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ABSTRACT Poor model generalization, missing or false alarms, and heavy dependence on expert’s
experience are some of the major problems which exist in traditional incipient fault detection (IFD) methods.
An IFD rolling bearing application method based on combination of improved λ1 trend filtering (L1TF) and
support vector data description (SVDD) is proposed. First, spectral distance index and multi-scale dispersion
entropy based on normal vibration data, which is sensitive to incipient faults, are extracted. The improved
λ1 trend filter (IL1TF) method is employed for processing the feature values and obtaining a trend factor
with less fluctuation and better incipient fault indication ability. Then, after determining the kernel function
bandwidth of the SVDD by analyzing the characteristics of the training data, a suitable offline SVDDmodel
is trained. Finally, incipient faults are identified by estimating the distance between the trend factor of the
real-time data and the center of the hypersphere in the SVDDmodel. This method employs full performance
of SVDD to detect abnormal data files, while reducing the influence of abnormal data files on the model
via IL1TF. Furthermore, the method increases the discrimination between the incipient fault data and the
normal data. By utilizing Intelligent Maintenance Systems of University of Cincinnati bearing laboratory
data and Chinese petrochemical company’s centrifugal pump bearing engineering data, the effectiveness
of the constructed model is demonstrated. In addition, the proposed method is compared against existing
representative IFD methods. The results indicate that the method proposed in this paper can solve false
alarms and detect incipient failure data files more accurately without depending on the external expert’s
experience. This is of great significance for providing guidelines to enterprises which employ predictive
maintenance techniques.

INDEX TERMS Improved `1 trend filtering, support vector data description, kernel function bandwidth
determination, incipient fault detection.

I. INTRODUCTION
As one of the most commonly employed parts in rotating
machinery, rolling bearings operate under harsh working
environment and are often prone to failures. Their perfor-
mance degradation is an important issue that threatens the
safe operation of rotating machinery [1]. Rolling bearings
degradation process during the entire life cycle can be roughly
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divided into four stages: normal operation stage, incipient
failure stage, severe failure stage, and failure stage [2]. There-
fore, quick and accurate identification of the time required for
the normal operation state to achieve incipient failure state is
particularly important. This, in turn, would provide sufficient
time for applying the predictive maintenance strategy and
reducing the possibility of production accidents.

Currently, online incipient fault detection (IFD) needs to
meet certain requirements in the actual engineering applica-
tion environment. Completing the online IFD should be done

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 30043

https://orcid.org/0000-0003-3666-4610
https://orcid.org/0000-0002-4499-492X


Q. Wang et al.: Online Incipient Fault Detection Method Based on Improved `1 Trend Filtering and Support Vector Data Description

within the time limit and database limit of online applications
(generally only historical normal operating status data). The
problem of false alarms caused by abnormal data files should
be solved within the time limit while detecting incipient faults
of rolling bearings. Incipient fault detection methods should
not rely on prior knowledge to set key hyperparameters for
IFD models. Furthermore, they should not depend on expert
knowledge to determine if an incipient failure has occurred.
Lastly, IFD models must have good generalization.

Bearing vibration signal analysis is one of the most
commonly employed methods for detecting incipient faults.
In recent years, researchers have proposed many IFD meth-
ods which can be divided into physical model-based methods
and data-driven methods [3]. In [4]–[6], an IFDmethod based
on prior physical knowledge, which requires the establish-
ment of an accurate physical model, has been investigated.
However, the internal stress and other physical quantities of
the running rolling bearings are relatively difficult to charac-
terize, which often results in poor model generalization [7].
An IFD rolling bearings method based on the analysis of
fault characteristic frequencies is established in [8]–[10].
These methods do not require pre-training models and have
beneficial online application capabilities. However, they have
certain disadvantages. The weak incipient fault characteristic
signals may be submerged within the noise signal. Equip-
ment vibration signal noise is different, and the preprocessing
methods such as noise reduction are also different. Hence,
this results in poor model generalization. Furthermore, a sig-
nificant amount of time is consumed to perform online mode
decomposition and noise reduction, which is not conducive
for engineering applications.

Data-driven IFD methods mainly use the intrinsic char-
acteristics of data for fault detection research. These meth-
ods have received wide attention from many researchers
since they do not require precise physical knowledge.
Zan et al. [11] proposed amethod for evaluating performance
deterioration degree based on the joint approximative diag-
onalization of eigen-matrices and particle swarm optimiza-
tion support vector machine. Rai et al. [12] used a method
based on the empirical mode decomposition and k-medoids
clustering. Zhou et al. [13] utilized wavelet packet energy
entropy and radial basis function neural network to detect the
time of the incipient bearing failure. Mao et al. [14] proposed
a semi-supervised architecture and depth feature represen-
tation method for bearing online IFD, which was based on
stacked denoising auto-encoder and semi-supervised support
vector machine. In addition, Lu et al. [15] proposed a deep-
structured framework to detect the incipient fault, which
was based on deep neural network (DNN) and long short-
term memory (LSTM). These methods can achieve IFD by
constructing bearing performance degradation models. Zan’s
method can accurately predict the performance degradation
trend and the remaining service life of rolling bearings for
small samples; However, the conventional particle swarm
algorithm that easily falls into local optimum [16]. Rai
and Zhou’s method is able to timely diagnose the incipient

bearings failure, and Mao’s method performs well on bear-
ing online IFD. However, the models training require fault
samples of bearings in these IFD methods. Lu’s method can
detect incipient failures timely, but he did not explain how to
choose appropriate parameters of DNN and LSTM.

As a typical one-class classification algorithm, the sup-
port vector data description (SVDD) requires only normal
samples to train a sensitive outlier detection model [17].
Thus, the SVDD is widely used in data-driven IFD meth-
ods. Mao et al. [18] proposed a rolling bearing IFD method
based on self-adaptive deep feature matching and the SVDD.
Yang et al. [19] proposed an IFD method based on incre-
mental weighted SVDD. The method can solve the problem
that the SVDD is susceptible to slight fluctuations which
cause false alarms. With the purpose of investigating the
small number of fault samples and the susceptibility of the
model to abnormal data, Zhu et al. [20] constructed three
one-class classifiers: projection support vector data descrip-
tion (PSVDD), projection K-means (PK-means) and pro-
jection K-center (PK-centers). In order to reduce the input
features impact on the performance of a degradation model,
Wang et al. [21] proposed an IFD method that combines
canonical variate analysis with the SVDD. Zhang et al. [22]
proposed an improved incremental SVDD algorithm to
achieve online update of the normal sample set, and to
improve the accuracy and computational efficiency of the
offline part. Aiming at the weak incipient faults that are easily
covered by system interference and noise, Zhang et al. [23]
employed normal and faulty samples to construct a robust
SVDD model based on the traditional SVDD, this model
improves the calculation of the spherical radius. K-nearest
neighbor algorithm has been widely used for the classifica-
tion, where distance from the target sample to the classifi-
cation center is taken as the weight of the slack variable in
the SVDD model [24]. In this way, a defect that considers
only the distance between the center of the hypersphere and
the training sample, not the data in the high-density area is
avoided. The aforementioned researchers have promoted the
engineering application of the SVDD. However, there are
still some shortcomings that should be further addressed. The
bandwidth value of the kernel function [19], [20], [22], which
is a key parameter of the SVDD, has not been illustrated in
detail. Furthermore, the model constructed in [21] has low
sensitivity and delayed time for incipient fault detection. The
model proposed in [23] requires training by a quantity fault
case data. Lastly, false alarms caused by the abnormal data
fluctuations have not been considered for the model in [24].

