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ABSTRACT K-Means clustering algorithm is a typical unsupervised learningmethod, and it has beenwidely
used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to
efficiently and accurately perform clustering analysis on the massive running-state monitoring data of rolling
bearing. Therefore, a novel fault diagnosis method of rolling bearing using Spark-based parallel ant colony
optimization (ACO)-K-Means clustering algorithm is proposed. Firstly, a Spark-based three-layer wavelet
packet decomposition approach is developed to efficiently preprocess the running-state monitoring data to
obtain eigenvectors, which are stored in Hadoop Distributed File System (HDFS) and served as the input
of ACO-K-Means clustering algorithm. Secondly, ACO-K-Means clustering algorithm suitable for rolling
bearing fault diagnosis is proposed to improve the diagnosis accuracy. ACO algorithm is adopted to obtain
the global optimal initial clustering centers of K-Means from all eigenvectors, and the K-Means clustering
algorithm based on weighted Euclidean distance is used to perform clustering analysis on all eigenvectors
to obtain a rolling bearing fault diagnosis model. Thirdly, the efficient parallelization of ACO-K-Means
clustering algorithm is implemented on a Spark platform, which canmake full use of the computing resources
of a cluster to efficiently process large-scale rolling bearing datasets in parallel. Extensive experiments are
conducted to verify the effectiveness of the proposed fault diagnosis method. Experimental results show that
the proposed method can not only achieve good fault diagnosis accuracy but also provide high model training
efficiency and fault diagnosis efficiency in a big data environment.

INDEX TERMS Ant colony optimization, fault diagnosis, K-Means clustering, rolling bearing, spark,
wavelet packet decomposition.

I. INTRODUCTION
Rolling bearing is one of the most commonly used and easily
damaged components of rotating machinery equipment, and
rolling bearing fault diagnosis is very important to ensure
the normal running of rotating machinery equipment [1].
In the field of rolling bearing fault diagnosis, the common
sensors are only used to collect vibration signals, and they
don’t have the ability to do rolling bearing fault diagno-
sis. Recently, some intelligent sensors with fault detection
function have emerged, they can employ some simple signal
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processing technologies to detect the most simple and obvi-
ous fault signals of rolling bearing, but they don’t have the
ability to identify complex and illegible fault signals yet.
Typically, the working conditions of rolling bearing are com-
plex, the vibration signals collected by sensors are often non-
stationary, non-linear, and multi-component, thus the signal
processing technologies are difficult to be used to carry out
complex fault diagnosis of rolling bearing effectively and
accurately.

The data-driven intelligent fault diagnosis methods based
on machine learning or deep learning can fully dig the
underlying fault feature information from the massive and
complex vibration signals of rolling bearing, thus they are
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suitable for complex fault diagnosis of rolling bearing.
In recent years, more and more researches have focused
on the data-driven rolling bearing fault diagnosis, such as
random forest (RF) [2], k-nearest neighbor [3], support vector
machine [4], back propagation neural network [5], improved
LeNet-5 network [6], deep convolutional neural network
[7]–[9], deep recurrent neural network [10], deep residual
learning [11], deep auto-encoder [12], and stacked sparse
auto-encoder [13].

Most of existing data-driven fault diagnosis methods can
get a satisfactory diagnosis accuracy with sufficient super-
vised training samples, but the process of labeling large-scale
training samples is time-consuming and labor-intensive in
practical industrial production. Compared with the traditional
machine learning methods, the deep learning methods can
obtain a higher fault diagnosis accuracy, but its complex net-
work structurewill have a greater impact on the training speed
in the training of massive samples. Clustering algorithms are
typical unsupervised learning methods which do not require
labeling the training samples and have lower computational
complexity, thus they are suitable for rolling bearing fault
diagnosis in the big data environment.

Recently, fuzzy C-means (FCM) clustering algorithm and
K-Means clustering algorithm have been widely used in fault
diagnosis. Bai et al. [14] proposed a fault diagnosis method
based on empirical wavelet transform and FCM clustering
algorithm. In [15], [16], the empirical mode decomposition
and FCM clustering algorithm are combined and applied to
fault diagnosis. Ramos et al. [17] designed a fault diagnosis
system of steam generator using FCM clustering algorithm.
Liu et al. [18] proposed a fault diagnosis method based on
Gaussian kernel FCM clustering algorithm. Shi et al. [19]
developed a fault diagnosis method based on local mean
decomposition (LMD) and K-Means clustering algorithm,
LMD is used to decompose the vibration signals of rolling
bearing, the probability density function is utilized to opti-
mize the selection of initial clustering centers of K-Means,
and the optimized K-Means clustering algorithm is adopted
to effectively diagnose rolling bearing faults. Zhang et al. [20]
improved the choice method of initial clustering centers
of K-Means, and the results show that the fault diagno-
sis accuracy of rolling bearing obtained using the modified
K-Means clustering algorithm is increased by 7.5% than that
obtained using the traditional K-Means clustering algorithm.
Mjahed et al. [21] proposed an engine fault diagnosis method
based on genetic algorithm (GA) and K-Means cluster-
ing algorithm, and a novel engine fault diagnosis method
based on particle swarm optimization (PSO) algorithm and
K-Means clustering algorithm was devised in [22], which
can effectively identify different kinds of faults in engines.
In [21], [22], both GA and PSO algorithm are exploited
to improve the random initialization of K-Means cluster-
ing algorithm for engine fault diagnosis. Compared with
FCM clustering algorithm, K-Means clustering algorithm
has lower computational complexity and faster convergence

speed, thus it is more suitable for the clustering analysis of
big data.

With the increase of the complexity of mechanical equip-
ment and the expansion of industrial production scale, and
multiple sensors are used to monitor the running states of
mechanical equipment in real time, the running-state mon-
itoring data generated by a large number of mechanical
equipment are growing rapidly. It is a new challenge of
the field of fault diagnosis that how to diagnose mechan-
ical equipment faults accurately and quickly according to
the massive running-state monitoring data [23]. In the last
few years, the researches and applications of fault diagno-
sis based on big data technology are increasing gradually.
For example, Miao et al. [24] built a fault diagnosis model
of SF6 electrical equipment using back propagation neural
network based on MapReduce. Imani et al. [25] adopted RF
based on Spark to rapidly diagnose wind turbine gearbox
faults. Yu et al. [26] built a fault diagnosis platform of indus-
trial equipment using MapR-DB, Hive, MapReduce, Spark,
principal component analysis, and other technologies. Most
of the existing researches on fault diagnosis based on big data
technology apply the parallel machine learning algorithms
based on MapReduce or Spark to fault diagnosis, which
improve the performance of fault diagnosis. Compared with
MapReduce, Spark has faster processing speed and is more
suitable for machine learning algorithms that require a large
number of iterative computations.

In view of the obvious advantages of Spark and K-Means
clustering algorithm in industrial big data analysis, this
paper proposes a novel fault diagnosis method of rolling
bearing using Spark-based parallel ACO-K-Means clustering
algorithm, which can effectively diagnose rolling bearing
faults through rapid and accurate mining of fault information
from the massive running-state monitoring data of rolling
bearing.

The main contributions of the proposed approach are as
follows.
• A Spark-based three-layer wavelet packet decomposi-
tion approach is developed, which can efficiently pre-
process the massive running-state monitoring data of
rolling bearing to obtain eigenvectors as the input of
ACO-K-Means clustering algorithm.

