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ABSTRACT As COVID-19 spread worldwide, many major grain-producing countries have adopted mea-
sures to restrict their grain exports; food security has aroused great concern from various parties. How
to improve grain production has become one of the most important issues facing all countries. However,
crop diseases are a difficult problem for many farmers so it is important to master the severity of crop
diseases timely and accurately to help staff take further intervention measures to minimize plants being
further infected. In this paper, a restructured residual dense network was proposed for tomato leaf disease
identification; this hybrid deep learning model combines the advantages of deep residual networks and dense
networks, which can reduce the number of training process parameters to improve calculation accuracy as
well as enhance the flow of information and gradients. The original RDN model was first used in image
super resolution, so we need to restructure the network architecture for classification tasks through adjusted
input image features and hyper parameters. Experimental results show that this model can achieve a top-1
average identification accuracy of 95% on the Tomato test dataset in AI Challenger 2018 datasets, which
verifies its satisfactory performance. The restructured residual dense network model can obtain significant
improvements over most of the state-of-the-art models in crop leaf identification, as well as requiring less
computation to achieve high performance.

INDEX TERMS Residual dense network, leaf disease identification, agricultural artificial intelligence,
tomato leaf diseases.

I. INTRODUCTION
In March 2020, a joint statement by the Directors-General of
FAO, WHO and WTO, as countries move to enact measures
aiming to halt the accelerating COVID-19 pandemic, every
country must take measures to ensure food security [1]. Food
security has been increasingly addressed; many countries and
institutions are working to increase food production. How to
master crop diseases and insect pests more accurately and
effectively is an important research area. Specifically, leaf
diseases greatly influence crop growth and yield. Researchers
have performed considerable work to effectively identify the
severities of crop diseases.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haruna Chiroma .

To present, the research on crop disease identification
is mainly divided into two topics. One is the traditional
computer vision method, which is mainly based on spectral
detection and feature extraction to identify different diseases.
Different types of diseases cause different leaf features, which
leads to different shapes and colors of leaves eroded by
diseases and healthy crops. The other topic uses machine
learning technology to identify leaf images. That is, the iden-
tification of disease images is extracted by using super-
vised or unsupervised learning algorithms and the recognition
is carried out through the different features of diseased and
healthy plants.

With the development of machine learning and the tech-
nology of Internet of things (LOT) in agriculture [2], [3],
which automatically identifies plant diseases and insect pests,
especially for the application of deep learning, the accuracy
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and efficiency of crop leaf disease identification have further
improved.

Jiang et al. [4] used a deep learning method to extract the
disease features on tomato leaves, such as spot blight, late
blight and yellow leaf curl disease. The proposed method pre-
dicted the category of each disease after continuous iterative
learning, and the accuracy showed in the training set and test
set increased by 0.6% and 2.3%. Sharma et al. [5] introduced
an image collection, image preprocessing, segmentation and
classification method based on artificial intelligence for the
task of automatic plant leaf disease detection and classifica-
tion, which can easily and quickly detect and classify crop
diseases in agriculture. Lv et al. [6] proposed a leaf dis-
ease recognition method based on the AlexNet architecture.
A maize leaf feature enhancement framework was designed
first which enhanced the maize features under the com-
plex environment and then designed an AlexNet architecture
network named DMS-Robust AlexNet, which improved the
capability of feature extraction combined with dilated con-
volution and multiscale convolution. Liu et al. [7] proposed
a generative adversarial network-based leaf disease identifi-
cation model. This model generated images of four different
leaf diseases for training, then fused DenseNet and instance
normalization to identify real and fake disease images as
well as feature extraction capability on grape leaf lesions.
Finally, the method stabilized the training process by apply-
ing a deep regret gradient penalty. The results showed that
the GAN-based data augmentation method can effectively
overcome the overfitting problem in disease identification,
and this method can also effectively improve identification
accuracy. Liang et al. [8] proposed a multiple classifier inte-
gration method for image recognition, which was divided
into 3 parts. First, a public dataset of diseased and healthy
plant leaves was adopted, and then CNN was used to clas-
sify different plant diseases which were evaluated separately.
Finally, it was evaluated for accurately diagnosing plant dis-
eases by the integrated three models. Experimental results
showed that on a split test set the top-1 accuracy approached
99.92%. Jaisakthi et al. [9] designed a grapevine detection
system based on image processing and machine learning.
This system can segment grape leaves from the background
by the grab-cut segmentation method. Global thresholding
and a semisupervised technique were used by segmenting the
diseased region from segmented leaves, and then extracted
features from the segmented diseased part, which were classi-
fied as healthy, rot, esca, and leaf blight by different machine
learning methods. Notably, the method obtained a better test-
ing accuracy of 93% by SVM. Huang et al. [10] proposed an
end-to-end plant disease diagnostic model-based deep neural
network, which can reliably classify plant types and plant
diseases. This model consists of two components: the leaf
segmentation part that separates the leaves in the original
image from the background, and the plant disease classifier,
which is based on a two-head network that classifies plant
diseases with the features extracted by various popular pre-
trained models. Experimental results demonstrate that this

