Accepty, then

22: Wéest, Iéest <« ClistfemporaIy at previous index of list, indices of Wé
23: break

24 else if (threshold == max;) then

25: Wéest, Iéest <~ Clist{emporary at current index of list, indices of Wéest
26: break

27: else

28: Wéest, Iéest <« Clistfemporary at current index of list, indices of Wéest
29: end if

30: end for

31t [Whest] < Wl
32 [oest] < Iy,
33: end for

of sending the weights and indices back to the IoT edge device
is expressed in (10) below.

Mee =< Whest >, i, <Ipest >, b, < Birained > <act>! (10)

Whest 1s converted into a 1-D vector and as shown in (10),
this flattened weight vector is converted into a comma-
separated string. The character ‘i’ denotes that the next
sequence of comma-separated strings is the indices. The
character 'i’ denotes the next sequence of comma-separated
strings are the biases. The term “act” is either the char-
acter 'y’ or 'n’. Character 'y’ indicates that the indices
present in the string are exactly where the weights need
to be assigned in the weight matrix on the IoT edge
device and the character 'n’ indicates that the indices
present in the string are where the updates are not
needed.

VOLUME 9, 2021

IV. EXPERIMENTAL SETTING
In this section, we conduct experiments to evaluate the
performance of our DDC algorithm in the context of the
incremental learning system shown in Fig. 1. The datasets
used in the experiment are the CIFAR-100 [34] dataset and
the Caltech-UCSD Birds (CUB)-200 [51] dataset. CIFAR-
100 [34] dataset contains RGB images of size 32 x 32 x
3 pixels and has a total of 100 classes with 500 training images
per class and 100 testing images per class. For the CUB-
200 [51] dataset, there are a total of 200 classes where the
number of training and testing images per class is different.
This is an imbalanced dataset and the spatial dimensions of
the images in this dataset are also different i.e., not all the
samples have the same width and height.

Before the incremental training begins, we randomly ini-
tialize our SoftMax layer with n neurons where n is the
number of classes to be learnt per incremental training round.

29189

IEEE Access

S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

For the communication between the IoT edge device and the
cloud, the features are encoded into a utf-8 format and then
transmitted via the TCP/IP protocol. Since the aim of this
work is not representation learning, we use pre-trained CNN
models as feature extractors on the IoT edge device and a
single SoftMax classification layer on the cloud. The number
of neurons in the SoftMax layer increase by n after every
incremental training round.

For CIFAR-100 [34], this dataset contains samples from
100 classes that are shuffled. Therefore, before beginning
incremental training, all of the samples are grouped together
with respect to the label. We use the pre-trained convolutional
layers of both SqueezeNet [50] and ShuffleNet V2 [52] as the
feature extractors. We use the Adam Optimizer [53] together
with the categorical cross-entropy loss function. All the lay-
ers except the SoftMax classification layer use the ReLU
activation function, the fully connected layers use dropout
with a probability of 0.25, and a batch size of 128. However,
for SqueezeNet [50], 70 epochs of training are used per
incremental training round with a learning rate of 0.0001 and
for ShuffleNet V2 [52], 25 epochs of training are used per
incremental training round with a learning rate of 0.001.

The CUB-200 [51] dataset is organized in sub-directories
whereby each sub-directory represents a single class,
therefore we automatically assign an integer label for each
sub-directory. The pre-trained convolutional layers of both
ShuffleNet V2 [52] and SqueezeNet [50] are used as fea-
ture extractors with a single SoftMax classification layer.
We use the Adam Optimizer [53] together with the categorical
cross-entropy loss function. All the layers except the Soft-
Max classification layer use the ReLLU activation function,
the fully connected layers use dropout with a probability
of 0.25, and a batch size of 128. For the CUB-200 [51] dataset,
the images are resized to 90 x 90 x 3 pixels. However, for
SqueezeNet [50], 25 epochs of training are used per incre-
mental training round with a learning rate of 0.0015 whereas,
for ShuffleNet V2 [52], 30 epochs of training are used per
incremental training round with a learning rate of 0.002.

All the accuracies reported in the experiments are the top-
5 accuracies (rounded off to 2 decimal places) on the test
dataset and averaged over executing the respective exper-
iment three times. We choose SqueezeNet [50] and Shuf-
fleNet V2 [52] feature extractors because these models are
lightweight and are specially designed for embedded devices
with resource constraints. The PyTorch [54] library is used
for developing and testing the experiments. The input images
are normalized by converting the RGB images from a range
of 0 to 255 to become 0 to 1. A laptop with an i7 processor
and 8 Gigabytes RAM is used as an edge device. The Google
cloud platform is used as the cloud with the Nvidia Tesla
K80 GPU.

V. RESULTS AND DISCUSSIONS

In this section, we show the results of our DDC and improved
weight extraction on the cloud algorithms, analyze, and dis-
cuss the results. For our DDC algorithm on the IoT edge

29190

device, we compare our method with three baseline methods:
NS, MTS, and WRSTS. We compare our weight extraction
algorithm with the novel FitCNN [16] weight extraction algo-
rithm. For evaluating our DDC algorithm and the improved
weight extraction algorithm in the class incremental learning
scenario, we test our proposed algorithms by incrementally
learning a different number of classes at a time. This is to
observe the performance of our algorithms under different
learning settings. As learning a different number of classes
at a time also means learning a different number of samples
at a time, we would like to observe the performance of our
DDC algorithm when it learns a different number of samples
at a time. This can give a good insight as to whether the data
sampling algorithms can maintain the classification accuracy
of the model when learning a different number of data sam-
ples per incremental training round. It is important to test
our proposed juicer algorithm under these settings where a
different number of classes are learnt incrementally at a time
because the learning process of a deep learning model varies
with respect to the number of samples. We can also observe
how many useful weights the improved juicer algorithm can
extract when learning a different number of classes at a time.

It is very important to note that though we carry out
data sampling using various methods such as RS, ES [17],
LCS [17], MTS, WRSTS. We apply our DDC algorithm to
RS, ES [17], and LCS [17] and we use NS, MTS, and
WRSTS as the baselines. NS is the upper boundary since it
involves no data sampling at all. The reason why MTS and
WRSTS are also treated as baselines is because they can auto-
matically detect a statistical difference between a selected
data distribution with respect to the overall data distribution
thus naturally becoming data sampling algorithms. MTS and
WRSTS are non-parametric statistical significance tests that
deduce whether there is a significant difference between any
two given data distributions. MTS does this by comparing
the medians of the data distributions and WRSTS does this
by comparing the rank sums of the given data distributions.
This is the reason these statistical tests are also chosen as
baselines. We apply MTS and WRSTS on the loss distribution
of samples obtained in (1) and transmit the samples with high
loss values such that statistically, the distribution of the high
loss samples is minimum in terms of the number of samples
and such that it also represents the overall loss distribution.
For statistical significance, we set the p-value for MTS and
WRSTS at 5%. When applying our DDC algorithm to LCS
[17], we simply replace the loss values in our DDC algorithm
with the SoftMax probabilities of a sample at its given label
index, t¢ samples with the highest SoftMax probabilities are
discarded. When applying our DDC algorithm to ES [17],
¢ samples with the lowest entropies are discarded.