• ACO-K-Means clustering algorithm suitable for rolling
bearing fault diagnosis is proposed to improve the diag-
nosis accuracy. ACO algorithm is used to get the global
optimal initial clustering centers of K-Means from all
eigenvectors, and the K-Means clustering algorithm
based on weighted Euclidean distance is used to perform
clustering analysis on all eigenvectors to obtain a rolling
bearing fault diagnosis model.

• The parallelization of ACO-K-Means clustering algo-
rithm for rolling bearing fault diagnosis is imple-
mented on a Spark platform, which can efficiently and
accurately perform clustering analysis on the massive
running-state monitoring data of rolling bearing.
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• The effectiveness of the proposed fault diagnosismethod
is verified and analyzed through a series of experiments,
the results show that it cannot only obtain a satisfactory
fault diagnosis accuracy, but also offer a higher model
training efficiency and fault diagnosis efficiency for
large-scale rolling bearing datasets.

The rest of the paper is organized as follows. Section II
outlines ACO algorithm, K-Means clustering algorithm,
and Spark computing framework. Section III describes
the proposed fault diagnosis method of rolling bearing
using Spark-based parallel ACO-K-Means clustering algo-
rithm. Section IV presents experimental results and analysis.
Section V gives the conclusion.

II. BACKGROUND
A. OVERVIEW OF ACO ALGORITHM
The inspiration of ACO algorithm [27] comes from the
observation of foraging behavior of real ant colonies. During
the round trip from the food source to the ant nest, each
ant secretes a chemical substance called pheromone on its
path, and it can perceive the existence and intensity of
pheromones and move along the direction with higher inten-
sity pheromones. Thus the entire ant colony can find the
shortest path between the food source and the ant nest after a
period of time.

FIGURE 1. An example of ants finding the shortest path.

Suppose that an ant wants to move from point A to point B,
if there are no obstacles, it will move along path AB, as shown
in Fig. 1(a). If there are obstacles, it will randomly choose
a path between paths ACB and ADB, as shown in Fig. 1(b).
Since path ADB is shorter than path ACB and there are more
ants passing through point D between points A and B, result-
ing in the intensity of pheromones deposited on path ADB is
greater than that of pheromones deposited on path ACB, and
more ants choose path ADB, as shown in Fig. 1(c).
In the ACO algorithm,m ants can cooperate to perform the

foraging task, and the transition probability Pkij from point i
to point j for the k-th ant can be calculated by the pheromone
intensity τij(t) and visibility ηij(t) at time t , as in

Pkij(t) =
(τij(t))α(ηij(t))β∑

s∈allowedk (τis(t))
α(ηis(t))β

, (1)

where α is the pheromone heuristic factor, β is the expected
heuristic factor, and allowedk is the next arrival point that the

FIGURE 2. Spark computing framework.

k-th ant can choose. The visibility ηij can be calculated by

ηij =
1
εij
, (2)

where εij represents the Euclidean distance between point i
and point j. The pheromone intensity τij at time t + n can be
calculated by

τij(t + n) = (1− ρ)τij(t)+
m∑
k=1

1τ kij , (3)

where ρ is the pheromone volatilization factor (0<ρ<1), and
1τij represents the pheromone increment. 1τ kij denotes the
pheromone laid on path (i, j) by the k-th ant, which can be
calculated by

1τ kij =


1
lk
, if the k-th ant passes the path (i, j),

0, otherwise,
(4)

where lk represents the length of the path the k-th ant passes
between time t and time t + n.

B. OVERVIEW OF K-MEANS CLUSTERING ALGORITHM
K-Means clustering algorithm [28] is one of the most classic
clustering algorithms, which uses distance as the evaluation
index of similarity, that is, the closer the distance between
two objects is, the greater the similarity is. K-Means clus-
tering algorithm is an iterative clustering analysis method,
the distance between any two samples is calculated for a
given sample set, and the sample set is divided into k clusters
according to the distances between samples, mainly including
the following steps.

Step 1: Randomly select k samples from a given sample
set X = {x1, x2, . . . , xn} as the initial clustering centers M =
{µ1, µ2, . . . , µk}.
Step 2: Calculate the Euclidean distance between each

sample and each clustering center by

dij =
∥∥xi − µj∥∥2 , (5)

and each sample is classified into the nearest cluster.
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FIGURE 3. Flowchart of the proposed fault diagnosis method of rolling bearing using Spark-based parallel ACO-K-Means clustering
algorithm.

Step 3: Recalculate the centroids of k clusters by

µj =
1∣∣Cj∣∣ ∑xi∈Cj xi, (6)

where Cj represents the j-th cluster.
Step 4: Calculate the total mean square error between all

samples and their corresponding clustering centers by

MSE =
1
n

k∑
j=1

∑
xi∈Cj

∥∥xi − µj∥∥22 , (7)

if it reaches the convergence threshold or the maximum
number of iterations has reached, go to Step 5; otherwise,
go to Step 2.

Step 5: Output the clustering results.

C. OVERVIEW OF SPARK COMPUTING FRAMEWORK
Spark is one of the most commonly used big data computing
platforms, it is a parallel computing framework for big data
based on memory computing, which can be used to build
faster and more efficient big data analysis applications [29].
Fig. 2 depicts the Spark computing framework, which mainly
includes a cluster resource manager, a master node and mul-
tiple worker nodes that perform tasks. The cluster resource
manager can be the Spark’s own standalone cluster manager,
YARN [30], or other resource management frameworks.

When a Spark application is submitted, a SparkContext
object will be created on the master node, it reads data from
HDFS to create RDD objects, and it applies for resources
from the cluster resource manager. The cluster resource man-
ager allocates resources to one or more executor processes
of each worker node, and each worker node reports resource
usage and running states of tasks to the cluster resource
manager using a heartbeat mechanism. The SparkContext
object builds a directed acyclic graph (DAG) according to
the dependencies among multiple RDDs, and the DAG is
submitted to the DAG scheduler. The DAG scheduler parses
the DAG into multiple task sets, which are submitted to the
task scheduler. The task scheduler assigns tasks to executor
processes, after an executor process receives a task, a thread
will be taken from the thread pool of the executor process to
perform the task.

III. PROPOSED FAULT DIAGNOSIS METHOD OF
ROLLING BEARING
A. FAULT DIAGNOSIS PROCESS OF ROLLING BEARING
The proposed fault diagnosis method of rolling bearing using
Spark-based parallel ACO-K-Means clustering algorithm is
depicted in Fig. 3. Firstly, the raw vibration data of rolling
bearing collected by sensors in real time (i.e., the running-
state monitoring data of rolling bearing) are stored in HDFS.
Secondly, Spark-based three-layer wavelet packet decompo-
sition is adopted to preprocess the running-state monitoring
data to obtain eigenvectors, which are stored in HDFS and
served as the input of ACO-K-Means clustering algorithm.
Thirdly, the historical sample data composed of eigenvec-
tors are randomly divided into training set and test set, and
Spark-based parallel ACO-K-Means clustering algorithm is
performed to train and test the fault diagnosis model of rolling
bearing. Finally, the trained fault diagnosis model is used in
actual fault diagnosis, the clustering analysis is carried out on
the data to be diagnosed which are composed of eigenvectors
stored in HDFS, and the fault diagnosis results are output.