SVDD is usually employed together with a kernel function
which maps the input feature values to a high-dimensional
space. Thus, low-dimensional linear inseparability problem
is converted into a linearly separable problem. The Gaussian
kernel function is widely used as kernel function. The SVDD
model based on Gaussian kernel function has two key param-
eters: penalty factor C, and kernel function bandwidth σ .
These factors need to be determined in advance. Previous
investigation results indicate that the SVDD is not susceptive
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to the parameter C. On the contrary, performance of the
SVDD largely relies on the σ selection [25], [26]. In recent
years, many researchers have carried out a significant amount
of research on σ selection. Tax and Duin [27] proposed
a method of optimal σ selection by minimizing the sup-
port vector to sample ratio. Khazai et al. [28] suggested a
process of optimizing σ parameter based on the maximum
distance between the samples. Wang et al. [29] proposed
a method for optimizing σ using the boundary tightness.
Liu et al. [30] suggested a method for locating the maximum
value of the variance-square root mean-ratio (VSRMR) for
selecting σ . These methods have made significant contri-
butions to further application of the SVDD. However, the
methods also have some shortcomings. The models proposed
in [17] and [28] are computationally intensive and, conse-
quently, time consuming. Furthermore, underfitting is prone
to appear for the model [24]. Lastly, according to the verifi-
cation conducted by the authors, the method [30] is not suit-
able when magnitude of the input feature value is relatively
small.

In summary, the SVDD has wide applications in the bear-
ings IFD field. The current research hotspot of IFD methods
based on the SVDD is to improve the usability, robustness,
generalization and accuracy of the IFD model in order to
satisfy online engineering applications. When employing the
SVDD model to detect the occurrence of incipient faults,
same event (caused by real-time data fluctuation) alarm rep-
etition can be reduced or avoided. In order to adequately
utilize the SVDD, its key parameters have to be quantified
and determined. In this paper, with the purpose of solving
the problems such as incipient faults detection difficulties in
engineering practice, and overcoming the deficiencies of the
above provided investigations, an online bearing IFD method
based on improved `1 trend filter (IL1TF) and SVDD is
proposed.

The `1 trend filter (L1TF) is improved on the H-P filter
by Kim et al. [31]. Compared with the H-P filter, the L1TF
has excellent piecewise linearity and can extract linear time
series trend with great accuracy. Gowri et al. [32] used a
combination of variational mode decomposition (VMD) and
L1TF to enhance speech signals in strong Gaussian white
noise signals. Selvin et al. [33] applied L1TF to image the
noise reduction. Ottersten et al. [34] improved the L1TF and
proposed the `1 mean filter to accurately calculate the turn-
ing point. L1TF can adequately extract the piecewise linear
trend of the time series. However, the performance of L1TF
depends on whether the selected regularization parameter
λ is appropriate. Currently, there is no suitable method to
solve this problem. Moreover, in the practical engineering
application process, requirements of L1TF processing for
the full life cycle data cannot be met [35]. In this paper,
a combined sliding window for sequential data reading is
proposed. The consistent slope of the filtered data onto the
sliding combinedwindow is employed to adaptively select the
regularization parameter λ, which provides a new direction of
L1TF application in engineering.

IL1TF can reduce the impact of occasional feature value
abnormal samples, expand the deterioration trend near the
incipient fault occurrence moment, and increase the sensi-
tivity of the IFD model while solving the problem of false
alarms. In this paper, an approximation is made to determine
the bandwidth of the kernel function according to the diver-
gence of the filtered training data in the high-dimensional ker-
nel function matrix. Furthermore, the value problem of key
parameters which affect the SVDD performance is solved.
The contribution of this paper can be summarized as follows:

1) The L1TF is improved, providing a new method for the
selection of L1TF key parameters and the real-time filtering
of online data. The feature values trend factor obtained after
the IL1TF process can reduce both impact of occasional
abnormal samples and data fluctuations, increase the degra-
dation trend near the incipient failure samples, and provide
theoretical basis for distinguishing the incipient failure sam-
ples and false alarm samples in the online detection phase.

2) The kernel function bandwidth is approximately cal-
culated by the divergence of training data onto the high-
dimensional kernel function matrix. The results indicate that
the hypersphere trained by the kernel function bandwidth and
calculated by the proposed method is of moderate size, i.e.,
there are no over-fitting and under-fitting problems.

3) The online IFD method based on IL1TF and the SVDD
proposed in this paper can quickly and accurately identify
the incipient fault samples. Furthermore, it can solve the
problems of false alarm interference and significant data
fluctuations following the alarm.

The remainder of this paper is arranged as follows: In
Section 2, some basic theoretical knowledge of L1TF and
SVDD is introduced. In Section 3, details about the proposed
method are described. The method is verified against labora-
tory data and engineering case data in Section 4. Comparison
of the results is conducted in Section 5. Finally, conclusions
and future work are summarized in Section 6.

II. REVIEW OF `1 TREND FILTERING AND SUPPORT
VECTOR DATA DESCRIPTION
A. `1 TREND FILTERINGS
Kim et al. [31] proposed the L1TF based on the H-P filter.
Both H-P trend filter and L1TF utilize the least square cost
function. The difference is that H-P filter uses the `2 norm
when calculating second-order difference matrix, while the
L1TF uses `1 norm. The `1 norm nullifies many second-order
difference terms. Thus, the resulting trend term is piecewise
linear. Therefore, the `1 trend filter is suitable for estimating
the trend, the inflection point or slope of a time series.

Suppose that time series yi(i = 1, · · · , n) consists of a
basic trend sequence xi and a random variable sequence zi.
Trend filtering is employed to estimate the trend sequence
from yi. This trend estimation is achieved by minimizing the
weighted objective function, which is shown in Eq. (1):

(1/2)
n∑
i=1

(yi − xi)2 + λ
n−1∑
i=2

|xi−1 − 2xi + xi+1| (1)
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Eq. (1) can be converted into the matrix norm form of Eq. (2):

(1/2) ‖y− x‖22 + λ ‖Dx‖1 (2)

where y = (y1, y2, · · · , yn) ∈ Rn, ‖u‖1 =
∑

i |ui|, represents
the `1 norm of u, and D ∈ R(n−2)×n is a second-order
difference matrix:

D =


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

 (3)

In Eq. (2), the first part represents the gap between the actual
series yi and the trend series xi, which is measured by the
least squares cost function (1/2) ‖y− x‖22. The second part
represents the penalty for the smoothness of xi, expressed by
the `1 norm of the second-order difference matrix ‖Dx‖1.
The two parts are connected by the regularized parameter
λ to control the weight. The regularization parameter λ is a
non-negative parameter for controlling the balance between
the estimated trend and the signal redundancy. The weighted
objective function is a strictly convex function of unique
solution. Therefore, xi has only one solution. L1TF is used
to filter the bearing monitoring signal. Thus, true degradation
trend of the bearing well is obtained.