method can achieve a 0.9807 plant classification accuracy
and a 0.8745 disease recognition accuracy. Waheed et al. [11]
proposed an optimized corn leaf identification model based
on DenseNet, which uses few parameters to improve work
efficiency. Experimental results showed that this method has
a good effect on corn leaf disease identification.

It can be seen from the above state-of-the-art methods
that the research in crop leaf disease identification is mainly
concentrated in computer vision and machine learning, par-
ticularly the recent development of deep learning used in
agriculture. However, methods are rarely applied to crop
leaf disease identification that can balance accuracy and
efficiency. In this paper, we propose a restructured dense
residual network that adjusts the structure and parameters.
The purpose of this model is to improve the performance in
crop leaf identification and reduce the impact of the disease
on the crop as much as possible.

The main contributions of this paper include the following
five points:

1) A batch normalization operation is added to the tensor
after convolution in the RDB block.

2) The tensor (named T1) connected by residuals output
by RDB is abandoned because in the whole model,
this tensor has a very large weight, which has few
contributions to classification accuracy.

3) The tensor (named T2) with no residual connected
output by RDB can be used to make the final residual
connection. After the convolution operation, the size of
the image is (98∗98∗64).

4) The original images are reloaded instead of T1 to pre-
vent excessive weight by the pooling operation and
output the image (1∗1∗128).

5) Because RDN was originally used for image superres-
olution, we reduce the upscale layer and output layer as
well as added a dense layer with a softmax function for
the classification task.

The rest of the paper is organized as follows, Section 2
presents related works. Section 3 presents the struc-
ture of the restructured residual dense network (RRDN).
Section 4 presents the experimental results and analysis, and
Section 5 presents the conclusions.

II. RELATED WORKS
Leaf disease identification is an important part of crop growth
situation awareness, which can allow people to take mea-
sures as soon as possible. The main methods are traditional
machine learning algorithm detection and deep learning
detection based on leaf images.

A. TRADITIONAL MACHINE LEARNING ALGORITHM
The most popular traditional machine learning algorithm
applied in crop leaf disease identification can be shown as
follows.

1) SUPPORT VECTOR MACHINE
Support vector machine is one of the strongest and most pow-
erful machine learning algorithms [12], [13]. It can precisely
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find a balance between model complexity and classification
ability when given limited sample information [14]. SVM
has many advantages compared with other machine learning
methods; it can also overcome the impact of noise and work
without any prior knowledge [15].

In crop disease identification, there are many state-of-the-
art models using SVM classifiers. Bhimte and Thool [16]
proposed a cotton leaf disease diagnosis system based on
image processing and SVM. This system selects appropri-
ate features such as color and texture of images and then
uses an SVM classifier for cotton leaf disease classifica-
tion. Experimental results show that good performance was
achieved. Padol et al. [17] intended to aid grape leaf disease
detection and classification by using an SVM classifier; they
first located the diseased region for segmentation by KNN,
and then extracted grape leaves color and texture features.
Finally, they detected the type of leaf disease by classification
techniques. This system achieved an accuracy of 88.89% on
the test set.