B. PROPOSED SPARK-BASED THREE-LAYER WAVELET
PACKET DECOMPOSITION APPROACH
In the preprocessing of the raw vibration data of rolling
bearing, the wavelet packet decomposition [31] is often used
to extract eigenvectors of rolling bearing. In order to effi-
ciently preprocess the massive vibration data of rolling bear-
ing, a Spark-based three-layer wavelet packet decomposition
approach is proposed. Fig. 4 presents the flowchart of the pro-
posed Spark-based three-layer wavelet packet decomposition
approach, which mainly includes the following steps.

Step 1: Read the raw vibration data of rolling bearing to
create an RDD. w pieces of raw vibration data of rolling
bearing are read from HDFS to create an RDD rawRDD
containing n partitions, and each RDD partition contains w/n
pieces of vibration data of rolling bearing.

Step 2: Divide samples. For the s-th RDD partition =
{R(s−1)w/n+1,R(s−1)w/n+2, . . . ,Rs∗w/n} of rawRDD, every l
pieces of continuous vibration data of rolling bearing are
divided into a sample, where 1 ≤ s ≤ n. The sample size l
should be more than the number of vibration signals collected
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FIGURE 4. Flowchart of the proposed Spark-based three-layer wavelet
packet decomposition approach.

in one rotation cycle of rolling bearing, but not more than
that collected in two rotation cycles of rolling bearing. A new
RDD sampleRDD containing w/l samples is obtained after
finishing the sample division.

Step 3: Normalize samples. For the s-th RDD parti-
tion = {S((s−1)w/n)/l+1, S((s−1)w/n)/l+2, . . . , S(s∗w/n)/l} of sam-
pleRDD, each piece of vibration data contained in the sample
S((s−1)w/n)/l+j is normalized by

x ′ =
x − xmin

xmax − xmin
, (8)

where 1 ≤ s ≤ n, 1 ≤ j ≤ (w/n)/l, x is one piece of vibration
data contained in the sample, xmax is the maximum value,
and xmin is the minimum value. A new RDD normalRDD is
obtained after all samples are normalized.

Step 4: Decompose samples. For the s-th RDD partition=
{N((s−1)w/n)/l+1,N((s−1)w/n)/l+2, . . . ,N(s∗w/n)/l} of normal-
RDD, the sample N((s−1)w/n)/l+j is decomposed by three-
layer wavelet packet decomposition to obtain wavelet packet
decomposition coefficients of eight frequency bands, where
1≤ s ≤ n and 1 ≤ j ≤ (w/n)/l. The energy proportion Ek of
the k-th frequency band can be calculated by

Ek =
(Wk)

T Wk∑8
k=1 (Wk)

T Wk
, (9)

where Wk is the wavelet packet decomposition coefficient
of the k-th frequency band, for all 1 ≤ k ≤ 8. Since the
energy proportion of each frequency band obtained from the
decomposition of vibration data corresponding to different
running states of rolling bearing is different, each eigenvector
of rolling bearing can be constructed from energy proportions
of eight different frequency bands. Finally, w/l eigenvectors
are obtained after all samples are decomposed.

TABLE 1. Examples of eigenvectors of different running states of rolling
bearing.

C. PROPOSED ACO-K-MEANS CLUSTERING ALGORITHM
1) K-MEANS CLUSTERING ALGORITHM BASED ON
WEIGHTED EUCLIDEAN DISTANCE
As described in Section III-B, each eigenvector of rolling
bearing is composed of energy proportions of eight differ-
ent frequency bands, and the examples of eigenvectors of
four different running states of rolling bearing are presented
in Table 1. As can be seen in Table 1, the energy propor-
tions of different frequency bands in eigenvectors of different
running states of rolling bearing are different. For example,
the energy distributions of the ball fault of rolling bearing
are mainly concentrated in the third and seventh frequency
bands. If the Euclidean distance measure shown in (5) is
adopted to calculate the distance between each eigenvector
and each clustering center, the differences of the energy
distributions of different running states of rolling bearing
are neglected, which may affect the fault diagnosis accu-
racy. Therefore, the K-Means clustering algorithm based on
weighted Euclidean distance is put forward.

For any two samples xi = {xi1, xi2, . . . , xip} and xj =
{xj1, xj2, . . . , xjp}, the weighted Euclidean distance between
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xi and xj can be calculated by

dij =

√√√√ p∑
k=1

(
xik − xjk
δk

)2

, (10)

where δk is the standard deviation of {xik , xjk}, for all
1 ≤ k ≤ p.

To compare the fault diagnosis accuracy of the K-Means
clustering algorithm using weighted Euclidean distance with
that of the K-Means clustering algorithm using Euclidean dis-
tance, the raw vibration data of rolling bearing [32] provided
by Case Western Reserve University (CWRU) are adopted,
and the three-layer wavelet packet decomposition is per-
formed to decompose the raw vibration data to obtain eigen-
vectors as the input of K-Means clustering algorithm. Table 2
presents the fault diagnosis accuracies of K-Means clustering
algorithms using different distance measure methods. It can
be seen from Table 2 that the fault diagnosis accuracy of
the K-Means clustering algorithm using weighted Euclidean
distance is 0.81% higher than that of the K-Means clustering
algorithm using Euclidean distance. Therefore, the weighted
Euclidean distance measure is adopted to calculate the dis-
tance between each eigenvector and each clustering center,
which can improve the fault diagnosis accuracy of K-Means
clustering algorithm to a certain extent.

TABLE 2. Fault diagnosis accuracies of K-Means clustering algorithms
using different distance measure methods.

2) ACO-K-MEANS CLUSTERING ALGORITHM
The traditional K-Means clustering algorithm does not guar-
antee that the global optimal solution can be obtained, and
the clustering effect depends on the selection of initial clus-
tering centers. Therefore, many studies [19]–[22], [33], [34]
have focused on optimizing the selection of initial clustering
centers of K-Means. In this paper, ACO algorithm is used to
get the global optimal initial clustering centers of K-Means.
The proposed ACO-K-Means clustering algorithm for rolling
bearing fault diagnosis is described in Algorithm 1, mainly
including the following steps.

Step 1: Randomly select the initial clustering centers. k
eigenvectors are randomly selected from all m eigenvectors
of rolling bearing and served as the initial clustering centers
M = {µ1, µ2, . . . , µk}.
Step 2: Calculate the transition probability. The visibility

ηij between the i-th eigenvector and the j-th initial cluster-
ing center is calculated by (2), the pheromone intensity τij
between the i-th eigenvector and the j-th initial clustering
center is calculated by (3), and the transition probability Piij
from the i-th eigenvector to the j-th initial clustering center

Algorithm 1 The ACO-K-Means Clustering Algorithm for
Rolling Bearing Fault Diagnosis
Input: m eigenvectors of rolling bearing, the number of

clusters k , the pheromone heuristic factor α, the expected
heuristic factor β, the pheromone volatilization factor ρ,
the maximum number of iterationsmaxNumIter, the con-
vergence thresholds λ and ϕ

Output: a rolling bearing fault diagnosis model
1: Randomly select k initial clustering centers M =