B. SUPPORT VECTOR DATA DESCRIPTION
SVDD is a one-class classifier. Its core idea is to map the
given training data onto a high-dimensional space and find a
minimum hypersphere. In that way, as many of the training
samples as possible are contained in the hypersphere. Sam-
ples that do not belong in this category are located outside
the hypersphere. Its mathematical model is constructed as
follows:

Presuming a training sample set xi = {x1, x2, · · · , xl},
where l is the number of samples in this training set. Define
a hypersphere, with center a and radius r, which containing
almost all training samples. Considering that there may be
a small number of errors in the training samples, in order
to improve the algorithm’s robustness to the outliers in the
training samples, a slack variable ξi > 0 is introduced to
allow some samples to be distributed outside the hypersphere.
The SVDD optimization problem is described as:

min ε(R, a, ξi) = r2 + C
∑
i
ξi

s.t. ‖xi − a‖2 ≤ r2 + ξi

ξi ≥ 0

(4)

where C > 0 is the penalty parameter used to control the
trade-off between the hypersphere volume and the errors.
In this paper, default value of C is set to 0.3. In order to
solve the unconstrained optimization problem, a Lagrangian
equation is constructed:

L(r, a, αi, ξi) = r2 + C
∑
i

ξi −
∑
i

αi{r2

+ξ2 − (x2i − 2axi + a2)} −
∑
i

γiξi (5)

where αi ≥ 0 and γ ≥ 0 are Lagrange multipliers. Through
partial derivation of Eq. (5), Eq. (6) is obtained:

∂L
∂R
= 0 :

∑
i

αi = 1

∂L
∂a
= 0 : a =

∑
i

αixi

∂L
∂ξi
= 0 : C − αi − γi = 0

(6)

For the sample located in the hypersphere, αi = 0. For
the sample located on the boundary of the hypersphere,
0 < αi < C. Lastly, for the sample located outside the hyper-
sphere, αi = C. Samples located on and outside the boundary
of the hypersphere are called the support vectors (SV’S).

By combining Eq. (6) and Eq. (5), an optimized function
is obtained:

maxL =
∑
i

αiK (xi, xj)−
∑
i,j

αiαjK (xi, xj)

s.t. 0 ≤ αi ≤ C,
∑
i

αi = 1
(7)

where K (·) is the kernel function, which maps the training
samples from the low-dimensional spaces onto the high-
dimensional space, where the training samples can be more
adequately described. Gaussian kernel function is employed:

K (xi, xj) = exp(−

∥∥xi − xj∥∥2
σ 2 ), σ > 0 (8)

In the high-dimensional space, the generalized radius r of the
hypersphere can be obtained as the distance from the SV’S on
the hypersphere interface to the center of the hypersphere:

r2 = ‖φ(xsv)− φ(a)‖2

= K (xsv, xsv)−2
∑
i

αiK (xi, xsv)+
∑
i,j

αiαjK (xi, xj) (9)

For the real-time input test sample z, its distance from the
center of the sphere can be calculated by:

d = ‖φ(z)− φ(a)‖

= K (z, z)− 2
∑
i

αiK (z, xi)+
∑
i,j

αiαjK (xi, xj) (10)

In the process of bearing online IFD, the extracted normal
sample feature value is employed as the training sample input
value for SVDD training. Thus, a hypersphere containing nor-
mal samples is obtained. The generalized distance d between
the real-time online samples and the center of the hypersphere
can be calculated via Eq. (10). When d ≤ r, the samples
are denoted as normal. On the other hand, when d > r, the
samples are suspected as failures.
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III. PROPOSED METHOD
A. FEATURE EXTRACTION
Extracting a single IFD feature value is usually computation-
ally efficient and the feature valuemay have a certain physical
meaning. However, it is relatively difficult to use a single
IFD feature value to fully reflect the fault characteristics. It is
very important to extract multi-feature andmulti-scale feature
values to characterize the comprehensive information of the
fault. However, the calculation efficiency of multi-feature and
scale feature values is low, which is not suitable for online
IFD applications. After weighing the pros and cons, two
indicators, the spectral distance index (SDI) and the multi-
scale dispersion entropy (MDE), are extracted to characterize
the information of the fault. The former can characterize the
operation reliability of the equipment [36], and the latter can
reflect the characteristics of the fault at multiple scales [37].
The experimental validation results in this paper show that
SDI and MDE are stable and reliable, sensitive to incipient
faults, and suitable for their online detection.

1) SPECTRAL DISTANCE INDEX
He et al. [36] proposed that SDI and other methods can be
used to calculate the operating reliability, establish the oper-
ating condition and reliability correlation mapping model of
rotating equipment, and achieve real-time operational relia-
bility assessment. SDI represents the operating reliability of
the equipment. Its value gradually decreases, which charac-
terizes the equipment performance degradation process from
normal to faulty. The calculation method of SDI is shown in
Eq. (11):

R
(
Jxy
)
=

1
1+ α · Jxy

(11)

where Jxy(Jxy ≥ 0) represents the J divergence between
the normal condition signal and the signal designated for
evaluation. Parameter α is the sensitivity coefficient, which
controls the degree of Jxy influence on the SDI. In this paper,
default value of 0.5 is employed. Mathematical expression of
J divergence is as follows:

Jx,y =
1
2P

P∑
k=1

[
Sy (k)
Sx (k)

+
Sx (k)
Sy (k)

]
− 1 (12)

where Sx (k) and Sy (k) are the auto-power spectrum of sig-
nals x (t) and y (t), respectively. P is the number of auto-
power spectrum lines.

2) MULTISCALE DISPERSION ENTROPY
Under complex operating conditions, the fault vibration bear-
ing signal often shows nonlinearity. Sample entropy (SE),
permutation entropy (PE), multi-scale sample entropy (MSE)
andmulti-scale permutation entropy (MPE) have beenwidely
used in the field of rolling bearing fault diagnosis since they
can extract the nonlinear characteristics of signals. However,
SE calculation is usually lengthy and susceptible to sudden

signal changes. Although PE computes faster than SE, how-
ever the calculation process does not account for the relation-
ship between the signal amplitudes. Due to the shortcomings
of the sample entropy and the permutation entropy, Rostaghi
and Azami [38] proposed Dispersion Entropy (DE), which
overcomes some of the PE and SE defects. Furthermore,
DE considers the relationship between amplitudes, and has
the advantages of relatively fast calculation speed and less
susceptibility to sudden changes.

Costa et al. [39], [40] proposed MSE on the basis of
SE, and applied it to analyze the complexity of biological
signals, which achieved good results. By coarse-graining the
sequence, the sequence expression in different scales can
be obtained. Azami et al. [41] proposed multiscale disper-
sion entropy (MDE) when analyzing biomedical signals. The
authors conducted comparative experiments which proved
that MDE calculation time is much lower than the one of
MSE. MDE can reflect the complexity of time series at
different scales. DE is a nonlinear dynamic method that char-
acterizes the complexity and irregularity of time series. The
DE calculation is shown as follows:

1) As shown in Eq. (13), the normal distribution function
is used to map the time series x =

{
xi, i=1, 2, · · · , l ′

}
to

y =
{
yj, j = 1, 2, · · · , l ′

}
, y ∈ (0, 1):

yi =
1
√
2πβ

∫ xi

−∞

e
−

(t−µ)2

2β2 dt (13)

where µ is mean, and β is standard deviation.
2) As shown in Eq. (14), linear transformation is used to

map y to the range of 1∼c. Thus, the sequence z(c)j is obtained:

z(c)j = int(cyj + 0.5) (14)

where c is the number of categories, and int is the rounding
function.