A. EVALUATION OF CIFAR-100

The reason for choosing this dataset is because of the large
number of classes and a relatively large number of images
per class. A large number of classes implies more incremen-
tal training rounds which provides a better testing ground

VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

TABLE 1. Incrementally learning 10 classes at a time from CIFAR-100 [34] using SqueezeNet [50] and ShuffleNet V2 [52].

Total number of classes trained

10 20 30 40 50 60 70 80 90 100
Classification accuracies when using SqueezeNet [S0] feature extractor (%)
NS 95.40 83.70 78.43 71.45 66.60 64.85 62.56 60.56 58.73 56.72
MTS 94.60 83.45 78.03 71.45 66.56 64.08 62.71 60.24 58.33 56.67
WRSTS 95.40 83.25 78.13 71.33 66.80 64.72 63.09 59.85 58.09 56.60
RS (DDC) 94.20 82.65 77.13 70.75 66.10 64.20 62.11 60.28 57.62 56.30
ES [17] (DDC) 95.70 82.60 76.93 69.50 66.02 63.23 61.04 59.34 57.29 55.28
LCS [17] (DDC) 94.60 81.30 75.80 69.63 65.16 62.93 60.96 59.09 56.74 55.24
Accuracy when using ShuffleNet V2 [52] feature extractor (%)
NS 94.70 85.20 80.17 75.70 71.86 69.50 68.14 66.35 64.73 62.78
MTS 94.40 84.30 79.97 75.10 71.42 68.53 67.53 65.50 63.94 62.41
WRSTS 94.70 84.85 80.30 75.58 71.76 69.07 67.70 65.76 64.10 62.33
RS (DDC) 94.50 84.65 79.87 74.60 71.20 69.07 67.43 65.36 64.03 62.55
ES [17] (DDC) 94.60 83.85 79.13 73.70 70.40 67.70 66.49 64.60 63.19 61.61
LCS [17] (DDC) 93.90 83.05 78.70 74.10 70.54 67.97 66.76 65.06 63.24 61.56
TABLE 2. Incrementally learning 20 classes at a time from CIFAR-100 [34] using SqueezeNet [50] and ShuffleNet V2 [52].
Total number of classes trained
20 40 60 80 100
Classification accuracies when using SqueezeNet [50] feature extractor (%)

NS 83.80 71.67 65.23 60.99 56.94

MTS 83.05 71.35 64.22 60.32 56.64

WRSTS 83.45 71.65 64.63 60.79 56.63

RS (DDC) 83.25 71.25 64.47 60.45 56.39

ES [17] (DDC) 83.50 71.15 63.33 59.04 55.26

LCS [17] (DDC) 81.20 68.98 62.82 58.43 54.74

Classification accuracies when using ShuffleNet V2 [52] feature extractor (%)

NS 84.60 74.98 69.03 65.85 63.06

MTS 83.85 74.20 68.38 65.30 62.32

WRSTS 84.35 74.65 68.73 65.48 62.65

RS (DDC) 84.15 74.08 68.47 65.09 62.27

ES [17] (DDC) 83.55 73.38 67.25 64.30 61.30

LCS [17] (DDC) 83.45 73.40 67.18 64.13 61.40

for our DDC algorithm to see whether incremental learning
performance can be retained at every incremental training
round.

To test our DDC algorithm, we train our model by learn-
ing a different number of classes incrementally i.e. train-
ing 10 and 20 classes incrementally on CIFAR-100 [34].
By applying our DDC algorithm to RS, ES [17], and
LCS [17], it can be seen from Table 1 and Table 2 that for
each incremental training round, the classification accuracies
obtained is less than 3% irrespective of the data sampling
method with respect to the accuracies obtained without any
data sampling. This shows that our DDC algorithm can
be successfully integrated with various data sampling tech-
niques, resulting in the transmission of less samples to the
cloud and still retain the model performance with respect to
no data sampling. Fig. 3 shows the other performances of
incremental learning under various data sampling techniques
such as the number of samples transmitted to the cloud,
the training time on the cloud, the number of useful weights
extracted from the classifier, and the number of iterations
needed to find the useful weights.

VOLUME 9, 2021

From Fig. 3, all data sampling methods result in a smaller
number of samples being transmitted to the cloud and a faster
training time on the cloud as compared to NS. The WRSTS
method appears to be sending more samples to the cloud as
compared to other data sampling techniques indicating that
this method is able to quickly detect a statistical significance
difference between the overall loss distribution and the dis-
tribution of the losses whose associated samples are to be
transmitted to the cloud. Such quick detection of statistical
significance difference is undesirable in such cases because
we can clearly see that using other data sampling methods
results in fewer samples being transmitted to the cloud as
compared to WRSTS while the model performance is similar
to that of the accuracies obtained using NS.

It can be noted that learning 10 classes at a time takes
more time than learning 20 classes at a time on the cloud
because the more the number of classes to be learnt at a
time, the more the number of rehearsals needed for incre-
mental learning thus the overall training time on the cloud
increases. As Fig. 3c and Fig. 3d show, the cloud training
time is faster after data sampling is performed at the IoT edge

29191

IEE E ACC@SS S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

BNS BMTS OWRSTS ENS BMTS OWRSTS
B ELCS (DDC QRS (DDC BES (DDC 3 QaLCS (DDC @RS (DDC 0OES (DDC
2 60000 (DDC) (DDC) (DDC) £ 60000 (DDC) (DDC) (DDC)
g £
g & 40000
= =
2 2. 20000
g g
N « 0
= =
é 10 20 é 10 20
Number of Classes Learnt Incrementally (SqueezeNet) Number of Classes Learnt Incrementally (ShuffleNet V2)
@ (b)
ENS aMTS OWRSTS - BNS BMTS OWRSTS
8 BLCS (DDC) @RS (DDC) BES (DDC) 5 BLCS (DDC) @RS (DDC) OES (DDC)
I 400 Q 600
£ £
=2 300 |- =2
on V 7 o0 =" 400 [|o
£ £
k= § 200 |- L % k=l §
E O / / E O 200 |
= 2 100 |- L .. ! % - e
=7 A =T
£ 10 20 & 10 20
Number of Classes Learnt Incrementally (SqueezeNet) Number of Classes Learnt Incrementally (ShuffleNet V2)
() (d)
o @Our Juicer BEFitCNN Juicer o B Our Juicer @FitCNN Juicer
= =
= 2 400 B 2 400
39 5
z 2 300 22 300
£Z 200 £ 2 200
= »n ® 2
ERE SE 0
= 10 20 e 10 20
Number of Classes Learnt Incrementally (SqueezeNet) Number of Classes Learnt Incrementally (ShuffleNet V2)
© ®
g3 BOur Juicer BFitCNN Juicer ~ BNo Juicer - BOur Juicer @FitCNN Juicer @No Juicer
g2 5] .8
g E 400000 :é £ 600000
N Z0
3 =
< & 300000 E B 400000
£ & 200000 20
2 2 100000 32 200000 T
oY B2 =
g3 0 =i 0
=/ 10 20 e 10 20
Number of Classes Learnt Incrementally (SqueezeNet) Number of Classes Learnt Incrementally (ShuffleNet V2)
(& (b