{µ1, µ2, . . . , µk};
2: do
3: t ← t + 1;
4: for i← 1 to m do
5: for j← 1 to k do
6: Calculate the visibility ηij by (2);
7: if t = 1 then
8: The pheromone intensity τij← 1;
9: else
10: Calculate the pheromone intensity τij by (3);
11: end if
12: Calculate the transition probability Piij by (1);
13: end for
14: Assign the i-th eigenvector to a cluster according to

the maximum transition probability max(Pii1,
Pii2, . . . ,P

i
ik );

15: end for
16: Update k initial clustering centers by (6);
17: Calculate the mean square errorMSE by (7);
18: while MSE ≤ λ
19: Output k global optimal initial clustering centers;
20: do
21: for i← 1 to m do
22: for j← 1 to k do
23: Calculate the weighted Euclidean distance dij by

(10);
24: end for
25: Classify the i-th eigenvector into the nearest cluster;
26: end for
27: Update k clustering centers by (6);
28: Calculate the mean square errorMSE by (7);
29: while MSE ≤ ϕ or ++numIter = maxNumIter
30: return a rolling bearing fault diagnosis model.

for the i-th ant is calculated by (1), where 1 ≤ i ≤ m and
1 ≤ j ≤ k .
Step 3: Assign m eigenvectors to k clusters. The i-th

eigenvector is assigned to the j-th cluster according to the
maximum transition probabilityPiij=max(Pii1,P

i
i2, . . . ,P

i
ik ),

where 1 ≤ i ≤ m and 1 ≤ j ≤ k .
Step 4: Update the initial clustering centers. k initial clus-

tering centers are recalculated by (6), which are regarded as
the new initial clustering centers.

Step 5: Determine whether the initial clustering centers
have converged. At first, the total mean square error MSE
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between all eigenvectors and their corresponding initial clus-
tering centers is calculated by (7). Then, determine whether
MSE is less than or equal to the convergence threshold, if yes,
the global optimal initial clustering centers are output and go
to Step 6; if not, go to Step 2.

Step 6: Classify each eigenvector into the nearest cluster.
The weighted Euclidean distance dij between the i-th eigen-
vector and the j-th clustering center is calculated by (10), and
the i-th eigenvector is classified into the nearest cluster, where
1 ≤ i ≤ m and 1 ≤ j ≤ k .

Step 7: Update the clustering centers. k clustering centers
are recalculated by (6), which are served as the new clustering
centers.

Step 8: Determine whether the termination conditions have
been met. At first, the total mean square error MSE between
all eigenvectors and their corresponding clustering centers
is calculated by (7). Then, determine whether MSE is less
than or equal to the convergence threshold or the maximum
number of iterations has reached, if yes, a rolling bearing fault
diagnosis model is obtained; if not, go to Step 6.

D. PROPOSED SPARK-BASED PARALLEL ACO-K-MEANS
CLUSTERING ALGORITHM
In order to efficiently and accurately perform clustering
analysis on the massive eigenvectors of rolling bearing,
a Spark-based parallel ACO-K-Means clustering algorithm
for rolling bearing fault diagnosis is proposed. Fig. 5 presents
the flowchart of the proposed Spark-based parallel ACO-
K-Means clustering algorithm, which mainly includes the
following steps.

Step 1: Read the eigenvectors of rolling bearing to create an
RDD. The training set withm eigenvectors is read fromHDFS
to create an RDD eigenvectorRDD containing n partitions,
each RDD partition contains m/n eigenvectors, and each
worker node will handle multiple RDD partitions.

Step 2: Randomly select the initial clustering centers.
k eigenvectors are randomly selected from eigenvectorRDD
as the initial clustering centers M = {µ1, µ2, . . . , µk},
which are broadcasted from the master node to each worker
node.

Step 3: Calculate the transition probability in parallel.
For the s-th RDD partition = {E(s−1)m/n+1,E(s−1)m/n+2, . . . ,
Es∗m/n} of eigenvectorRDD, the transition probability Piij
from the i-th eigenvector E(s−1)m/n+i to the j-th initial clus-
tering center µj for the i-th ant is calculated by (1), and
the i-th ant selects the t-th initial clustering center as an
access point V∀t∈[1,k] according to the maximum transition
probability Piit = max(Pii1,P

i
i2, . . . ,P

i
ik ), where 1 ≤ s ≤ n,

1 ≤ i ≤ m/n, 1 ≤ j ≤ k , and 1 ≤ t ≤ k . An eigenvector
and its corresponding access point are regarded as a value
and a key respectively, and a key-value pair RDD pathRDD is
obtained.

Step 4: Update the initial clustering centers in parallel.
For the s-th RDD partition = {< V∀t∈[1,k],E(s−1)m/n+1 >,
< V∀t∈[1,k], E(s−1)m/n+2 >, . . . , < V∀t∈[1,k],Es∗m/n >}

of pathRDD, all eigenvectors of the s-th RDD partition are

divided into k groups according to different access points,
and the average value Ēsj of all eigenvectors in the j-th group
is calculated by (6), where 1 ≤ s ≤ n and 1 ≤ j ≤ k .
k average values of each RDD partition of pathRDD are
gathered from each worker node to the master node, and µj
=

1
n

∑n
s=1 Ēsj(1 ≤ j ≤ k) is used as the j-th new initial

clustering center, and k updated initial clustering centers are
broadcasted from the master node to each worker node.

Step 5: Determine whether the initial clustering centers
have converged. Firstly, the mean square errorMSEs between
all eigenvectors of the s-th RDD partition of pathRDD and
their corresponding initial clustering centers is calculated by
(7), where 1 ≤ s ≤ n. Secondly, the mean square error
obtained from each RDD partition is gathered from each
worker node to the master node, and the total mean square
error MSE = 1

n

∑n
s=1MSEs is obtained. Finally, determine

whetherMSE is less than or equal to the convergence thresh-
old, if yes, the global optimal initial clustering centers are
output and go to Step 6; if not, go to Step 3.

Step 6: Classify each eigenvector into the nearest cluster
in parallel. For the s-th RDD partition of eigenvectorRDD,
the weighted Euclidean distance between each eigenvec-
tor and each clustering center is calculated by (10), and
each eigenvector is classified into the nearest cluster, where
1 ≤ s ≤ n. An eigenvector and the centroid of its correspond-
ing nearest cluster are regarded as a value and a key respec-
tively, and a key-value pair RDD clusterRDD is obtained.
Step 7: Update the clustering centers in parallel. For

the s-th RDD partition = {< µ∀j∈[1,k],E(s−1)m/n+1 >,

< µ∀j∈[1,k], E(s−1)m/n+2 >, . . . , < µ∀j∈[1,k],Es∗m/n >} of
clusterRDD, the centroids {µs1, µs2, . . . , µsk} of k clusters
of the s-th RDD partition are recalculated by (6), where 1 ≤
s ≤ n. The centroids of k clusters of each RDD partition
of clusterRDD are gathered from each worker node to the
master node, µj = 1

n

∑n
s=1 µsj(1 ≤ j ≤ k) is used as the

j-th new clustering center, and k updated clustering centers
are broadcasted from the master node to each worker node.

Step 8: Determine whether the clustering centers have
converged or the maximum number of iterations has reached.
Firstly, the mean square errorMSEs between all eigenvectors
of the s-th RDD partition of clusterRDD and their corre-
sponding clustering centers is calculated by (7). Secondly,
the mean square error obtained from each RDD partition is
gathered from each worker node to the master node, and the
total mean square error MSE = 1

n

∑n
s=1MSEs is obtained.