3) Embedding vector z(m,c)i is calculated by:

z(m,c)i = (z(c)i , z
(c)
i+d , · · · , z

(c)
i+(m−1)d ) (15)

where m represents the embedding dimension, and d repre-
sents time delay.

4) Each z(m,c)i is mapped to a dispersion pattern
πv0 v1 ··· vm−1 , where z

(c)
i = v0, z

(c)
i+d = v1, · · · , z

(c)
i+(m−1)d =

vm−1.
5) The probability of each dispersion pattern is calculated

according to Eq. (16):

P(πv0 v1 ··· vm−1) =
num(πv0 v1 ··· vm−1 )

M − (m− 1)d
(16)

where num(πv0 v1 ··· vm−1 ) is the mapping number according to
z(m,c)i to πv0 v1 ··· vm−1 .
6) Based on the Shannon’s definition of entropy, DE is

calculated as follows:

DE = −
cm∑
π=1

P(πv0 v1 ··· vm−1)ln(P(πv0 v1 ··· vm−1 ) (17)
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7) Normalized DE is calculated as follows:

NDE = DE(x,m, c, d)/ln(cm) (18)

According to the provided DE calculation method, it can
be seen that when the probability of all dispersion patterns is
equal, the degree of irregularity of the data is the highest while
DE value has the maximum value. The greater the entropy
spread, the higher the complexity of the time series. In [38],
parameters are suggested for DE calculation. The embedding
dimension m is more suitable when taken as a value 2 or 3.
The number of categories c is an integer value from 4 to 8.
Lastly, the time delay d is generally taken as 1. In this paper,
m = 3, c = 6, and d = 1.

MDE is used to coarse-grain the DE sequence, which can
reflect the complexity of the sequence in various scales. The
procedure for MDE calculation is as follows:

1) As shown in Eq. (19), coarse-grain processing the time
series x =

{
xi, i = 1, 2, · · · , l ′

}
is employed to obtain a

sequence of length τ . In order to obtain a coarse-grained
signal, the average value of each sequence is calculated.
Rostaghi proposed that when cm < l′/τmax is satisfied, the
calculation result of DE is reliable [38]. In actual engineering
applications, the data length is different, in order to meet
the application requirements of most engineering data, τmax
should not be too large, therefore scale factor τmax = 15 is
used within this paper.

y(τ )j =
1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤

∣∣∣∣ l ′τ
∣∣∣∣ (19)

2) As shown in Eq. (20), DE of the coarse-grained
signal for each scale factor τ is calculated to obtain
MDE(x(τ ),m, c, d).

MDE(x,m, c, d, τ ) = DE(y(τ )j ,m, c, d) (20)

In order to fully utilize the bearing state information con-
tained in various scales and to avoid errors caused by the
magnitude difference between the feature values, average
NDE value is calculated at different scales to obtain the MDE
used in this paper.

B. IMPROVED `1 TREND FILTERING
The regularization parameter λ is an important parameter for
the successful application of L1TF. This parameter is utilized
to control the balance between the estimated trend and the
signal redundancy. When this parameter approaches zero, the
trend of the filtered signal converges on the original signal,Yt.
On the contrary, when it approaches infinity, the second-order
difference objective function terms become dominant, and the
filtered curve converges to the optimal affine fitting straight
line, Xba. In the field of economics, the value of λ is studied
by some researchers. For example, Hodrick and Prescott [42]
suggested that λ = 1600 when studying the US quarterly
GDP. Bruder [43] employed cross-validation and suggested λ
selectionmethod of L1TF. Qin et al. [44] proposed amodified
generalized cross-validation criterion (GCV) to calculate λ.

However, these methods are not very effective when applied
to vibration data.

According to the aforementioned analyses, determination
of λ depends on the characteristics of the analyzed signal.
However, in actual bearing fault diagnosis, these characteris-
tics are related to parameters such as rotation frequency and
bearing size. Thus,methodsmentioned in previous studies are
not suitable for calculating λ. In this paper, some improve-
ments to L1TF are made regarding the problems of difficulty
in determining λ and insufficient incipient fault representa-
tion of feature values. By utilizing the SDI extracted from the
bearing vibration data, IL1TF example is provided:

1) REFERENCE DATA SET FOR NORMAL OPERATION
CONDITION IS FILTERED
Step 1: The SDI data set X0 (t1, t2, · · · , tS) for historical
normal operating condition is obtained. Parameter S is the
length of the normal raw waveform data set.

Step 2: ParameterX0 of length S is decomposed into several
arrays

[
xj, xj+1, · · · , xj+M−1

]
(j = 1, 2, · · · , s−M + 1) of

lengthM in chronological order.
Step 3: For j = 1, an array [x1, x2, · · · , xM ] of lengthM is

placed into a fixed window w1. The average value KM of the
curve derivative after using IL1TF of the SDI in the window
is calculated. Then, the regularization parameter λ is taken as
an arbitrary value between 1 and 100.

Step 4: For j = 2, 3, · · · , S −M + 1, the same method is
used to construct w2,w3, · · · ,wS . The average value of the
curve derivative after using IL1TF of the SDI in the window
is calculated. The value of λ is the same as that of Step 3.

Step 5: The smallest absolute value in
Ki(i = M ,M + 1, · · · , S) is found and recorded asK0, where
Ki represents the fluctuation of the data in the window. The
array corresponding to K0 represents the subset of length M
with the smallest fluctuation selected from the SDI set under
normal operation condition with the length of S. This array is
recorded as the reference data set X0(tM ).

2) CONSTRUCTION OF THE COMBINED SLIDING WINDOW
A combined sliding window (CSW) with a length ofM + N
is constructed. Here, M represents the number of data in the
fixed array, which is composed of the SDI of the reference
data set X0(tM ). ParameterN represents the number of data in
the active array, which is composed of the SDI of the online
running data.

3) ADAPTIVE CALCULATION OF λ
Kim [31] proposed that when λ is relatively large, the fitting
curve will converge to the optimal affine straight line. In other
words, when the value of λ gradually increases, the fitting
curve gradually becomes a line segment. As shown in Fig. 1,
the first 45 data files represent normal operating condition
SDI, collected from Intelligent Maintenance Systems of Uni-
versity of Cincinnati (IMS) [45]. The specific information
about the experimental device is provided in Section 4.1. The
last 5 data files are the SDI following the incipient failure.
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FIGURE 1. Comparison chart of SDI trend before and after LITF at
different λ values.

FIGURE 2. L1TF based on adaptive parameter for single and continuous
outliers.

In Fig. 1(a), the fitting curve after filtering for λ = 0.5 is
shown. In Fig. 1(b), the fitting line after filtering for λ =
16 is shown. When λ increases to 16, the slope of the curve
no longer changes. It rather becomes a line segment. In this
paper, L1TF on the feature values in the CSW of length
M + N is performed. Parameter λ gradually increases from
relatively small to the constant derivative value of each data
file in the CSW. This value of λ can be considered as a
regularization parameter.