FIGURE 3. Total samples transmitted to the cloud (a) using SqueezeNet [50] (b) using ShuffleNet V2 [52]. The cloud training time (c) using features
from SqueezeNet [50] (d) using features from ShuffleNet V2 [52]. Total iterations needed to find useful parameters of the classifier (e) using classifier
associated with SqueezeNet [50] (f) using classifier associated with ShuffleNet V2 [52]. Total useful parameters received by the loT edge device from
(8) using classifier associated with SqueezeNet [50] (h) using classifier associated with ShuffleNet V2 [52]. Evaluation of CIFAR-100 [34] dataset on
SqueezeNet [50] and ShuffleNet V2 [52] using the following data sampling techniques: NS, RS (DDC), ES [17] (DDC), LCS [17] (DDC), MTS, WRSTS.

device because not all samples have been transmitted to the For the improved juicer algorithm that we propose,
cloud. The classifier residing on the cloud is trained on lesser the number of useful weights we extract from the classifier is
data samples when data sampling is applied at the IoT edge the same as that of FitCNN [16]. However, the main improve-
device. ment is in the number of iterations needed to find the useful

29192 VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

TABLE 3. Incrementally learning 40 classes at a time from CUB-200 [51] using SqueezeNet [50] and ShuffleNet V2 [52].

Total number of classes trained

40 80 120 160 200

Classification accuracies when using SqueezeNet [50] feature extractor (%)
NS 58.49 43.85 36.68 31.53 27.77
MTS 51.15 37.81 29.44 23.59 20.90
WRSTS 56.84 42.53 33.59 29.90 25.60
RS (DDC) 57.39 42.71 36.53 29.00 27.53
ES [17] (DDC) 57.85 43.01 35.19 30.03 28.30
LCS [17] (DDC) 57.66 42.88 34.87 30.49 27.29

Classification accuracies when using ShuffleNet V2 [52] feature extractor (%)

NS 71.99 59.94 49.26 41.98 37.15

MTS 63.73 49.85 39.16 32.85 28.46
WRSTS 69.15 55.58 43.95 37.45 33.26

RS (DDC) 71.63 57.68 47.33 40.29 35.30
ES [17] (DDC) 69.77 57.21 46.75 39.42 35.15
LCS [17] (DDC) 69.97 56.59 46.75 39.18 34.82

weights. The original FitCNN [16] juicer algorithm requires
30 iterations after every training round i.e. using 30 threshold
values to find the best set of weights that represent the trained
model which can be sent to the IoT edge device. In all the
cases, we reduce the number of iterations required to find the
best set of weights by at least 75% which greatly reduces the
computational cost on the cloud required to find the useful
set of weights. Since the classification accuracies at every
incremental training round are less than 3% after applying
the juicer algorithm, this suggests that not all the parameters
learnt after training are useful.

B. EVALUATION OF CUB-200

We choose to test our proposed algorithms on this dataset
because it has a much smaller number of samples per class
as compared to CIFAR-100 [34] but with twice as many total
classes as CIFAR-100 [34]. Performing data sampling is very
challenging if the number of samples per class is small, for
example, discarding 2 samples out of 100 samples reduces
the sample size by only 2% but discarding 2 samples out
of 10 samples reduces the sample size by 20% which is
why it is very critical to test our DDC algorithm on small
scale datasets. We test our algorithms under two settings
i.e., learning 40 and 50 classes at a time. This is done to
observe the performance of our algorithms when learning a
large number of classes at a time.

For data sampling, it is important to note the size of image
features, for example, when using the SqueezeNet [50] fea-
ture extractor, its output has a dimension of 3 x 3 x 512 when
the size of the input image is 90 x 90 x 3. However, the size
of the output feature map of ShuffleNet V2 [52] is 1024 x
3 x 3, when the input image size is 90 x 90 x 3. The
ShuffleNet V2 [52] feature extractor output size is 2 times
greater than the SqueezeNet [50] feature extractor output size
in this case. The reason why we emphasize this is because
even if the data sampling rate is very low at the IoT edge
device, the transmission cost reduced can still be high given
that the size of the feature maps obtained is very large either

VOLUME 9, 2021

due to the CNN feature extractor architectural design and/or
a higher image resolution. This shows the importance of data
sampling at the IoT edge device for a large output feature map
size and/or dealing with very high dimensional data.

To transmit data over TCP/IP protocol, the data must be
converted to a byte stream. Moreover, since deep learning sys-
tems work with high precision floating-point numbers, each
value in the feature map can contain many decimal places. For
example, if the value at a given index of a single feature map
is 0.462134632, then this value is worth 11 bytes. Therefore,
the size of the data to be sent to the cloud increases in
proportion to the precision of floating-point values. Similarly,
when a high dimensional feature map is converted to a byte
stream, this will need a huge amount of data to be transmitted.
Hence, it becomes more important to reduce communication
costs in an edge-to-cloud IoT context.

It can be seen from Table 3 and Table 4 that using MTS
and WRSTS results in a severe model performance degrada-
tion in terms of the classification accuracies at every incre-
mental training round. This implies that when using such
non-parametric data sampling techniques, a lot of images
per class are discarded at the IoT edge device as evident
from Fig. 4a and Fig. 4b, leading to very few samples being
transmitted to the cloud which also results in a smaller cloud
training time as compared to other data sampling algorithms.
When using the MTS method, by the time this test detects a
significant difference between the means of the selected sam-
ples with respect to the total number of samples per class, a lot
of samples have already been discarded. The same applies for
WRSTS in which case a lot of samples already get discarded
by the time the test finds a significant difference between
the filtered samples and the overall dataset. This is very well
because of the small number of images per class. Given the
fact that the classification accuracies obtained when using
the MTS method are extremely low, it means that WRSTS is
faster at detecting statistical differences between the entropies
of samples to be transmitted as compared to the entropies of
all the samples. However, both of these non-parametric data

29193

IEEE Access

S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

TABLE 4. Incrementally learning 50 classes at a time from CUB-200 [51] using SqueezeNet [50] and ShuffleNet V2 [52].