Finally, determine whether MSE is less than or equal to the
convergence threshold or the maximum number of iterations
has reached, if yes, the fault diagnosis model of rolling bear-
ing is output; if not, go to Step 6.

After a well-trained fault diagnosis model of rolling bear-
ing is obtained, the vibration data of rolling bearing can be
diagnosed practically. As shown in Fig. 3, firstly, the vibration
data of rolling bearing to be diagnosed are preprocessed
by Spark-based three-layer wavelet packet decomposition to
obtain eigenvectors, which are stored in HDFS. Secondly,
all eigenvectors are read from HDFS to create an RDD.
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FIGURE 5. Flowchart of the proposed Spark-based parallel ACO-K-Means clustering algorithm.

Thirdly, the weighted Euclidean distance between each eigen-
vector of the RDD and each clustering center provided by the
fault diagnosis model is calculated by (10) in parallel. Finally,
each eigenvector is classified into the nearest cluster, and the
fault diagnosis results are output.

IV. EXPERIMENT
A. EXPERIMENTAL SETUP
The rolling bearing dataset [32] provided by CWRU is used
to verify the effectiveness of the proposed fault diagnosis
method of rolling bearing using Spark-based parallel ACO-
K-Means clustering algorithm. This dataset contains plenty
of raw vibration data collected under different working con-
ditions, but the size of the eigenvectors obtained from the
three-layer wavelet packet decomposition for these data is

only 31.73 MB. It is difficult to make an effective evaluation
of the proposed fault diagnosis method for too little data, thus
the sliding window method [35] is adopted to enhance the
original vibration data, where the size and the offset of sliding
window are set to 4000 and 1 respectively. Three different size
of datasets (i.e., DataSet A, DataSet B, and DataSet C) are
obtained from the three-layer wavelet packet decomposition
for the enhanced vibration data of rolling bearing, as shown
in Table 3. Each dataset contains normal state data, ball fault
data, inner race fault data, and outer race fault data.

The experimental platform is a Spark cluster, which con-
sists of one master node and eight worker nodes, and whose
cluster resource manager is Spark’s own standalone cluster
manager. The hardware environment and software environ-
ment of this experimental platform are presented in Table 4
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TABLE 3. Description of the rolling bearing dataset.

TABLE 4. Hardware environment of the experimental platform.

TABLE 5. Software environment of the experimental platform.

TABLE 6. Parameter settings of the Spark cluster.

and Table 5 respectively, and the parameter settings of the
Spark cluster are listed in Table 6.

In the training of the proposed fault diagnosis model of
rolling bearing, the parameter settings of ACO-K-Means
clustering algorithm are listed in Table 7. Since the vibra-
tion data of rolling bearing include normal state data, ball
fault data, inner race fault data, and outer race fault data,
the number of clusters is set to 4. If the number of run-
ning states of rolling bearing contained in the dataset is
known, the number of clusters is determined by the number
of running states of rolling bearing. If the number of running
states of rolling bearing contained in the dataset is unknown,
the number of clusters can be dynamically determined by
elbow method [36] or silhouette coefficient method [37]. The
pheromone heuristic factor α indicates the relative impor-
tance of pheromone intensity, if the value of α is too large,
the random search ability of the algorithm is easily weakened.
If the value of α is too small, it is easy to fall into local opti-
mum. The expected heuristic factor β indicates the relative
importance of visibility, if the value of β is too large, it is

TABLE 7. Parameter settings of ACO-K-Means clustering algorithm.

also easy to fall into local optimum. If the value of β is too
small, it is easy to fall into pure random search, which makes
it difficult to find the global optimal solution. The pheromone
volatilization factor ρ indicates the disappearance level of
pheromone, if the value of ρ is too large, it is easy to affect the
randomness of search and the global optimality of solution.
If the value of ρ is too small, the convergence speed will be
decreased.

The parameter tuning process of ACO-K-Means clustering
algorithm is as follows. Firstly, the value ranges of three
key parameters are determined, i.e., α ∈ {1, 2, 3, 4, 5},
β ∈ {2, 3, 4, 5, 6}, and ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}. Secondly, the fault diagnosis model is trained
and tested according to different combinations of the three
parameters, and the model training time and fault diagnosis
accuracy are observed. Finally, the combination of parame-
ters with the highest fault diagnosis accuracy and the shortest
model training time is regarded as the best combination of
parameters. The experimental results show that the best com-
bination of parameters is α = 2, β = 4, and ρ = 0.3.
In this paper, in order to accurately measure the diagnosis

accuracy, training time, and fault diagnosis time of a fault
diagnosis model, each experiment is repeated 30 times, and
the measurement results are averaged.

B. EVALUATION OF SPARK-BASED THREE-LAYER
WAVELET PACKET DECOMPOSITION APPROACH
To better evaluate the efficiency of using the proposed Spark-
based three-layer wavelet packet decomposition approach
to preprocess the massive vibration data of rolling bearing,
three different size of vibration data are preprocessed by the
proposed approach on two different Spark clusters, i.e., the
Spark cluster with a single worker node and the Spark cluster
with 8 worker nodes.

Fig. 6 presents the data preprocessing time obtained with
Spark-based three-layer wavelet packet decomposition for
three different size of vibration data on two different Spark
clusters. Compared with the Spark cluster with a single
worker node, the data preprocessing efficiency obtained by
the proposed approach on the Spark cluster with 8 worker
nodes is improved by 85.92%, 86.49%, and 86.84% for
1.59 TB, 3.34 TB, and 5.73 TB of vibration data, respec-
tively. The improvement of efficiency is mainly because more
worker nodes are used to perform the data preprocessing task
in parallel, and there is no communication overhead between
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FIGURE 6. Data preprocessing time obtained with Spark-based
three-layer wavelet packet decomposition for different size of vibration
data.

worker nodes in data preprocessing. The results demonstrate
that the proposed Spark-based three-layer wavelet packet
decomposition approach can fully utilize the computing
resources of multiple worker nodes to efficiently preprocess
the massive vibration data of rolling bearing.

C. ANALYSIS OF FAULT DIAGNOSIS ACCURACY
To better analyze the diagnosis accuracy of the proposed
fault diagnosis method of rolling bearing, the Spark-based
parallel K-Means clustering algorithm provided by Spark
MLlib [38] (Spark-K-Means) and the proposed Spark-based
parallel ACO-K-Means clustering algorithm (Spark-ACO-K-
Means) are used to train and test the fault diagnosis model
of rolling bearing on the Spark cluster with 8 worker nodes.
Moreover, in order to analyze the impact of the size of dataset
on the fault diagnosis accuracy, three different size of datasets
listed in Table 3 are used for the training and testing of
fault diagnosis model, and all eigenvectors contained in each
dataset are randomly divided into training set and test set
according to the ratio of 7:3.

Fig. 7 presents the fault diagnosis accuracies obtained with
two different fault diagnosis methods for three different size
of datasets on the Spark cluster with 8 worker nodes. It can
be seen from Fig. 7 that the proposed Spark-ACO-K-Means
achieves a satisfactory diagnosis accuracy, and the fault diag-
nosis accuracies reach up to 97.73%, 97.87%, and 97.99%
for DataSet A, DataSet B, and DataSet C, respectively. Com-
pared with Spark-K-Means, Spark-ACO-K-Means achieves
better fault diagnosis results, and the fault diagnosis accuracy
is increased by 4.92% on average.