4) CALCULATION OF THE TREND FACTOR
The data in the CSW are filtered by L1TF. Parameter λ takes
the calculation result of the previous step, and defines the
absolute derivative value of the filtered line segment as the
trend factor (TF). As shown in Fig. 2(a), the last data file in
the CSW is an occasional abnormal data file. Since there is
only one abnormal data file, it is relatively difficult to affect
the overall trend of a total of 50 data files. The absolute value
of the filtered line segment |K1| slope is relatively small. This
can reduce the effect of the abnormal data file. As shown in
Fig. 2(b), deviation amplitude of a single data file is not as
large as that in Fig 2(a). However, the absolute value of the
filtered line segment |K2| slope is larger. When five consec-
utive data files deviate from the normal data, an increase in
incipient failures deterioration trend is observed. As shown
in Fig. 3, the SDI changes slightly near the initial failure
data files, which causes the CSW active array to gradually
deviate from the fixed array. Hence, the filtered line segment
has a certain slope, which is used to represent the current
state. As indicated in Fig. 3 and Fig. 4, SDI and SDITF
extracted from IMS Test 2 laboratory data are considered as
an example. The SDI amplitudes at the 291st, 320th, 426th

and other abnormal data files prior to filtering are relatively

FIGURE 3. The performance degradation trend graph of the feature value
SDI extracted from the IMS Test 2 data set.

FIGURE 4. The performance degradation trend graph of the feature value
SDIIF extracted from the IMS Test 2 data set.

large, which are greatly reduced after filtering. The SDI at the
291st data file prior to filtering is equivalent to the 702nd data
file. After filtering, it is equivalent to the SDI at the 582nd

data file. As shown in the partial enlarged views of Fig. 3
and Fig. 4, the fluctuation of the filtered data is significantly
reduced. Moreover, the monotonicity near the incipient fault
data files and the degradation trend are improved. Lastly, the
anti-interference ability of the SVDD for abnormal samples
and sensitivity to incipient failure samples are improved.

5) THE REAL-TIME TF IS CALCULATED VIA CSW
The SDI data of length N is taken as an example, where
CSW of length LEN = M + N = 50(M = 45,N = 5)
is considered. The CSW slides from the left (the first real-
time SDI) to the right (the last real-time SDI). The real-
time spectral distance index trend factor (SDITF) is obtained
successively. The process is shown in Fig. 5.

As shown in Fig. 5(a), there are 45 SDI data in the fixed
array, while there are 5 SDI data in the active array. L1TF
(adaptive calculation λ) is performed on 50 SDI data in the
fixed array and the active array. The SDITF is obtained by
calculating the absolute value of derivative of the fitted line
segment, which corresponds to the No. 5 real-time SDI data.
Then, the SDITF value is recorded as k5.

As shown in Fig 5(b), the CSW moves one piece of data
to the right. The first data on the leftmost side of the active
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array in the CSW is removed. The remaining 2nd ∼5th data
and the No. 6 data are utilized to compose a new active
array. The new 50 SDI data in the sliding window are filtered
via adaptive L1TF. The SDITF, corresponding to the No.6
real-time SDI data, is obtained by calculating the absolute
derivative fitted line segment. The SDITF is recorded as k6.

FIGURE 5. Schematic diagram of real-time TF calculation for the forward
movement of CSW.

As shown in Fig. 5(c)∼5(e), the CSW slides to the No. L
real-time SDI data. 50 new SDI data in the CSW are filtered
via adaptive L1TF. The SDITF, corresponding to the No. L
real-time SDI data is obtained by calculating the absolute
derivative fitted line segment value. The SDITF is recorded
as kL .
In the process of utilizing IL1TF to calculate the TF, when

the CSW has an occasional abnormal data file with relatively
large amplitude, the calculated result can reduce the influ-
ence of the abnormal value. However, the influence of the
abnormal value cannot be completely eliminated. When the
CSW gradually passes the outlier, it will return to normal.
Therefore, theoretically, a single abnormal value can only
affect the same number of sample data files as the active
window length N. Therefore, the influence of incipient false
alarm data files can be eliminated by judging whether to
continuously alarm N times during the online detection. This
provides theoretical support for eliminating the interference
of false alarm data files during online monitoring.

The fixed array length in the CSW is relatively long. This
results in insensitivity of incipient fault data files detection,
and does not increase the degradation trend near the incipient
fault data files. The active array in the combined sliding win-
dow is significantly long, which causes the CSW to contain
abnormal data files for a relatively long time. It will cause
the threshold limit to be exceeded for a relatively long time,
which is not conducive to online judgment of incipient faults.
In addition, too long the window length will increase the
calculation time. After weighing the above advantages and
disadvantages, the ratio of the fixed array length M to the
active array N length in the CSW is 9:1, and the length of
CSW is 50.

Most data processing methods, such as L1TF, or H-P trend
filtering, can only meet the requirement of either solving

the problem of false alarms caused by abnormal values or
increasing the deterioration trend near the incipient failure
data files. However, they cannot achieve both requirements
at the same time. The IL1TF proposed in this paper operates
from the perspective of continuous short time series. It over-
comes the limitation of a single data file focus, and solves
the aforementioned problems via comparison with the normal
operating condition data files.

C. DETERMINATION OF SVDD MODEL PARAMETERS
As mentioned in Section 1, the performance of the SVDD
depends to a large extent on the choice of σ . According to the
derivation process of the SVDD, the interface of the SVDD
is highly dependent on the kernel function. The Gaussian
kernel bandwidth σ is the only adjustable parameter, which
determines the complexity of the SVDD interface. When σ
decreases, the number of support vectors increases. Thus, the
interface is closer to the one of the training samples. This, in
turn, improves the description accuracy, but simultaneously
causes the model to be oversensitive and overfitting. When
σ is relatively large, a significant difference is observed
between the interface and the training samples. This results in
a decrease in accuracy, which is called the problem of under-
fitting. In this paper, a method for approximate determination
of σ based on the laboratory IMS data is proposed.
By combining K (xi, xi) = 1 and Eq. (6), the matrix form

of Eq. (7) is expressed as Eq. (21). The kernel matrix K in
Eq. (21) is a diagonal matrix with a diagonal of 1. The kernel
matrix consists of training samples kernel functions. Since the
matrix is a diagonal one, only upper or lower triangularmatrix
needs to be discussed. The lower triangular matrix is defined
as Ktu. According to Eq. (21), the information obtained via
SVDD in the training process is comprised in the K matrix.
The value of the kernel function in the K matrix affects the
solution of Eq. (7). Thus, it affects the establishment of the
hypersphere. Hence, if kernel matrix with excellent perfor-
mance can be constructed, the hypersphere performance will
also be favorable:

L = αTKα − 1 (21)

where α = [α1, α2, · · · , αl]T .

K =

 k(x1, x1) · · · k(x1, xl)...
. . .