Total number of classes trained

50 100 150 200

Classification accuracies when using SqueezeNet [50] feature extractor (%)
NS 53.42 42.81 34.15 27.48
MTS 47.08 33.98 27.21 21.36
WRSTS 52.05 38.95 29.73 2547
RS (DDC) 55.72 40.24 32.01 27.53
ES [17] (DDC) 54.64 41.23 31.28 26.96
LCS [17] (DDC) 51.48 37.93 29.06 27.89

Classification accuracies when using ShuffleNet V2 [52] feature extractor (%)

NS 68.97 56.60 4452 38.43

MTS 61.12 46.48 34.94 28.67
WRSTS 65.51 51.45 4021 34.25

RS (DDC) 6739 54.12 4227 36.79
ES [17] (DDC) 67.10 53.12 41.65 36.03
LCS [17] (DDC) 66.16 53.10 42.00 35.75

sampling methods fail to retain classification accuracies with
respect to NS. This shows that a very high data sampling rate
at the IoT edge device can lead to a very fast training time but
at the expense of severe model performance degradation.

On the contrary, when our DDC algorithm is extended
to RS, ES [17], and LCS [17] data sampling methods,
the training time of the classifier on the cloud is nearly the
same because the number of samples transmitted to the cloud
is also very similar for each of these methods as evident
from Fig. 4a, Fig. 4b, Fig. 4c, and Fig. 4d. Table 3 and
Table 4 show that the accuracy difference between NS and
DDC is within 3% at every incremental training round with
the exception of LCS [17] (DDC). When using LCS [17]
(DDC), at certain incremental training rounds, the classifica-
tion accuracies are less than 3%. LCS [17] uses SoftMax
probabilities for data sampling, however, the results show
that SoftMax probabilities of novel samples cannot be used
as a basis for data sampling as it leads to a larger amount
of catastrophic forgetting with respect to NS as compared to
RS (DDC) and ES [17] (DDC).

For the improved juicer algorithm that we propose, we can
again observe from Fig. 4e, Fig. 4f, Fig. 4g, and Fig. 4h
that our juicer algorithm is able to find the same number of
useful weights as FitCNN [16] juicer algorithm but using a lot
fewer iterations. Our algorithm is able to reduce the number
of iterations needed to find the useful weights of the trained
classifier on the cloud by up to 71%.

C. OVERALL DISCUSSION

Firstly, because of the random initialization of weights in
deep learning models, there is no guarantee that the classifi-
cation accuracies that are obtained after incremental learning
will be the same if the training is repeated despite having
no changes in the input dataset and the hyperparameters.
This is the reason why the classification accuracies, number
of samples discarded at the IoT edge, cloud training time
also vary slightly whenever the same experiments are run.

29194

To observe objectively, all the experiments are carried out
three times.

For data sampling, we can immediately conclude that out
of all the data sampling algorithms we evaluated, WRSTS
and MTS are not suitable data sampling methods because
they lead to a huge amount of catastrophic forgetting when
evaluated on the CUB-200 [51] dataset. This shows that
these non-parametric tests are not able to detect a statistical
significance difference fast enough between the entropies of
the samples to be transmitted to the cloud with respect to the
entropies of all the samples. This is why a lot of samples per
class are discarded at the IoT edge device which affects the
incremental learning process. Furthermore, when evaluating
the CIFAR-100 [34] dataset, using WRSTS leads to the worst
data sampling performance as a lot of samples are transmitted
to the cloud as compared to other data sampling methods.

In order to find the best data sampling algorithm out of RS
(DDC), ES [17] (DDC), and LCS [17] (DDC), we compute
how much the classification accuracies obtained with DDC
deviate from the classification accuracies obtained with NS.
Atevery incremental training round, we compute the standard
deviation of the classification accuracies obtained with NS
and DDC after which we average all of the standard devia-
tions. Table 5 shows the results.

It can be noted that the majority of the least amount of stan-
dard deviations in the classification accuracies are obtained
when using RS (DDC). Therefore, we can conclude that
RS (DDC) is the best data sampling algorithm. In LCS [17]
(DDC), ¢ samples with the highest SoftMax probabilities
are discarded, in ES [17] (DDC), t¢ samples with the lowest
entropies are discarded and in RS (DDC), t¢ samples are dis-
carded randomly. The reason why RS (DDC) performs better
than ES [17] (DDC) and LCS [17] (DDC) is that after every
incremental training round, when new neurons are added to
the SoftMax layer in our classifier on the cloud, the weights
associated with these new neurons are randomly initialized.
Furthermore, due to the stochastic nature of neural networks,
there is no guarantee that the initial entropies of all samples

VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

mNs aMTS
BLCS (DDC) @RS (DDC)

@ WRSTS
BES (DDC)

8000

Total Samples Transmitted

40 50
Number of Classes Learnt Incrementally (SqueezeNet)
@
ENS BMTS BWRSTS

g 30 BLCS (DDC) ARS (DDC) BES (DDC)
[}
£
RO
2g 20 7
£2 %
= O 10 ..

Q
o 2
= B
& 40 50
© Number of Classes Learnt Incrementally (SqueezeNet)

©
OOur Juicer @FitCNN Juicer
200
150

wn
(=]

(=]

- I l
v A7)
40 50

Number of Classes Learnt Incrementally (SqueezeNet)

©

Total Iterations Needed To
Find Useful Weights

Our Juicer BFitCNN Juicer BNo Juicer

= O

38

£ g 10000000

Z < 8000000 m—

S 6000000 |l B e [

B e 4000000 | e o

2

B'g 2000000 | e
H

2 S , LA e

s

e 8 40 50

Number of Classes Learnt Incrementally (SqueezeNet)

(8

ENS BMTS BWRSTS
E BLCS (DDC) BRS (DDC) OES (DDC)
= 8000
5
§ 6
=
38 4
£2
<
wn
E
S 40 50
Number of Classes Learnt Incrementally (ShuffleNet V2)
(b)
BENS BMTS O WRSTS
g LCS (DDC) BRS (DDC) G ES (DDC)
o 200
£
= @ 150 |-
!
£ 2 100 -
=2
= 0O
E o 50 fe
5=
=5
£ 40
© Number of Classes Learnt Incrementally (ShuffleNet V2)
(@
O Our Juicer @FitCNN Juicer
o
[_1
= g 200
3 @J 150
zz
FE O
= 40 50
Number of Classes Learnt Incrementally (ShuffleNet V2)
®
Our Juicer BFitCNN Juicer B No Juicer
B3
£ = 6000000
E j*3 —
Z A
g 5 4000000 [N .
[iols}
w A
ED E 2000000 | FF AT e])
o
£ ||
35 0 Z
e 40 50
Number of Classes Learnt Incrementally (ShuffleNet V2)
()

FIGURE 4. Total samples transmitted to the cloud (a) using SqueezeNet [50] (b) using ShuffleNet V2 [52]. The cloud training time (c) using features
from SqueezeNet [50] (d) using features from ShuffleNet V2 [52]. Total iterations needed to find useful parameters of the classifier (e) using classifier
associated with SqueezeNet [50] (f) using classifier associated with ShuffleNet V2 [52]. Total useful parameters received by the loT edge device from
(g) using classifier associated with SqueezeNet [50] (h) using classifier associated with ShuffleNet V2 [52]. Evaluation of CUB-200 [51] dataset on
SqueezeNet [50] and ShuffleNet V2 [52] using the following data sampling techniques: NS, RS (DDC), ES [17] (DDC), LCS [17] (DDC), MTS, WRSTS.

will reduce in magnitude after training. A number of samples
can end up with higher entropy values as compared to their
respective initial loss values thus affecting the performance of
the model as evident from Table 5. The same concept applies
to SoftMax probabilities thus the low accuracies which lead to

VOLUME 9, 2021

higher standard deviations from NS as evident from Table 5.
In order to prevent such samples to affect the model training
on the cloud, novel samples must be discarded randomly
because this reduces the probability of letting such samples
affect the incremental training process.