To compare the fault diagnosis effect of Spark-K-Means
and that of Spark-ACO-K-Means more intuitively, the prin-
cipal component analysis (PCA) [39] is used to reduce the
dimensions of each clustering center and each eigenvector
contained in the fault diagnosis results from 8 to 2, and the
fault diagnosis results are visualized in 2-dimensional space.

FIGURE 7. Fault diagnosis accuracies obtained with different fault
diagnosis methods for different size of datasets.

FIGURE 8. Clustering effect of Spark-K-Means.

Figs. 8 and 9 demonstrate the clustering effects of Spark-
K-Means and Spark-ACO-K-Means, respectively. As shown
in Fig. 8, the clustering effects of normal state and inner race
fault of rolling bearing are obvious, whereas the clustering
effects of ball fault and outer race fault are not satisfactory.
This is because the eigenvectors of ball fault and that of
outer race fault are similar, and Spark-K-Means is easy to
fall into local optimum, which results in the ball fault and
outer race fault are easy to be misdiagnosed. As can be seen
from Fig. 9, compared with Spark-K-Means, Spark-ACO-K-
Means achieves better clustering effect, and especially the
clustering effects of ball fault and outer race fault are changed
obviously. This is because Spark-ACO-K-Means obtains the
global optimal initial clustering centers, and the weighted
Euclidean distance measure is utilized to improve the cal-
culation of the distance between each eigenvector and each
clustering center to enhance the clustering ability of K-Means
clustering algorithm to a certain extent. Thus, the proposed
Spark-ACO-K-Means can obtain more stable and higher fault
diagnosis accuracy.
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FIGURE 9. Clustering effect of Spark-ACO-K-Means.

As shown in Fig. 7, the size of dataset can affect the
fault diagnosis accuracy of rolling bearing, as the size of
dataset increases, the fault diagnosis accuracies obtained
using Spark-K-Means and Spark-ACO-K-Means are gradu-
ally increased respectively. For example, for Spark-ACO-K-
Means, the fault diagnosis accuracy obtained with DataSet C
is 0.26% and 0.12% higher than that obtained with DataSet
A and DataSet B, respectively. Generally speaking, the larger
the rolling bearing dataset, the more the monitoring data of
various running states of rolling bearing contained in the
dataset, and the increase of the number and diversity of train-
ing samples is helpful to train a better fault diagnosis model
of rolling bearing, which can improve the fault diagnosis
accuracy of rolling bearing.

D. ANALYSIS OF TRAINING EFFICIENCY AND DIAGNOSIS
EFFICIENCY OF FAULT DIAGNOSIS MODEL
To effectively analyze the training efficiency and diagnosis
efficiency of the fault diagnosis model built in this paper, for
DataSet A, DataSet B, and DataSet C, the proposed Spark-
ACO-K-Means is used to train the fault diagnosis model of
rolling bearing on the Spark clusters with different number
of worker nodes, and the well-trained model is used for fault
diagnosis, where 70% and 100% data of each dataset are used
formodel training and fault diagnosis respectively. In the fault
diagnosis, the reason to use all the data in each dataset is
to better evaluate the diagnosis efficiency of fault diagnosis
model for a large-scale dataset.

Tables 8 and 9 present the model training time and fault
diagnosis time obtained with different size of datasets and
different number of worker nodes respectively, where the
model training time refers to the running time of the Spark
application for the training of fault diagnosis model, and
the fault diagnosis time refers to the running time of the
Spark application for fault diagnosis. As can be seen from
Tables 8 and 9, for three different size of datasets, with the
increase of the number of worker nodes in a Spark clus-
ter, both the model training time and fault diagnosis time

TABLE 8. Model training time obtained with different size of datasets
and different number of worker nodes.

TABLE 9. Fault diagnosis time obtained with different size of datasets
and different number of worker nodes.

gradually decrease. For DataSet A, DataSet B, and DataSet
C, the training time of fault diagnosis model obtained with
8 worker nodes is 82.51%, 84.64%, and 85.87% less than
that obtained with a single worker node respectively, and the
fault diagnosis time obtained with 8 worker nodes is 86.67%,
86.83%, and 87.18% less than that obtained with a single
worker node respectively. The results demonstrate that with
the increase of the size of dataset, both the model train-
ing efficiency and fault diagnosis efficiency are gradually
improved. Therefore, the proposed fault diagnosis method
is more suitable for processing large-scale rolling bearing
datasets.

As shown in Tables 8 and 9, compared with a single worker
node, the model training time of three datasets obtained with
2, 4, 6, and 8 worker nodes are reduced by 44.80%, 71.83%,
80.68%, and 84.97% on average respectively, the fault diag-
nosis time of three datasets obtained with 2, 4, 6, and 8worker
nodes are reduced by 47.55%, 72.59%, 82.79%, and 87.00%
on average respectively. The results show that with the expan-
sion of the scale of Spark cluster, both the model training
efficiency and fault diagnosis efficiency are also gradually
improved. It is not difficult to see from Tables 8 and 9 that
with the increase of the number of worker nodes, the reduc-
tion trends of both model training time and fault diagnosis
time gradually tend to be flat. Therefore, when the proposed
fault diagnosis method is applied, the performance of both
model training and fault diagnosis can be improved by appro-
priately enlarging the scale of Spark cluster.

Seeing that the speedup and parallel efficiency are two
important indexes to evaluate the performance of parallel
processing, the speedup and parallel efficiency are used to
evaluate the performance of fault diagnosis model training in
addition to the model training time in this paper. The speedup
can be calculated by

Sn =
T
Tn
, (11)
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where Sn denotes the relative speedup obtained in the training
of fault diagnosis model by Spark-ACO-K-Means on the
Spark cluster with n worker nodes, T represents the model
training time obtained with a single worker node, and Tn
refers to the model training time obtained with n worker
nodes. Note that the speedup is obtained by comparing the
model training time when using a single worker node con-
taining 8 CPU cores and 8 worker nodes containing 64 CPU
cores both reach the same accuracy. The parallel efficiency
can be calculated by

En =
Sn
n
× 100%, (12)

where En represents the parallel efficiency obtained in the
training of fault diagnosis model by Spark-ACO-K-Means
on the Spark cluster with n worker nodes, which can reflect
the effective utilization degree of computing resources of all
worker nodes that participate in the training of fault diagnosis
model on the Spark cluster.

FIGURE 10. Speedups of fault diagnosis model training.

Fig. 10 presents the speedups obtained in the training
of fault diagnosis model with different size of datasets and
different number of worker nodes. As shown in Fig. 10, as the
number of worker nodes increases, the obtained speedup is
gradually increased. When the number of worker nodes is
increased from 1 to 8, the average speedup obtained in the
training of fault diagnosis model with three different size of
datasets increases from 1.00× to 6.43×, which shows that
Spark-ACO-K-Means has good parallelism. As can be seen
from Fig. 10, the speedup approaches linear growth, but it
does not reach its theoretical value, because the communi-
cation cost and task scheduling cost caused by the increase
of the number of worker nodes reduce the performance of
model training to a certain extent. It can also be seen from
Fig. 10 that the speedups of 5.72×, 6.5×, and 7.08× are
respectively obtained in the training of fault diagnosis model
with DataSet A, DataSet B, and DataSet C when the number
of worker nodes is 8. The results show that a higher speedup

can be obtained in the training of fault diagnosis model with
a larger dataset when the number of worker nodes is fixed.
Therefore, a larger dataset is more helpful to play the advan-
tage of parallel computing of the proposed fault diagnosis
method.