...

k(xl, x1) · · · k(xl, xl)

 (22)

Evangelista et al. [27] suggested that if the K matrix con-
forms to a uniform distribution, the solution α of Eq. (7) has
better sparsity. The variance mean ratio (VMR) is defined as
a standard measure of the probability distribution dispersion.
Therefore, Eq. (23) can adequately describe the dispersion of
values in Ktu, while simultaneously eliminating the influence
of the data magnitude. However, when σ is relatively small,
it causes a larger value of CV (σ ), while the elements in Ktu
are more concentrated. Specifically, CV (σ ) cannot reflect the
original level of dispersion. Therefore, as shown in Eq. (24),
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Evangelista et al. proposed a new equation to characterize
divergence based on Eq. (23). The square of the variance and
the denominator are introduced into ε to avoid the nullifica-
tion of the denominator. This contributes to the practicality of
the method. However, determination of ε value has emerged
as a new problem. Liu et al. [30] proposed the variance-square
root mean-ratio (VSRMR)method based on Evangelista et al.
The formula of this method is shown in Eq. (25).

CV (σ ) =
s(σ )
m(σ )

(23)

where s is the standard deviation and m is the mean value.

g(σ ) =
s2(σ )

m(σ )+ ε
(24)

where ε is a positive value as it approaches 0.

f (σ ) =
s2(σ )
√
m(σ )

(25)

As previously mentioned, relevant investigations focused
primarily on selection of the appropriate σ values to ensure
favorable dispersibility ofK. At the same time, existing inves-
tigations gradually improved the proposed method to avoid
relatively small values of σ , resulting in the false appearance
of good dispersion. However, in this paper, the TF calculated
via IL1TF is applied to the extracted feature value, which is
mostly in the range of 10−4 ∼10−5. The method of Liu et al.
still could not handle feature values of this order of magni-
tude. If elements in the Ktu are infinitely close to 1 due to
σ being too large, poor dispersion of the results is observed
(Eq. 8, Eq. 23) Therefore, the optimal value range of σ should
be close to the value range of the TF in the input SVDD. Due
to the value of the TF being relatively small, the optimal value
of σ behaves in a similar manner, i.e., it exceeds the calcula-
tion range of the above square. If input feature value of SDITF
and the MDETF are considered as an example, the f (σ )- σ
curve is monotonously decreasing in the 10−3 ∼10−5 range.
Thus, the optimal value of σ is equal to 10−3. As indicated
in Fig. 6, the solid line represents the description boundary of
the hypersphere on the two-dimensional plane. For σ = 10−5,
all samples become support vectors, and serious overfitting
problems occur. For σ = 10−3, the description boundary
is quite smooth and under-fitting occurs. For σ = 0.00019,
good fit between the description boundary and the sample
is observed. This means that the value of σ is in the range
of 10−3 ∼10−5, and the dispersion of the K matrix is not
monotonically decreasing. Therefore, themethod of Liu et al.
is not suitable for the case where the feature values of the
input SVDD are particularly small.

Regarding TF values being too small to determine σ , the
feature values of the SVDD input as SDITF and MDETF
are taken as examples. First, the SDITF and the MDETF
values are randomly extracted out of the 6th to 300th data file
under normal operation of the IMS. Test 2 data is set as the
input feature values of the SVDD, and the appropriate σ is
trained via cross-validation method. As shown in Fig. 6(b),

FIGURE 6. Hypersphere description boundary of different σ .

when σ = 0.00019, the performance of the hypersphere
is favorable. Thus, σ = 0.00019 is taken as the reference
value. Then, the value of σ is modified according to the
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characteristics of the target data. The specific process is as
follows:

Step 1: Using the normal operating conditions data of IMS
Test 2 as the reference data set, the spatial distance matrix
H between SDITF and the MDETF of the reference data set
and the target data set is calculated. As shown in Eq. (26),
the kernel function matrix K can be calculated by H and σ .
Parameter H is a diagonal matrix with a diagonal consist-
ing of only 0 values. Therefore, only the upper triangular
matrix or lower triangular matrix need to be considered.
The lower triangular matrix of the reference data set and
the target data set spatial distance matrix are denoted as
H1 and H2, and the kernel function matrix of the reference
data set and the target data set are denoted as K1 and K2,
respectively.

H =

 ||X1 − X1|| . . . ||X1 − Xl ||...
. . .

...

||Xl − X1|| · · · ||Xl − Xl ||

 ,
K = exp(−

∣∣∣∣Hσ
∣∣∣∣) (26)

Step 2: Kernel density estimation is a non-parametric
method used to estimate the probability density function
of variables. The specific calculation process can be found
in [46]. In this paper, the kernel density estimation method is
used to calculate the distribution of data for H1 and H2. The
estimated values corresponding to the maximum probability
density for H1 and H2 are denoted as e1 and e2, respectively.
e1 and e2 will be used to represent H1 and H2.

Step 3: The kernel function bandwidth σ1 of the target data
set is calculated according to Eq. (27). For σ1 = 0.00019,
favorable hypersphere performance of the reference data set
is observed. It can be considered that the kernel matrix K1
diverges. Consequently, it is expected that the kernel matrix
K2, calculated by the target data set, will also diverge. There-
fore, assumingK1 =K2 and combined with Eq. (26), Eq. (27)
is obtained:

σ2 = σ1
e2
e1

(27)

This represents an approximation method for determining
the kernel function bandwidth of the SVDD based on the
perspective of engineering online applications. Compared
with the method that Liu and Evangelista determined the
kernel function bandwidth by analyzing the dispersion of the
kernel matrix K with different kernel function bandwidth,
the advantages of the algorithm proposed in this paper are
fast calculation speed, simple and no non-convergence phe-
nomenon. Experimental validation results in Sections 4 and 5
indicate that this method can be applied to various equipment
and feature values.

D. PROPOSED IFD METHOD
The specific algorithm of the IFD method based on IL1TF
and the SVDD proposed in this paper is as follows and the
functional schematic diagram is presented in Fig. 7.

FIGURE 7. IFD functional framework diagram with two working modes of
offline training and online monitoring.

IV. EXPERIMENTAL VALIDATION
A. LABORATORY DATA VALIDATION
In order to validate the feasibility of the IFD method pro-
posed in this paper, public IMS Test 2 bearing data set is
employed as themodel training data. According to Fig. 8, four
ZA-2115 double-row bearings are mounted on the main shaft
of the experimental platform. The spring mechanism applies
a radial load of 26689 N to bearings 2 and 3. Meanwhile,
two PCB 353B33 acceleration sensors are mounted on each
bearing along the horizontal and vertical axes. NIDAQ card
6062E with a sampling rate of 20 kHz is utilized to collect
20480 points of vibration data every 10minutes. It is observed
that bearing 1 failed on the outer ring after exceeding its
design life. During the normal to failure test, 984 data files
were collected from February 12, 2004 until February 19,
2004, with each file being composed of 20,480 points for a
recording interval of 10 minutes. Following the run-to-failure
test, cracks are observed at the outer ring of bearing 1.

By considering the IMS laboratory data as an example,
the IFD method data processing for bearings proposed in this
paper can be explained:

1) First 300 data files of No. 1 bearing are utilized for enve-
lope spectrum analysis to confirm the fault-free characteristic
frequency. Then the SDITF and the MDETF are extracted.