2) K-MEANS
It is known that the k-means algorithm is one of the oldest
and most popular clustering methods [18], [19]. K-means has
been widely studied with various extensions in the literature
and applied in a variety of substantive areas [20]–[23].

Zhang et al. [24] proposed a fusion of superpixel
clustering-based leaf segmentation method by K-means clus-
tering and PHOG algorithms. This method achieved a won-
derful performance in plant diseased leaf image segmentation
and recognition. Anand et al. [25] proposed a brinjal leaf
disease diagnosis method based on image processing and
machine learning. This method segmented brinjal leaf disease
by a K-means clustering algorithm and was very effective in
recognizing leaf diseases. Kumari et al. [26] proposed a leaf
spot identification system by image processing techniques.
This method was divided into four stages: image acquisition,
image segmentation, feature extraction and classification.
K-means was used to compute disease features. The accuracy
of bacterial leaf spot and target spot of cotton leaf disease
was as high as 90% and 80% respectively. Rani et al. [27]
proposed a K-means clustering-based leaf disease and clas-
sification algorithm by extracting color and texture features
and feeding them to a multiclass SVM classifier. The classi-
fication accuracy on average for SVMwas found to be greater
than 95%.

B. DEEP LEARNING
With the development of deep learning, a variety of
image recognition models have been proposed, which can
effectively solve the problem of crop leaf identification.
At present, the popular deep convolutional neural network
models that are widely used are as follows.

1) ALEXNET
One of the main breakthroughs in deep convolutional net-
works was the development of AlexNet [28], [29]. It won the

FIGURE 1. The original Inception network model.

FIGURE 2. Residual network model.

championship of the ILSVRC2012 competition in the field
of vision. On the millions of ImageNet datasets, the effect
greatly exceeds the traditional method, from more than 70%
to 80%. AlexNet consists of 5 convolution layers, 3 con-
vergence layers and 3 full connection layers. These include
using the ReLU activation function instead of the sigmoid
function or logistic function to solve the gradient dispersion
problem. Local response normalization is used for normaliza-
tion and dropout is used at the fully connected level to avoid
overfitting, as well as overlapping.

2) INCEPTION NETWORK
The previous networks perform convolutions layer-by-layer,
and the results are input to the next layer. However, inception
defines a module that carries out different convolution oper-
ations, and finally splices different convolution operations as
output. Experimental results show that it has a good perfor-
mance. As shown in FIGURE 1, the Inception network is
different from the general convolution neural network in that
it contains multiple convolution kernels of different sizes in
its convolution layer, and the output of Inception is the depth
stitching of the feature map [30].

3) RESIDUAL NETWORK
The residual network, as shown in FIGURE 2, has not
only made great progress in depth but the architecture is
also different from the previous networks. It inserts short-
cut connections, which turn the network into its counterpart
residual version. The identity shortcuts can be directly used
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FIGURE 3. Dense network model.

when the input and output are of the same dimensions [31].
Deep residual nets won 1st place on the ImageNet detection
tasks, ImageNet localization, COCO detection, and COCO
segmentation.

4) DENSE NETWORK
The dense convolutional network (DenseNet, as shown in
FIGURE 3) connects each layer to every other layer in a feed-
forward fashion. Whereas traditional convolutional networks
with L layers have L connections-one between each layer
and its subsequent layer-our network has L(L+1)/2 direct
connections. For each layer, the feature-maps of all preceding
layers are used as inputs, and its feature-maps are used as
inputs into all subsequent layers [32].