29195

IEEE Access

S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

TABLE 5. Standard deviation of the classification accuracies obtained via data sampling (DDC) and without data sampling.

Dataset Model Classes Learnt at a time RS (DDC) (%) ES [17] (DDC) (%) LCS [17] (DDC) (%)
SqueezeNet [50] 10 0.54 0.90 1.24
ShuffleNet V2 [52] 10 0.42 0.98 1.01
CIFAR-100 [34]
SqueezeNet [50] 20 0.40 0.90 1.76
ShuffleNet V2 [52] 20 0.49 1.09 1.13
SqueezeNet [50] 40 0.73 0.71 0.73
ShuffleNet V2 [52] 40 1.15 1.70 1.84
CUB-200 [51]
SqueezeNet [50] 50 1.25 1.88 2.18
ShuffleNet V2 [52] 50 1.41 1.88 2.03

TABLE 6. Effectiveness of RS (DDC) in maintaining classification accuracies while reducing data sampling rate and training time on the cloud.

Standard deviation of Reduction in the

Reduction in training

Dataset Model Classes learnt at a time classification samples transmitted .
. time on the cloud (%)
accuracies (%) (%)
SqueezeNet [50] 10 0.54 15.83 13.52
ShuffleNet V2 [52] 10 0.42 18.42 17.33
CIFAR-100 [34]
SqueezeNet [50] 20 0.40 14.53 10.76
ShuffleNet V2 [52] 20 0.49 18.10 19.21
SqueezeNet [50] 40 0.73 14.83 11.36
ShuffleNet V2 [52] 40 1.15 14.59 12.42
CUB-200 [51]
SqueezeNet [50] 50 1.25 14.72 1422
ShuffleNet V2 [52] 50 1.41 14.79 14.83

The central part of our DDC algorithm is the formulation
shown in (3). If we observe and analyze (3) more closely,
we are trying to find the maximum entropy value (LS) in
L€ such that all the entropies smaller than L¢ i differ from
the median of L° by a magnitude that is even smaller than
the general deviation of all entropies in L¢ from the median
of L¢. This theoretically means that the total number of
samples with entropy values that satisfy (3) are samples with
entropies that hardly differ from the median of L¢ and such
samples do not largely help neural networks generalize the
data distribution they belong to [37,38]. The results obtained
in Table 5 and Table 6 support our theory.

Even though we claim RS (DDC) is the best data sampling
algorithm out of all the data sampling algorithms we used,
we must still test the effectiveness of RS (DDC). An effective
data sampling algorithm is able to retain a model’s learning
performance while improving the model training time and
reducing the number of samples being transmitted to the
cloud. Table 6 shows the standard deviation of the classifica-
tion accuracies obtained with RS (DDC) from NS, the reduc-
tion in the number of samples transmitted to the cloud, and
the reduction in the training time on the cloud.

It can be seen that when evaluating CIFAR-100 [34],
the standard deviation of the classification accuracies after
applying DDC is within 1%, the reduction in the number
of samples being transmitted to the cloud is greater than

29196

14% and the reduction in the classifier training time on the
cloud is greater than 10%. When evaluating CUB-200 [51],
the standard deviation of the classification accuracies after
applying DDC is within 1.5%, the reduction in the number
of samples being transmitted to the cloud is greater than 14%
and the reduction in the classifier training time on the cloud is
greater than 11%. This proves that after applying RS (DDC),
the changes in the classification accuracies are very small
as compared to NS whereas the reduction in the classifier
training time on the cloud and the transmission cost is huge.

The objective of the juicer algorithm is to send only
the most useful weights of the trained model on the cloud
back to the IoT edge device. The juicer algorithm requires
only one hyperparameter and that is the acceptable accuracy
loss(Accept,,,)- The goal is to minimize the number of use-
ful weights of a trained model on the cloud that must be
transmitted back to the IoT edge device. However, we must
also ensure that the training accuracy of the model on the
cloud is not affected due to weight extraction which is why
Accept,, 15 a required hyperparameter. Accept, is set to
0.25 in the FitCNN [16] juicer algorithm and also in our juicer
algorithm (Algorithm 1). As mentioned earlier, the number
of useful weights that our improved juicer algorithm is able
to extract is the same as the FitCNN [16] juicer algorithm.
However, we reduce the number of iterations needed to find
the useful weights of the classifier after every incremental

VOLUME 9, 2021

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device

IEEE Access

training round. Our improved juicer algorithm can loosely
be compared to the early stopping strategy used in neural
networks. In early stopping, model training is stopped as
soon as the validation error starts increasing, similarly, our
improved juicer algorithm will stop the iterative process of
using different threshold values to find the useful weights as
soon as the accuracy of the temporary model falls outside the
acceptable accuracy limit. Hence, our approach uses much
fewer iterations to find the useful weights of the trained model
on the cloud.

Results show that our weight extractor algorithm greatly
speeds up the process of finding the useful parameters of
a trained model as compared to the weight extractor algo-
rithm presented in [16]. We achieve this speedup by mod-
ifying the original FitCNN [16] algorithm by sorting the
weight differences between the trained model and the tem-
porary model in ascending order and using only positive
weight differences as thresholds for determining the useful
parameters.

VI. CONCLUSION

In this paper, we present two main contributions. Firstly, by
performing data sampling on an IoT edge device in a class
incremental learning scenario and secondly, by efficiently
finding specific useful weights in a trained model on the cloud
to be sent back to the IoT edge device. Both the contributions
reduce the communication costs between the IoT edge device
and the cloud.

After an extensive set of experiments, we show that our
proposed DDC algorithm is able to perform data sampling
at the IoT edge device and is able to retain the learning per-
formance whereby the classification accuracy that we obtain
at every incremental training round is within 3% compared
to the baseline method (no data sampling) at every incre-
mental training round irrespective of the dataset, CNN, fully
connected layers based classifier, hyperparameters, and the
number of classes being learnt incrementally. From the results
obtained, we conclude that applying our DDC algorithm to
RS is the most consistent method compared to all the data
sampling algorithms we used for our experiments. RS (DDC)
always reduces the transmission cost from the IoT edge
device to the cloud and leads to a faster training time on
the cloud while maintaining the class incremental learning
performance.