FIGURE 11. Parallel efficiency of fault diagnosis model training.

Fig. 11 shows the parallel efficiency obtained in the train-
ing of fault diagnosis model with different size of datasets
and different number of worker nodes. As shown in Fig. 11,
when the numbers of worker nodes that participate in model
training are 2, 4, 6, and 8 respectively, the average parallel
efficiency obtained in the training of fault diagnosis model
with three different size of datasets reaches up to 89.03%,
86.76%, 83.96%, and 80.43% respectively, which shows that
Spark-ACO-K-Means has good parallel efficiency, that is,
the computing resources of the Spark cluster are effectively
utilized. However, the increase of the number of worker
nodes will affect the parallel efficiency to a certain extent,
because the additional overhead brought by the expansion
of the scale of Spark cluster partly offsets the improvement
of computing performance brought by it. Also can be seen
from Fig. 11, when the number of worker nodes is fixed,
as the size of the dataset becomes larger, the obtained par-
allel efficiency is gradually increased. For example, when
the number of worker nodes is 8, the parallel efficiency
obtained with DataSet C is 17.01% and 7.12% higher than
that obtained with DataSet A and DataSet B respectively.
Therefore, the proposed fault diagnosis method can make full
use of the computing resources of a Spark cluster to effi-
ciently process large-scale rolling bearing datasets in parallel.

To better evaluate the performance of model training
and fault diagnosis obtained using Spark-ACO-K-Means,
the serial ACO-K-Means clustering algorithm (Serial-ACO-
K-Means) is also used to train and test the fault diag-
nosis model of rolling bearing for three different size
of datasets. Serial-ACO-K-Means is performed on one
CPU core of a single node, and Spark-ACO-K-Means is
carried out on the Spark cluster with 8 worker nodes.
Fig. 12 shows the speedups of Spark-ACO-K-Means over
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FIGURE 12. Speedups of Spark-ACO-K-Means over Serial-ACO-K-Means.

Serial-ACO-K-Means for model training and fault diagnosis
on three different size of datasets, where the training speedup
is obtained by comparing the model training time when
Serial-ACO-K-Means and Spark-ACO-K-Means both reach
the same accuracy. As shown in Fig. 12, the performance
of Spark-ACO-K-Means is greatly improved than that of
Serial-ACO-K-Means. For example, compared with Serial-
ACO-K-Means, Spark-ACO-K-Means obtains the speedups
of 39.25× and 51.71× in model training and fault diagnosis
for DataSet C, respectively. This is mainly because Spark-
ACO-K-Means can efficiently utilize many CPU cores of
multiple worker nodes to perform model training and fault
diagnosis in parallel on the Spark cluster for large-scale
rolling bearing datasets. Moreover, when Serial-ACO-K-
Means is used to perform model training and fault diagnosis
for large-scale rolling bearing datasets, due to the limited
memory space of a single node, a part of data will be spilled
onto disk, which will greatly affect the performance of model
training and fault diagnosis.

E. ANALYSIS OF THE IMPACT OF ACO AND WEIGHTED
EUCLIDEAN DISTANCE MEASURE ON PERFORMANCE
To analyze the impact of ACO and weighted Euclidean dis-
tance measure adopted in Spark-ACO-K-Means on the model
training efficiency and fault diagnosis efficiency, Spark-K-
Means and Spark-ACO-K-Means are used to train the fault
diagnosis model of rolling bearing on the Spark cluster with
8 worker nodes for three different size of datasets, and the
well-trained model is used for fault diagnosis.

Fig. 13 presents the model training time of Spark-K-Means
and Spark-ACO-K-Means for three different size of datasets.
Themodel training time of Spark-ACO-K-Means is increased
by 27.69% on average than that of Spark-K-Means for three
different size of datasets. The initial clustering centers are
randomly selected in Spark-K-Means, whereas the global
optimal initial clustering centers are selected by ACO algo-
rithm in Spark-ACO-K-Means, which is the main reason for

FIGURE 13. Model training time of Spark-K-Means and
Spark-ACO-K-Means.

FIGURE 14. Fault diagnosis time of Spark-K-Means and
Spark-ACO-K-Means.

the increase of model training time of Spark-ACO-K-Means.
Although a lot of time is spent on optimizing the selection of
initial clustering centers in Spark-ACO-K-Means, after get-
ting the global optimal initial clustering centers, the clustering
centers of Spark-ACO-K-Means can converge in a shorter
time compared with Spark-K-Means. In addition, compared
with the Euclidean distance measure adopted in Spark-K-
Means, the weighted Euclidean distance measure adopted in
Spark-ACO-K-Means also increases the model training time
to a certain extent.

Fig. 14 presents the fault diagnosis time of Spark-K-Means
and Spark-ACO-K-Means for three different size of datasets.
The fault diagnosis time of Spark-ACO-K-Means is increased
by 4.62% on average than that of Spark-K-Means for three
different size of datasets. In the fault diagnosis of rolling
bearing, the distance between each eigenvector and each
clustering center only needs to be calculated once, and all the
clustering centers are provided by the trained fault diagnosis
model of rolling bearing. Therefore, the reason for the slight
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increase of fault diagnosis time of Spark-ACO-K-Means is
that the computational cost of weighted Euclidean distance
measure is slightly higher than that of Euclidean distance
measure. In addition, ACO algorithm only participates in the
training of fault diagnosis model, thus it is not related to the
fault diagnosis efficiency of Spark-ACO-K-Means.

In a word, ACO algorithm only affects the model training
time, and the weighted Euclidean distance measure has a
little impact on the model training time and fault diagno-
sis time, but they can improve the fault diagnosis accuracy
(see Section IV-C).

F. COMPARISON WITH OTHER SWARM INTELLIGENCE
OPTIMIZATION ALGORITHMS
To better evaluate the effectiveness of the proposed ACO-K-
Means clustering algorithm, the other two different swarm
intelligence optimization algorithms including GA [21] and
PSO algorithm [22] are also used for optimizing the selec-
tion of initial clustering centers of K-Means. Similar to
Spark-ACO-K-Means, Spark-based parallel GA-K-Means
clustering algorithm (Spark-GA-K-Means) and Spark-based
parallel PSO-K-Means clustering algorithm (Spark-PSO-
K-Means) are implemented, and the weighted Euclidean
distance measure is also used in Spark-GA-K-Means and
Spark-PSO-K-Means. In this experiment, Spark-GA-K-
Means, Spark-PSO-K-Means, and Spark-ACO-K-Means are
used to train and test the fault diagnosis model of rolling
bearing on the Spark cluster with 8 worker nodes for DataSet
C. The parameter settings of GA and PSO algorithm are as
follows.
• GA: The population size is set to 100, the crossover
probability is set to 0.5, the mutation probability is set
to 0.025, and the maximum number of iterations is set
to 600.

• PSO: The swarm size is set to 100, the inertia weight is
set to 0.6, all the acceleration constants are set to 2.0,
and the maximum number of iterations is set to 600.