2) Eq. (27) is used to calculate the bandwidth of the kernel
function. The SDITF and the MDETF are inputted into the
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Algorithm 1 IFD Algorithm
Input: X0 // Historical raw vibration data set
Xi // Real-time raw vibration data
Output: IFD information (no incipient fault is detected; no
information is given)
Step 1: Extracting SDI and MDE from the X0 data set.
Step 2: Calculating the SDITF and MDETF by IL1TF.
Step 3: Calculating of kernel function bandwidth σ

by Eq. (27).
Step 4: SDITF and MDETF, calculated in the Step 2, are
inputted for training into the SVDD with the kernel function
bandwidth σ calculated in the Step 3 to obtain the center a
and radius r of the hypersphere.
Step 5: Extracting SDI and MDE from the Xi, and calculating
the SDITF and MDETF by IL1TF.
Step 6: Calculating of the generalized distance di by the
SVDD.
Step 7: Online comparison of di and r is made. If di > r,
a suspected incipient failure sample is detected. If the number
of consecutive alarms exceeds the length of CSW active
arrays, it is denoted as an incipient fault sample.

TABLE 1. The serial number of the suspicious fault data file calculated by
IFD based on the IMS Test 2 data set.

SVDD model to calculate the center a and radius r of the
hypersphere.

3) The active window length of the combined sliding win-
dow is selected as 5. The SDI calculation result of the No.1
data file is removed. L1TF is conducted for the No.6 data file.
The SDITF and the MDETF of No.6 data file are calculated.

4) Above-calculated two trend factors are placed into the
trained SVDD model. The distance d from the center a of
the hypersphere is calculated and compared against a and d
distance calculated from the known normal data. In this way,
incipient fault location is determined.

5) Steps 3 and 4 are repeated for all data files starting from
No.7 and ending with No.984.

6) Distance curve is drawn from the No.6 to No.984 data
files, as shown in Fig. 9. Points where distance d exceeds the
recorded radius are shown in Table 1.

According to Table 1 and Fig. 9, events that exceed the
dynamic self-learning threshold line have occurred at the fol-
lowing data files: No.43, No.210, No.291, No.318, No.360,
No.444, No.457, No.494, No.521, No.529, and No.532.
However, starting with data file No. 532, the calculated radius
value continuously exceeds the self-learning threshold line.
The time at file No.532 is defined as the incipient fault
detection moment. By applying the Matlab R2018b software,
calculating an IMS Test 2 data file lasts 1.271 seconds.
The operation environment of the application computer is
configured as I5-8300h CPU, 8G RAM memory, and Win-
dows 10 operating system.

FIGURE 8. IMS bearing test bench and sensor layout [45].

FIGURE 9. Distance and RMS curve calculated based on the IMS Test 2
data set.

Based on fault mechanism analysis, researchers have car-
ried out many investigations on the bearing incipient fault
detection via method of fault characteristic frequency extrac-
tion signal analysis. Through application of Gabor wavelet
coefficient squared envelope spectrum analysis method,
Wang et al. [47] detected the incipient fault occurrence at
the No.533 data file. Using an improved empirical mode
decomposition method to extract the incipient fault charac-
teristic frequency, Fan et al. [7] detected the incipient fault
occurrence at the No.532 data file.

Data-driven incipient fault detection methods have been
extensively studied. Zhu et al. [48] employed the fruit fly
optimization algorithm (FOA) to optimize the SVDD param-
eters and to establish the FOA-SVDD model. The authors
detected the incipient fault at the No.710 data file, which
is 1780 minutes later than the method proposed in this article.
Using the method of combining the hierarchical Dirichlet
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process and the continuous hidden Markov model, Wang et
al. [49] identified the incipient fault occurrence at the No.576
data file, which is 440minutes later than themethod proposed
in this paper. Using wavelet packet energy entropy and RBF
neural network, Zhou et al. [13] detected the incipient fault in
No.533 data file, which is 10 minutes later than the method
proposed in this paper. As shown in Fig. 9, RMS did not
change significantly until the 703rd data file, which is 1710
minutes later than the method proposed in this paper.

B. ENGINEERING CASE VERIFICATION
In engineering applications, bearings operate in environments
where rotational speed and lubricating oil parameters vary,
shaft alignmentmay be poor, and axial clearancemay be inap-
propriate. Data acquisition loops, which include parts such as
the signal cable or the data collector, can be susceptible to
electromagnetic interference. Laboratory data validated that
the constructed model and the method proposed in this paper
may not be representative. In order to validate this model
in engineering applications, a set of bearing vibration data
collected in the actual production process of the factory is
used to verify the practicability of the proposed method.

A failure case data set of a P3409A centrifugal pump from
a hydrocracking production unit of a Chinese petroleum com-
pany is selected as the model training data set and validation
data set [50]. As indicated in Fig. 10, two deep groove ball
type 6217 bearings are mounted on the shaft of the centrifugal
pump, which operates at 2980 rpm Two PCB EXM603C01
High Sensitivity Quartz ICP accelerometers are mounted on
the left bearing housing (one horizontal X and one axial
Z), and one PCB EXM603C01 High Sensitivity Quartz ICP
accelerometer is mounted on the right bearing housing (hor-
izontal X). Raw acceleration data was continuously obtained
from 24:00 on December 15, 2013, to 16:00 on January
12, 2014. A total of 332 data files were obtained, with the
sampling interval of each data file being two hours. The
sampling rate was 25.6 kHz, and each data file was composed
of 16,384 points. Cracks were found in the outer ring of the
left end bearing during the shutdown phase. As demonstrated
in Fig. 11, the acceleration effective value curve is used
to characterize the bearing performance degradation curve
within a specific period of time. For the No.226 bearing data
file, the acceleration effective value exceeds the vibration
high alarm line, and an operation warning signal is issued. For
the No.329 bearing data file, the acceleration effective value
exceeds the vibration high-high alarm line, and an operation
danger alarm signal is issued.

Using the IFD model constructed in this paper, the data
set starting from file No.6 and ending with the file No.96
are defined as the normal operation data, which are utilized
for the model training. Following the steps according to the
Section 4.1, the kernel function bandwidth is calculated by
Eq. (27) as 0.00061, and the trained SVDD hypersphere
boundary is drawn (Fig. 12). According to Fig. 12, the num-
ber of support vectors in the SVDD hypersphere is moderate,

FIGURE 10. Centrifugal Pump measuring point information and sensor
layout [50].

FIGURE 11. The effective value of the acceleration of the left bearing of
the centrifugal pump and its fixed threshold alarm line graph.

TABLE 2. The serial number of the suspicious fault data file calculated by
IFD based on the engineering data set.

TABLE 3. Fault characteristic frequency of 6217 bearing.

and boundary of the hypersphere can accurately describe the
training samples without overfitting.

According to data provided in Table 2 and Fig. 13, the
events that exceed the dynamic self-learning threshold line
have occurred for the following data files: No.6, No.70,
No.79, No.81, No.107, No.115, No.121, No.127, No.132, and
No.142. However, starting with data file No. 142, the cal-
culated radius value continuously exceeds the self-learning
threshold line. The time at data file No.142 is defined as
the incipient fault detection moment. As shown in Fig.14,
the envelope spectrum analysis is conducted separately on
No.141 and No.142 data files to demonstrate the accuracy
of the IFD. Envelope spectrum analysis indicates that char-
acteristic frequencies of the outer race fault are 204.7 Hz and
409.4 Hz. By observing the fault characteristic frequency of
6217 bearing calculated in Table 3, it can be inferred that the
outer ring of the bearing has an early fault.

The IFD model proposed in this paper can quickly, accu-
rately, and stably detect the incipient faults of centrifugal
pump bearings. Furthermore, it can avoid ‘‘insufficient’’ and
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FIGURE 12. Hypersphere description boundary trained by engineering
data.