We also propose an algorithm for extracting only the useful
weights of a trained model to be sent back to the IoT edge
device in an effort to reduce the transmission cost. Our weight
extraction algorithm is able to extract the same number of
weights as FitCNN [16] but our work improves the efficiency
of the original juicer algorithm [16] and manages to reduce
the workload on the cloud in terms of the total iterations
needed for finding the useful weights by at least 75% when
evaluating CIFAR-100 [34] on both SqueezeNet [50] and
ShuffleNet V2 [52] and by at least 71% when evaluating
CUB-200 [51] on both SqueezeNet [S50] and ShuffleNet
V2 [52].

VOLUME 9, 2021

VII. FUTURE WORK

There are a number of advancements that can be made as an
extension to this work such as having multiple [oT devices in
which case the cloud needs to sync the overall learning mech-
anism across several devices. Coming up with a novel cost
function that can incrementally place importance on certain
classes with respect to the imbalance can be another useful
idea because this will eliminate the need for oversampling
of underrepresented classes. Another main advancement that
can be made is to design an algorithm for IoT edge device
such that they can automatically assign labels for the new
incoming classes.

We would like to stress that the number of samples we
discard at the IoT edge device is not the optimal number of
samples that can be discarded before training, we believe that
to reap the full benefits of data sampling, a certain number of
samples can be discarded at the IoT edge device in an effort to
reduce both the transmission cost and the cloud training cost.
However, certain samples out of the transmitted samples must
be sent and discarded on the cloud during training.

Although our DDC algorithm is able to largely retain incre-
mental learning classification accuracies while greatly reduc-
ing data transmission costs and training time on the cloud,
we understand that some researchers would prefer control
over the trade-off between the classification accuracies and
the data transmission rate depending on their applications.
In order to do so, our DDC algorithm can easily be re-used by
multiplying the term in (4) with a hyperparameter w as shown
in (11) below.

v= Lw ' (Zlch I)J (D

The hyperparameter @ should be in the range 0 and 1. The
term |-| is known as the floor function which is used to
round-off a floating-point number to the greatest integer less
than or equal to the floating-point number, the floor function
is required because w can represent a floating-point number.
When w is 0, no data sampling takes place, however, when the
value of w starts to increase, the magnitude of data sampling
also increases with a small deviation in the classification
accuracies starting to become evident. Therefore, researchers
can tweak the value of w to control the trade-off between
the data sampling rate and the deviation in the incremental
learning classification accuracies as per their applications.

A shortcoming of our weight extraction algorithm is that
this algorithm must be run on very powerful hardware accel-
erators. Our weight extraction algorithm computes the train-
ing accuracy of the classifier a few times to come up with the
most useful parameters. This means multiple forward passes
on the classifier are required suggesting that if the hardware
accelerator is not powerful enough, this process itself could
be very time-consuming. This shortcoming leads to an open
research question and that is how to quickly determine the
useful weights of a neural network-based classifier after train-
ing or perhaps during the training process itself.

29197

IEEE Access

S. Dube et al.: Novel Approach of loT Stream Sampling and Model Update on the loT Edge Device

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and
N. Diaz-Rodriguez, “Continual learning for robotics: Definition, frame-
work, learning strategies, opportunities and challenges,” Inf. Fusion,
vol. 58, pp. 52-68, Jun. 2020, doi: 10.1016/j.inffus.2019.12.004.

M. McCloskey and N. J. Cohen, *“Catastrophic interference in connection-
ist networks: The sequential learning problem,” Psychol. Learn. Motivat.,
vol. 24, pp. 109-165, Jan. 1989, doi: 10.1016/S0079-7421(08)60536-8.
R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends Cogn. Sci., vol. 3, pp. 128-135, May 1999, doi: 10.1016/S1364-
6613(99)01294-2.

W. Fang, X. Yin, Y. An, N. Xiong, Q. Guo, and J. Li, “Optimal schedul-
ing for data transmission between mobile devices and cloud,” Inf. Sci.,
vol. 301, pp. 169-180, Apr. 2015, doi: 10.1016/j.in5.2014.12.059.

W. Fang, Y. Li, H. Zhang, N. Xiong, J. Lai, and A. V. Vasilakos,
“On the throughput-energy tradeoff for data transmission between cloud
and mobile devices,” Inf. Sci., vol. 283, pp. 79-93, Nov. 2014, doi:
10.1016/j.ins.2014.06.022.

E. Baccarelli, S. Scardapane, M. Scarpiniti, A. Momenzadeh, and
A. Uncini, “Optimized training and scalable implementation of con-
ditional deep neural networks with early exits for fog-supported
IoT applications,” Inf. Sci., vol. 521, pp.107-143, Jun. 2020, doi:
10.1016/j.ins.2020.02.041.

D. Mrozek, “Fall detection in older adults with mobile IoT devices and
machine learning in the cloud and on the edge,” Inf Sci., vol. 530,
pp. 148-163, Oct. 2020, doi: 10.1016/.ins.2020.05.070.

Y. Zhang, H. Guo, Z. Lu, L. Zhan, and P. C. K. Hung, “Dis-
tributed gas concentration prediction with intelligent edge devices in coal
mine,” Eng. Appl. Artif. Intell., vol. 92, Jun. 2020, Art. no. 103643, doi:
10.1016/j.engappai.2020.103643.

F. F X. Vasconcelos, R. M. Sarmento, P. P. R. Filho, and
V. H. C. de Albuquerque, “Artificial intelligence techniques
empowered edge-cloud architecture for brain CT image analysis,”
Eng. Appl. Artif. Intell., vol. 91, May 2020, Art.no. 103585, doi:
10.1016/j.engappai.2020.103585.

W. Xiong, Z. Lu, B. Li, Z. Wu, B. Hang, J. Wu, and X. Xuan, “A self-
adaptive approach to service deployment under mobile edge computing
for autonomous driving,” Eng. Appl. Artif. Intell., vol. 81, pp. 397-407,
May 2019, doi: 10.1016/j.engappai.2019.03.006.

S.-C. Huang, J.-N. Hwang, S.-Y. Kuo, A. P. D. Binotto, D. Upadhyay, and
P. C. K. Hung, “Special issue on Internet of Things (IoT) for in-vehicle
systems,” Eng. Appl. Artif. Intell., vol. 85, pp. 874-875, Oct. 2019, doi:
10.1016/j.engappai.2019.103235.

G. S. Fischer, R. D. R. Righi, G. D. O. Ramos, C. A. D. Costa,
and J. J. P. C. Rodrigues, “ElHealth: Using Internet of Things and data
prediction for elastic management of human resources in smart hospi-
tals,” Eng. Appl. Artif. Intell., vol. 87, Jan. 2020, Art. no. 103285, doi:
10.1016/j.engappai.2019.103285.