III. RESTRUCTURED RESIDUAL DENSE NETWORK
The residual dense network (RDN) was first proposed
to address problems in image superresolution and image
denoising. As shown in FIGURE 4. The residual dense
block (RDB) extracts abundant local features via dense con-
nected convolutional layers. The structure of the RDB is
shown in FIGURE 5. RDB further allows direct connections
from the state of the preceding RDB to all the layers of
the current RDB, leading to a contiguous memory (CM)
mechanism [33], [34].

In this paper, we propose RRDN to solve the problem of
crop leaf disease identification. As the original model was
used in image superresolution, the input images have no
dimension reduction operation, which may work well in a
single block. But in the image classification task, tens of thou-
sands of images are input, which will require considerably
more computing resources, as well as low efficiency. So in
this paper, the input image is convolved first in Res-Dense-
Block (RDB)and the tensor is batch normalized after the
convolution in the RDB block, which is shown in FIGURE 6.

Where T2 is activated by the LeakyReLU function, and
T1 is the residual concatenate tensor by T2 and the input
layers.

T = N (C(I )) (1)

In Formula (1), the operator N denotes the normaliza-
tion operation, and the operator C denotes the convolution

FIGURE 4. Residual dense network for image superesolution.

FIGURE 5. The original RDB block structure.

operation, and I denotes the input layer. T is the tensor that
has been normalized in RDB.

In the original RDB block, T1 as the output tensor by RDB,
this block is used to transitive tensor to next RDB block,
which can be used in the whole model life cycle, this method
is useful in image SR. However, in the classification task,
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FIGURE 6. The RDB block structure of RRDN.

it takes a very large weight, which affects the classification
efficiency and accuracy. To solve this problem, we abandon
the tensor T2 that has no residual concatenation in RDB and
finally use it for residual concatenation.

T1 = Concate(T , I )

T2 = L(T ) (2)

In Formula(2), Concate denotes the residual concatenate
operation. T1 is the tensor that has been concatenated
between T and I , where L denotes the LeakyReLU operation,
T2 is the tensor after LeakyReLU with an alpha of 0.3.
In this experiment, the input size of the tensor is

196∗196∗64, then input the 3-layer RDB for feature extrac-
tion. Then the output size is 98∗98∗64, which can be used
for residual added. After that, the block output by the 3-layer
RDB and the initial input tensor create the residual connec-
tion operation and output a new tensor(T3).

T3 = R3(C(C(I ))) (3)

In Formula (3), Operator R3 denotes the 3-layer RDB oper-
ation. To improve the classification accuracy, the input layer
can be reloaded for residual connection, after 3 pooling oper-
ations; the output image size is 1∗1∗128. Then, the resid-
ual connected operation is performed with tensor T3, tensor
T4 is output, which prepares for classification, as shown in
Formula (4).

T4 = Concate(T3,P3(C(I ))) (4)

where P3(.) denotes 3 pooling operations. We add a
dense layer for classification. To prevent overfitting, an
L2_regularizer is added in the dense layer, the adadelta
function is used for the optimizer, and the loss function is

TABLE 1. Experimental environment.

TABLE 2. Dataset details.

cross-entropy. The architecture and workflow of this pro-
posed method can be seen in FIGURE 7.

IV. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The experiment environment list is shown in TABLE 1.

B. DATASETS
The tomato leaf diseases dataset in AI CHALLENGER is
used for this experiment, which includes 13,185 images
within 9 classes; the images are the same size of 196∗196 pix-
els. The detailed issues are shown in TABLE 2. Part of the
tomato leaf disease images is shown in FIGURE 8.

C. TRAINING DETAILS
1) DATASET PARTITION
In this paper, we trained RRDN on NVIDIA GeForceG
TXTITAN Xp GPU using the tomato dataset in AI CHAL-
LENGER 2018. The dataset was randomly divided into
3 parts, 60% for training, 20% for the validation set, and 20%
for the test set.

2) RDB ACTIVATION FUNCTION
In the RDB block, the ReLU activation function is used after
the convolution operation in every layer and the LeakyReLU
function is used in the tensor after normalization to solve the
dead neuron phenomenon.