FIGURE 13. The distance curve calculated by IFD based on engineering
data.

‘‘excessive’’ alarms of the same event. Once the equipment
component incipient performance degradation is confirmed,
the distance curve that characterizes the incipient fault does
not show repeated fluctuations. Via utilization of the IFD
method proposed in this paper, the incipient fault is detected
for No.142 data file, which is 8 days and 6 hours earlier
than the traditionalmethod forNo.226 fault detection. Similar
to the calculation environment in Section 4.1, the average
time for calculating a data file is 0.778 seconds, which is
significantly lower than the calculation time of 2 hours. This
meets the time requirement of online incipient fault detection
for engineering application.

V. COMPARISONS
Several data-driven models, such as the Local Outlier Factor
(LOF) [51] model, One-class SVM (OCSVM) [52] model
and SVDD [17] model are applied to detect the incipient fault
occurrence time using the same IMSTest 2 data set. One-class
SVM maps the trained data to the high-dimensional feature
space via kernel function. Optimal hyperplane in the feature
space is solved to achieve the maximum separation between
the target data and the coordinate origin. LOF evaluates

FIGURE 14. Comparison chart of vibration signal envelope spectrum
analysis at data file 141 and 142.

whether the target data is an outlier by comparing the density
of each point pwith the density of the neighboring points. The
density ratio of p to the average density of the neighboring
points is designated as the LOF. Whether or not p is an
abnormal sample can be directly evaluated by comparing the
size of the LOF. In addition, two typical time-domain feature
values, such as RMS and kurtosis (KU) as the input of IFD
model, are compared with SDI and MDE as the input of IFD
model.

In order to avoid the numerical difference effect of these
characteristic parameters, the maximum and minimum nor-
malization method is used for pretreating. Twelve incipient
fault detection models are obtained by cross combination of
the feature values. The performance of aforementioned IFD
models is compared, such as the starting data file of initial
fault detection, whether it relies on prior knowledge, whether
there are repeated alarms for the same event and the calculat-
ing time required for one data file under same software and
hardware operating environment. The comparison results are
shown in Table 4 and Fig.16. The IFD method formulated in
this paper is denoted as the ILSVDD model.

No. 6 data file to No. 300 data file of the IMS test 2 are used
as the normal status samples for the model training. The run-
to-failure data files of the IMS test 2, which do not include
the file No. 1 data file, are selected as testing data files for the
model verification.

The Gaussian kernel bandwidth of the SVDD is calcu-
lated via Eq. (27). As shown in Fig. 15(a) and (b), the solid
lines are hyperspheres trained by the root mean square trend
factor (RMSTF) and the kurtosis trend factor (KUTF), with
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FIGURE 15. Hypersphere description boundary of different feature values.

relatively small numerical magnitude of the feature value.
The SDI andMDE have relatively large numerical magnitude
of the feature value, while none of them have over-fitting and
under-fitting problems. In addition, the proposed hypersphere
calculation method performs well in the engineering data
(Fig. 12). Therefore, it can be concluded that the gaussian ker-
nel function bandwidth calculation method proposed in this
paper is applicable to various devices and eigenvalues, i.e.,
it can be applied either when magnitude of the eigenvalues is
small or large.

The heterogeneous sample ratio (HSR) k is set to 0.01
for the OCSVM model. The value k’, which represents the
number of neighbors (NN), is set to 10. Lastly, the LOFmodel
threshold is set to 2.

The online alarm criteria are defined as follows: once
five consecutive samples are identified as abnormal, the first
sample of the five consecutive samples is regarded as the

TABLE 4. A comparison table of the start time of performance
degradation detected by several IFD methods and whether the prior
knowledge of external experts is required and the calculating time
required for one data file.

incipient fault data files If there are false and repeated alarm
problems, and there is no reasonable online detection strategy,
the problems cannot be solved by the selected IFD model.

As shown in Table 4, the ILSVD method proposed in
this paper is the only one that can accurately identify the
incipient fault at No.532 data file without depending on the
prior knowledge. However, it falls behind the method No.4,
which can detect the incipient fault at No. 528 data file, and
the method No.5, which can detect the incipient fault at No.
531 data file.

By comparison with the method which utilizes IL1IF in
Fig. 9 and the method without IL1TF in Fig. 16(a), it can
be seen that IL1TF can greatly reduce the amplitude of the
abnormal data fluctuation at data files No.291 and No.320.
Once the incipient failure of the equipment performance
degradation is confirmed, performance degradation trend line
obtained by the former method is relatively smooth and with-
out fluctuations. On the contrary, performance degradation
trend line obtained by the latter method fluctuates violently.
Since the bearing performance degradation trend is generally
irreversible, the performance degradation trend line with a
large fluctuation trend is somewhat different from the actual
situation.

As shown in Fig. 9 and Fig. 16 (a)∼ Fig.16 (c), when the
input feature values of the trained SVDDmodel are different,
the incipient fault is detected at data files No.532, 533, 534
and 533. For the same input values, a smoother performance
degradation curve can be obtained if IL1TF is applied, which
can reflect the equipment performance degradation statemore
accurately.
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FIGURE 16. Comparison of the starting time of bearing performance degradation detected by different incipient fault detection models based on IMS
Test 2 data set.
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According to Fig. 9 and Fig. 16, when the model input
feature values are the same, the detection sensitivity of the
SVDD is higher than that of the LOF. The SVDD incipient
fault detection model can be used online without depending
on prior knowledge or experience from the outside experts.
Regarding model inputs, SDI and MDE are more sensitive
than RMS and KU in the incipient fault monitoring model.
Based on the observed data, it can be concluded that the
SVDD incipient fault detection model which employs IL1TF
can effectively reduce the occurrence of repeated alarms.

VI. CONCLUSION
In this paper, a data-driven IFD model was constructed
and validated/verified by experimental/engineering case data.
The following conclusions are made:

1) The IFD model, which is built based on the IL1TF and
the SVDD technology, can be regarded as a "black box".
It does not rely on prior knowledge from the outside experts,
real-time raw vibration data is required as its input, while the
incipient fault warning message is provided as its output.

2) Amethod for calculating TF is proposed, which replaces
the traditional feature values as the input of the SVDDmodel
and increases the distinguishability between the normal status
and incipient fault status.

3) Based on the spatial distance matrix of the target data
trend factor and the reference data trend factor spatial dis-
tance matrix, a method for linear modification of the SVDD
kernel function bandwidth is proposed. In this method, there
is no need to repeatedly demonstrate the divergence of the
kernel matrix and to train a moderately sized hypersphere.
Difficulty of determining the bandwidth of the SVDD kernel
function when the input feature value is too small has been
resolved.

4) A method for determining the bandwidth of the SVDD
kernel function is a linear approximation method. When the
feature values are small in magnitude and differ significantly,
the IFD accuracy is decreased.

The method proposed in this paper shows excellent perfor-
mance in the IFD of rolling bearing performance degradation,
but for the performance degradation of rotating machinery,
such as rotor imbalance, rotor rubbing, axis misalignment,
surge, oil filmwhirl and other faults, requires further verifica-
tion; At the same time, the generalization of the model needs
to be further verified and improved by using a large amount
of engineering case data.
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