Table 10 gives the fault diagnosis accuracies, model train-
ing time, and fault diagnosis time of fault diagnosis meth-
ods optimized by different swarm intelligence optimization
algorithms. As can be seen from Table 10, the fault diagnosis
accuracy of Spark-ACO-K-Means is 0.11% lower than that
of Spark-GA-K-Means and is 0.32% higher than that of
Spark-PSO-K-Means. For Spark-GA-K-Means, the method
of searching for the optimal solution based on probability is
adopted in GA, which can search the slightly better initial
clustering centers compared with ACO algorithm. For Spark-
PSO-K-Means, with the increase of the number of iterations
of PSO algorithm, the velocities of a very few particles may
become low or zero before searching for the global optimal
initial clustering centers, which results in these particles have
not enough power to jump out of the local optimum.

It can be seen from Table 10 that the model training
time of Spark-ACO-K-Means is 28.88% and 12.08% lower
than that of Spark-GA-K-Means and Spark-PSO-K-Means
respectively. The reasons for the increases of model training

TABLE 10. Comparison of fault diagnosis methods optimized by different
swarm intelligence optimization algorithms.

time of Spark-GA-K-Means and Spark-PSO-K-Means are
that GA and PSO algorithm respectively need to spend more
time to obtain the global optimal initial clustering centers
than ACO algorithm. It can also be seen from Table 10 that
the fault diagnosis time of the three fault diagnosis methods
are almost the same. This is because the difference of fault
diagnosis time among Spark-GA-K-Means, Spark-PSO-K-
Means, and Spark-ACO-K-Means depends on the calculation
method of the distance between the eigenvector and the clus-
tering center, and it is not related to GA, PSO algorithm, and
ACO algorithm used in the training of fault diagnosis model.
The reason why the fault diagnosis time of Spark-GA-K-
Means, Spark-PSO-K-Means, and Spark-ACO-K-Means are
almost the same is that they all use the weighted Euclidean
distance measure in fault diagnosis.

G. COMPARISON WITH OTHER FAULT
DIAGNOSIS METHODS
To better evaluate the effectiveness of the proposed fault diag-
nosis method of rolling bearing, the other widely used clas-
sification algorithms including RF [31], AlexNet [40], and
ResNet [41] are also used to build the fault diagnosis model
of rolling bearing. Similar to Spark-ACO-K-Means, Spark-
based parallel AlexNet (Spark-AlexNet) and Spark-based
parallel ResNet (Spark-ResNet) are implemented, whereas
Spark-based parallel RF (Spark-RF) is provided by Spark
MLlib [38]. In this experiment, Spark-RF, Spark-AlexNet,
Spark-ResNet, and Spark-ACO-K-Means are used to train
and test the fault diagnosis model of rolling bearing on the
Spark cluster with 8 worker nodes. For Spark-RF and Spark-
ACO-K-Means, all 119.80 GB of eigenvectors contained in
DataSet C are randomly divided into training set and test
set according to the ratio of 7:3. For Spark-AlexNet and
Spark-ResNet, the 119.80 GB of enhanced vibration data
of rolling bearing are transformed into 2-D gray images
of 64 pixels× 64 pixels, and the dataset composed of gray
images is also randomly divided into the training set and test
set according to the ratio of 7:3. In the training of fault diagno-
sis model, the number of sub-trees of Spark-RF is set to 100,
and the settings of network structure and hyper-parameters
of Spark-AlexNet and that of Spark-ResNet can be found
in [40] and [41] respectively, where the batch size is set to
1024 and the model training is terminated after 30 epochs.
Considering the model training efficiency and fault diagno-
sis efficiency of Spark-ResNet, ResNet-18 which has fewer
network layers than ResNet-50 is adopted in Spark-ResNet.
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TABLE 11. Comparison of different fault diagnosis methods.

Table 11 shows the diagnosis accuracies, training time
and diagnosis time of fault diagnosis models obtained
using four different fault diagnosis methods, where the
fault diagnosis time is the time it takes to diagnose all
the data in the dataset using the trained model. As shown
in Table 11, the fault diagnosis accuracy of Spark-ACO-
K-Means is 0.33%, 1.86%, and 1.94% lower than that of
Spark-RF, Spark-AlexNet, and Spark-ResNet, respectively.
However, the model training speed of Spark-ACO-K-Means
is 3.58×, 17.51×, and 47.94× faster than that of Spark-
RF, Spark-AlexNet, and Spark-ResNet respectively, and the
fault diagnosis speed of Spark-ACO-K-Means is 30.57×,
50.57×, and 82.30× faster than that of Spark-RF, Spark-
AlexNet, and Spark-ResNet respectively. Compared with
Spark-RF, Spark-AlexNet, and Spark-ResNet, the proposed
Spark-ACO-K-Means has lower computational complexity,
and therefore it can get higher model training efficiency and
fault diagnosis efficiency. Besides, before the fault diagno-
sis model is to be trained, Spark-RF, Spark-AlexNet, and
Spark-ResNet all need considerable time to label the dataset,
whereas Spark-ACO-K-Means does not require labeling the
dataset. Thus, the proposed fault diagnosis method can not
only efficiently process large-scale rolling bearing datasets
but also achieve a satisfactory fault diagnosis accuracy.

V. CONCLUSION
Facing the massive running-state monitoring data of rolling
bearing, a fault diagnosis method of rolling bearing using
Spark-based parallel ACO-K-Means clustering algorithm is
proposed to achieve efficient and accurate fault diagnosis
of rolling bearing. Spark-based three-layer wavelet packet
decomposition can efficiently extract eigenvectors from the
massive running-state monitoring data of rolling bearing.
ACO-K-Means clustering algorithm can not only obtain the
global optimal initial clustering centers of K-Means from all
eigenvectors, but also optimize the calculation method of dis-
tance between the eigenvector and the clustering center using
the weighted Euclidean distance measure, which improves
the fault diagnosis accuracy. By parallelizing ACO-K-Means
clustering algorithm on the Spark platform, the large-scale
eigenvectors of rolling bearing can be processed in parallel
with multiple worker nodes, which effectively improves the
training efficiency and fault diagnosis efficiency of fault diag-
nosis model of rolling bearing in the big data environment.
On the Spark clusters with different number of worker nodes,
different size of datasets are used to verify the diagnosis accu-
racy, model training efficiency, and fault diagnosis efficiency

of the proposed method. The results show that the proposed
method can fully utilize the computing resources of a Spark
cluster to achieve efficient and accurate fault diagnosis for a
large-scale rolling bearing dataset. Facing a rolling bearing
dataset containing 119.80 GB of eigenvectors, the model
training time and fault diagnosis time obtained using the
proposed method on the Spark cluster with 8 worker nodes
are 85.87% and 87.18% less than that obtained using the
proposed method on the Spark cluster with a single worker
node respectively, and the fault diagnosis accuracy obtained
using the proposedmethod on the Spark cluster with 8 worker
nodes reaches up to 97.99%.

In the practical production, the running-state monitoring
data of rolling bearing become more and more and contain
a variety of fault information. In the next step, an improved
clustering algorithm will be developed to further improve the
fault diagnosis accuracy, model training efficiency and fault
diagnosis efficiency on the GPU-accelerated Spark platform.
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