3) LOSS FUNCTION
The loss function is one of the important tools to measure the
gap between network output and targets. To deal with themul-
ticlassification problem more conveniently, the cross-entropy
loss function was used in the loss layer and the softmax
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FIGURE 7. The architecture and workflow of RRDN.

FIGURE 8. Some of the tomato leaf disease images.

activation function in the output layer. The cross-entropy [35]
loss can be denoted in Formula (5).

loss(x, class) = −x[class]+ log

K−1∑
j=0

exp(x[j])

 (5)

where x is the input and class is the index of range[0, K-1], K
is the total of elements.

4) OPTIMIZER FUNCTION
In the optimization layer, the adadelta optimizer was used
to minimize the loss function and adjust the learning rate
adaptively with the initial learning rate of 0.0001.

5) BATCH SIZE AND EPOCHS
We set the value of the batch size to 8, 16 or 32. When
the batch size is 16 or 32, there was a gradient fluctuation
phenomenon, so we set the value to 8 as the batch size to
feed into the model. In addition, when the epochs were more
than 200, the loss convergence was no longer obvious, so we
trained the model for 200 epochs.

D. ABLATION STUDY AND MODEL COMPARISON
To evaluate the accuracy of the alternative models, this paper
commonly used top-1 accuracy for classification. This can be
shown in Formula (6).

acc =
f
N

(6)

where N is the number of samples, and f is the number of
correct predictions.

1) ABLATION STUDY
To validate the impact of the hyperparameters and the basic
components in RRDN, an ablation study is necessary. As seen
in FIGURE 7, part A is the main body of the RDN; we
reduced the upscale layer and output layer in FIGURE 4 and
added a flatten layer and dense layer for the classifica-
tion task. Only in this way can the model work for image
classification.

Part B is the unprocessed image tensor, with a size of
(196∗196∗3), the input to the convolution layer with filters
is 256, the kernel_size is 256, the stride is (1, 1), and then
3 maxpooling operations are performed to make a residual
connection with the ADD layer in FIGURE 7.

Part C is the residual block; because our work to
extract features for classification, a maxpooling layer with
pooling_size 3, and stride (2, 2) is necessary for residual
concatenation to Part A.

To validate the effect of the RRDN components, the model
was divided into 4 parts:

i) The original RDN model is shown in Part A in
FIGURE 7.
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TABLE 3. Result of every part in RRDN.

FIGURE 9. Training and validation accuracy of deep CNN.

ii) Part A + Part B.
iii) Part A + Part C.
iv) Part A + Part B + Part C, which is RRDN.
The same environment and dataset were used for every

part. The results are shown in TABLE 3.
As seen in TABLE 3, the origin RDN model (Part A) only

had 90% accuracy on the validation set and 88.76% on the
test set; the model with Part A and Part B achieved 94%
accuracy on the validation set and 94.19% on the test set;
the model with Part A and Part C achieved 94% accuracy
on the validation set and 93.87% on the test set. Our method
RRDN(Part A+B+C) achieved 95% on both the validation
set and test set separately.

After the ablation experiment, our method achieved the
highest validation and test accuracy, which verifies its
effectiveness.

2) COMPARISON WITH STATE-OF-THE-ART MODELS
We select some classic deep learning models for comparison,
Deep CNN [36], ResNet50, DenseNet121, in the experiment
environment and datasets. FIGURE 9∼FIGURE12 shows the
training and validation accuracy of the four models.

As shown in FIGURE 9∼FIGURE 12, with the increase
in epochs, the accuracy in the deep CNN gradient fluc-
tuation is obvious, and the phenomenon of overfitting
occurs; in Resnet50, the highest accuracy is approximately
89%, which is significantly lower than other models.
In DenseNet121 there is a smooth model curve, but the
accuracy is 92%, lower than RRDN. In RRDN, training and

FIGURE 10. Training and validation accuracy of ResNet50.

FIGURE 11. Training and validation accuracy of DenseNet121.