L. Kang, R.-S. Chen, W. Cao, Y.-C. Chen, and Y.-X. Hu, “Mecha-
nism analysis of non-inertial particle swarm optimization for Internet of
Things in edge computing,” Eng. Appl. Artif. Intell., vol. 94, Sep. 2020,
Art. no. 103803, doi: 10.1016/j.engappai.2020.103803.

R. Kemker and C. Kanan, “FearNet: Brain-inspired model for incremental
learning,” in Proc. 6th Int. Conf. Learn. Represent. (ICLR), 2018, pp. 1-16.
S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “ICaRL:
Incremental classifier and representation learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5533-5542, doi:
10.1109/CVPR.2017.587.

D. Liu, C. Yang, S. Li, X. Chen, J. Ren, R. Liu, M. Duan, Y. Tan, and
L. Liang, “FitCNN: A cloud-assisted and low-cost framework for updating
CNN s on [oT devices,” Future Gener. Comput. Syst., vol. 91, pp. 277-289,
Feb. 2019, doi: 10.1016/j.future.2018.09.020.

B. Settles, “Active learning literature survey,” Dept. Comput. Sci., Univ.
Wisconsin-Madison, Madison, W1, USA, Tech. Rep., 2009.

J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, L. Tang, “DjiNN and Tonic: DNN as a ser-
vice and its implications for future warehouse scale computers,” ACM
SIGARCH Comput. Archit. News., vol. 43, no. 3, pp. 27-40, 2016, doi:
10.1145/2872887.2749472.

J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE, vol. 107, no. 8, pp.1655-1674, Aug. 2019, doi:
10.1109/JPROC.2019.2921977.

29198

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

F. Lu, L. Gu, L. T. Yang, L. Shao, and H. Jin, “Mildip: An energy eftfi-
cient code offloading framework in mobile cloudlets,” Inf. Sci., vol. 513,
pp. 84-97, Mar. 2020, doi: 10.1016/.ins.2019.10.008.

Z. Tong, X. Deng, F. Ye, S. Basodi, X. Xiao, and Y. Pan, “Adaptive
computation offloading and resource allocation strategy in a mobile edge
computing environment,” Inf. Sci., vol. 537, pp. 116-131, Oct. 2020, doi:
10.1016/j.ins.2020.05.057.

X. Xu, X. Liu, X. Yin, S. Wang, Q. Qi, and L. Qi, ‘“Privacy-
aware offloading for training tasks of generative adversarial network
in edge computing,” Inf Sci., vol. 532, pp.1-15, Sep. 2020, doi:
10.1016/j.ins.2020.04.026.

P. Zhang, A. Zhang, and G. Xu, “Optimized task distribution based
on task requirements and time delay in edge computing environments,”
Eng. Appl. Artif. Intell., vol. 94, Sep. 2020, Art.no. 103774, doi:
10.1016/j.engappai.2020.103774.

M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for Internet of Things data analysis:
A survey,” Digit. Commun. Netw., vol. 4, no. 3, pp. 161-175, Aug. 2018,
doi: 10.1016/j.dcan.2017.10.002.

X. Wang, Y. Feng, Z. Ning, X. Hu, X. Kong, B. Hu, and Y. Guo, “A collec-
tive filtering based content transmission scheme in edge of vehicles,” Inf.
Sci., vol. 506, pp. 161-173, Jan. 2020, doi: 10.1016/.ins.2019.07.083.

Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Z. Zhang, and
Y. Fu, “Incremental classifier learning with generative adversarial
networks,” 2018, arXiv:1802.00853. [Online]. Available: http://arxiv.
org/abs/1802.00853

T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and C. Kanan,
“REMIND your neural network to prevent catastrophic forgetting,” 2019,
arXiv:1910.02509. [Online]. Available: http://arxiv.org/abs/1910.02509
E. Choi, K. Lee, and K. Choi, ‘“‘Autoencoder-based incremental class learn-
ing without retraining on old data,” 2019, arXiv:1907.07872. [Online].
Available: http://arxiv.org/abs/1907.07872

F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in Proc. 34th Int. Conf. Mach. Learn. (ICML), vol. 8, 2017,
pp. 6072-6082.

R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory aware synapses: Learning what (not) to forget,” in Proc. Eur.
Conf. Comput. Vis., in Lecture Notes in Computer Science: Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 11207.
Cham, Switzerland: Springer, 2018, pp. 144161, doi: 10.1007/978-3-030-
01219-9_9.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C.Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan,
and T. Van Overveldt, ‘“Towards federated learning at scale: Sys-
tem design,” 2019, arXiv:1902.01046. [Online]. Available: http://arxiv.
org/abs/1902.01046

X. Zhang, X. Zhu, J. Wang, H. Yan, H. Chen, and W. Bao, “Feder-
ated learning with adaptive communication compression under dynamic
bandwidth and unreliable networks,” Inf. Sci., vol. 540, pp. 242-262,
Nov. 2020, doi: 10.1016/j.ins.2020.05.137.

Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtepe,
H. Kim, and S. Nepal, “End-to-end evaluation of federated learning and
split learning for Internet of Things,” 2020, arXiv:2003.13376. [Online].
Available: http://arxiv.org/abs/2003.13376

A. Krizhevsky. (2009). Learning Multiple Layers of Features From Tiny
Images. [Online]. Available: https://www.cs.toronto.edu/ kriz/cifar.html
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘“MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio, ‘““Vari-
ance reduction in SGD by distributed importance sampling,” 2015,
arXiv:1511.06481. [Online]. Available: http://arxiv.org/abs/1511.06481
A. H. Jiang, D. L.-K. Wong, G. Zhou, D. G. Andersen, J. Dean,
G. R. Ganger, G.Joshi, M. Kaminksy, M. Kozuch, Z. C. Lipton,
and P. Pillai, “Accelerating deep learning by focusing on the biggest
losers,” 2019, arXiv:1910.00762. [Online]. Available: http://arxiv.
org/abs/1910.00762

A. Katharopoulos and F. Fleuret, “Not all samples are created equal: Deep
learning with importance sampling,” in Proc. 35th Int. Conf. Mach. Learn.
(ICML), vol. 6, 2018, pp. 3936-3949.