FIGURE 12. Training and validation accuracy of RRDN.

validation are convergent; the accuracy is 95%, which is the
best performance in all of the models, which is satisfactory
performance.

FIGURE 13∼16 shows the training and validation loss by
the four models.

As shown in FIGURE 13∼FIGURE 16, with the increase
in epochs in Deep CNN, the loss function fluctuates obvi-
ously on the tomato dataset; in ResNet50, when the validation
loss is reduced to 0.5, it does not continue to decrease; in
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FIGURE 13. Training and validation loss in Deep CNN.

FIGURE 14. Training and validation loss in ResNet50.

FIGURE 15. Training and validation loss in DenseNet121.

DenseNet121, the loss function and RRDN progress as well
as RRDN; the RRDN training and validation loss is conver-
gent and the gradient gradually decreases.

To better verify the prediction performance of the models,
the accuracy on the test dataset can be shown in TABLE 4.

The comparison with the state-of-the-art study on tomato
disease identification can be shown here. Raza et al. [37]
proposed an SVM-based classifier on 71 tomato leaf
images, which only achieved an accuracy of 89.93%.
Prasad et al. [38] used a KNN based model on the tomato

FIGURE 16. Training and validation loss in RRDN.

TABLE 4. Accuracy on test dataset.

FIGURE 17. Comparison with the state-of-the-art on the tomato disease
identification.

data of 14,529 images in 10 classes and achieved an accu-
racy of 93%. Luna et al. [39] proposed an automated image
capturing system that achieved an accuracy of 91.67% on the
tomato dataset. Guo et al. [40] designed a new model named
multiscale AlexNet, which achieved 92.7% accuracy on
5,766 images in 8 classes of the tomato dataset.Wu et al. [41]
proposed a DCGAN+CNN model, which achieved an accu-
racy as high as 94.33%. Ourmethod named the RRDNmodel,
t achieved up to 95% accuracy on a dataset of 13,185 images
within 9 classes. The comparison with the state-of-the-art
study can be shown in FIGURE 17.

V. CONCLUSION
Tomato is a very popular food worldwide for food or for
seasoning; it is one of the necessities of life. Even for
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entertainment. The ‘‘Tomatina’’ held each year on the last
Wednesday in August originated in Spain where tens of thou-
sands of revelers from around the world pelt each other with
tons of tomatoes. To produce better quality tomatoes, people
must overcome the problem of plant diseases. Generally,
plant diseases appear on the leaves first, which makes the leaf
disease identification particularly important.

A. RESULT ANALYSIS
In this paper, we strive to develop a set of models for iden-
tifying leaf diseases with high accuracy, through analyz-
ing the original residual dense network model. According
to the RDN architecture, which is different than residual
networks [31], [42] or dense-based models [43], [44]. The
RDB block is dense-based and the network is structured
considering the rules of ResNet. DenseNet can collect all of
the previous and latter layers, which can achieve better per-
formance with fewer parameters. ResNet can connect front
and back layers using a residual block, which can solve the
problem of gradient disappearance.

To take advantage of the residual block collection and
DenseNet in the task of tomato leaf disease identification,
we restructured the RDNmodel whichwas proposed in super-
resolution. After normalizing the input images, optimizing
the RDB tensor, adding a convolution layer residual module,
a DenseLayer is used for the classification task. Experiments
show that the RRDN can achieve satisfactory performance on
the tomato dataset as high as 95%; the results show that our
method can improve the identification accuracy on the tomato
leaf diseases dataset.

B. DISCUSSION
This paper proposed a residual dense network-based tomato
leaf disease identification model; this inspiration comes from
RDN in the image superresolution task. By adjusting the
model architecture, we transformed it into a classification
model, which obtained a higher accuracy than state-of-the-
art models. Because this model is suitable for the tomato
dataset, we will attempt to perform transfer learning from the
tomato dataset to other plants through the model adjustment
to improve the generalization ability. In the future, we hope to
apply this work in practical work to make a small contribution
to developing agricultural intelligence.
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