V. Birodkar, H. Mobahi, and S. Bengio, ‘“Semantic redundancies
in image-classification datasets: The 10% you don’t need,” 2019,
arXiv:1901.11409. [Online]. Available:https://arxiv.org/abs/1901.11409

VOLUME 9, 2021

http://dx.doi.org/10.1016/j.inffus.2019.12.004
http://dx.doi.org/10.1016/S0079-7421(08)60536-8
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
http://dx.doi.org/10.1016/j.ins.2014.12.059
http://dx.doi.org/10.1016/j.ins.2014.06.022
http://dx.doi.org/10.1016/j.ins.2020.02.041
http://dx.doi.org/10.1016/j.ins.2020.05.070
http://dx.doi.org/10.1016/j.engappai.2020.103643
http://dx.doi.org/10.1016/j.engappai.2020.103585
http://dx.doi.org/10.1016/j.engappai.2019.03.006
http://dx.doi.org/10.1016/j.engappai.2019.103235
http://dx.doi.org/10.1016/j.engappai.2019.103285
http://dx.doi.org/10.1016/j.engappai.2020.103803
http://dx.doi.org/10.1109/CVPR.2017.587
http://dx.doi.org/10.1016/j.future.2018.09.020
http://dx.doi.org/10.1145/2872887.2749472
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1016/j.ins.2019.10.008
http://dx.doi.org/10.1016/j.ins.2020.05.057
http://dx.doi.org/10.1016/j.ins.2020.04.026
http://dx.doi.org/10.1016/j.engappai.2020.103774
http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.1016/j.ins.2019.07.083
http://dx.doi.org/10.1007/978-3-030-01219-9_9
http://dx.doi.org/10.1007/978-3-030-01219-9_9
http://dx.doi.org/10.1016/j.ins.2020.05.137

S. Dube et al.: Novel Approach of IoT Stream Sampling and Model Update on the loT Edge Device IEEEACC@SS

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. R. de Mello, M. R. Stemmer, and F. G. O. Barbosa, “Support vector
candidates selection via delaunay graph and convex-hull for large and
high-dimensional datasets,” Pattern Recognit. Lett., vol. 116, pp. 43-49,
Dec. 2018, doi: 10.1016/j.patrec.2018.09.001.

M. Kawulok and J. Nalepa, ““Support vector machines training data selec-
tion using a genetic algorithm,” in Structural, Syntactic, and Statistical
Pattern Recognition (Lecture Notes in Computer Science: Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7626.
Berlin, Germany: Springer, 2012, pp. 557-565, doi: 10.1007/978-3-642-
34166-3_61.

X.-J. Shen, L. Mu, Z. Li, H-X. Wu, J.-P. Gou, and X. Chen,
“Large-scale support vector machine classification with redundant data
reduction,” Neurocomputing, vol. 172, pp. 189-197, Jan. 2016, doi:
10.1016/j.neucom.2014.10.102.

D. Wang, H. Qiao, B. Zhang, and M. Wang, “Online support vector
machine based on convex hull vertices selection,” IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 24, no. 4, pp.593-609, Apr. 2013, doi:
10.1109/TNNLS.2013.2238556.

A. Lépez Chau, X. Li, and W. Yu, “Convex and concave hulls for
classification with support vector machine,” Neurocomputing, vol. 122,
pp- 198-209, Dec. 2013, doi: 10.1016/j.neucom.2013.05.040.

J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, “An energy
efficient IoT data compression approach for edge machine learning,”
Future Gener. Comput. Syst., vol. 96, pp. 168-175, Jul. 2019, doi:
10.1016/j.future.2019.02.005.

F. Xhafa, B. Kilic, and P. Krause, “Evaluation of IoT stream pro-
cessing at edge computing layer for semantic data enrichment,”
Future Gener. Comput. Syst., vol. 105, pp. 730-736, Apr. 2020, doi:
10.1016/j.future.2019.12.031.

Y. Li, A.-C. Orgerie, I. Rodero, B. L. Amersho, M. Parashar, and
J.-M. Menaud, “End-to-end energy models for edge cloud-based IoT plat-
forms: Application to data stream analysis in 10T,” Future Gener. Comput.
Syst., vol. 87, pp. 667-678, Oct. 2018, doi: 10.1016/j.future.2017.12.048.
L. Fei-Fei, J. Deng, and K. Li, “ImageNet: Constructing a large-scale
image database,” J. Vis., vol. 9, no. 8, p. 1037,2010, doi: 10.1167/9.8.1037.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
pp. 321-357, Jun. 2002, doi: 10.1613/jair.953.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5 MB model size,” 2016, arXiv:1602.07360. [Online]. Avail-
able: http://arxiv.org/abs/1602.07360

P. Welinder, S. Branson, T. Mita, C. Wah, and F. Schroff, “Caltech-UCSD
birds 200,” Comput. Neural Syst., California Inst. Technol., Pasadena,
CA, USA, Tech. Rep. CNS-TR, 2010, pp. 1-15. [Online]. Available:
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

N. Ma, X. Zhang, H. T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis. (Lecture Notes in Computer Science: Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11218.
Cham, Switzerland: Springer, 2018, pp. 122-138, doi: 10.1007/978-3-030-
01264-9_8.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1-15.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, and A. Desmaison, “PyTorch:
An imperative style, high-performance deep learning library,” 2019,
arXiv:1912.01703. [Online]. Available: http://arxiv.org/abs/1912.01703

VOLUME 9, 2021

SWARAJ DUBE received the M.Eng. degree
from the Department of Electrical and Electronic
Engineering, University of Nottingham Malaysia,
in 2017, where he is currently pursuing the Ph.D.
degree. He worked as a Research and Development
Engineer with ViTrox Corporation Berhad, from
2017 to 2018. He is also a registered Graduate
Engineer with the Board of Engineers Malaysia.
His research interests include deep learning, edge
computing, and the Internet of Things.

WONG YEE WAN received the Ph.D. degree
in electrical and electronic engineering from the
University of Nottingham Malaysia, in 2011. She
worked as an Assistant Professor with the Univer-
sity of Nottingham Malaysia, from 2011 to 2019,
and promoted to an Associate Professor, in 2020.
She is currently working as a Senior Data Scientist
with the industry. Her research interest includes
applied artificial intelligence in various domains.

HERMAWAN NUGROHO (Senior Member,
IEEE) received the bachelor’s degree from the
Bandung Institute of Technology, Indonesia,
in 2005, the M.Sc. and Ph.D. degrees from the Uni-
versiti Teknologi PETRONAS (UTP), Malaysia,
in 2007 and 2009, respectively, and the Ph.D.
degree from Indonesia, in 2014. He worked as a
Lighting Consultant, before continuing his mas-
ter’s degree. After finishing his M.Sc. degree,
he worked as a Research Officer for several
research projects under UTP and ViTrox Technologies. He currently works
with the University of Nottingham Malaysia. He manages several research
projects with the Centre for Intelligent Signal and Imaging Research (CISIR),
UTP. He received his Professional Engineer status from Indonesia, in 2015.

29199

http://dx.doi.org/10.1016/j.patrec.2018.09.001
http://dx.doi.org/10.1007/978-3-642-34166-3_61
http://dx.doi.org/10.1007/978-3-642-34166-3_61
http://dx.doi.org/10.1016/j.neucom.2014.10.102
http://dx.doi.org/10.1109/TNNLS.2013.2238556
http://dx.doi.org/10.1016/j.neucom.2013.05.040
http://dx.doi.org/10.1016/j.future.2019.02.005
http://dx.doi.org/10.1016/j.future.2019.12.031
http://dx.doi.org/10.1016/j.future.2017.12.048
http://dx.doi.org/10.1167/9.8.1037
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/978-3-030-01264-9_8
http://dx.doi.org/10.1007/978-3-030-01264-9_8

