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ABSTRACT As a non-invasive medical imaging scanning device, ultrasound has greatly increased the
efficiency and accuracy of medical diagnosis. In recent years, portable ultrasound is being more widely
used for its convenience and lower cost. Patients and physicians can receive the scanned images on their
mobile phones at any time via a wireless network with low latency. However, it is difficult for portable
ultrasound devices to capture images with the same quality as standard hospital ultrasound image acquisition
systems. Usually, the images captured by portable ultrasound equipment have considerable noise. This noise
undoubtedly affects the diagnosis of the physician. It is imperative to develop methods to remove the noise
while preserving important information in the image. For this reason, we propose a novel denoising neural
network model, called Feature-guided Denoising Convolutional Neural Network (FDCNN), to remove noise
while retaining important feature information. In order to achieve high-quality denoising results, we employ
a hierarchical denoising framework driven by a feature masking layer for medical images. Furthermore,
we propose a feature extraction algorithm based on Explainable Artificial Intelligence (XAI) for medical
images. Experimental results show that our medical image feature extraction method outperforms previous
methods. Combined with the new denoising neural network architecture, portable ultrasound devices can
now achieve better diagnostic performance.

INDEX TERMS Biomedical image processing, image denoising, feature extraction, image fusion.

I. INTRODUCTION
Ultrasound devices have several advantages over other med-
ical imaging modalities (e.g., MRI, X-ray and CT). They
use an instrumented probe to emit ultrasound signals into
the human body [1]. After ultrasound reflection and infor-
mation processing, tomographic images of the body can be
plotted. This process eliminates the need to expose patients
and physicians to ionizing radiation [2]. This dramatically
reduces the health risks of some of the other medical imaging
methods, like X-ray and CT. Also, ultrasound equipment is
considerably cheaper and more widely available than other
safe methodologies, like MRI.

Unlike other bulky medical imaging systems, handheld
portable ultrasound devices can make instant diagnosis pos-
sible. Doctors can perform quick tests at a patient’s bedside
without traveling to a specific medical lab or imaging room.
At the same time, portable ultrasound equipment is less
expensive to use. For our experiment, the Clarius handheld
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portable ultrasound device [3] can be purchased for less than
$3,000.

Unfortunately, most handheld portable ultrasound devices
have poor image acquisition quality. The presence of speckle
noise significantly affects the diagnosis. Also, since different
brands of portable ultrasound devices have different emphasis
on image acquisition, it is difficult to use a simple denoising
model that works for all portable ultrasound devices. For
the same portable ultrasound device, the noise level may be
slightly different depending on the location of the human
organ being scanned. All these issues pose several challenges
in our work.

Despite the abovementioned difficulties, noise removal
is crucial in the field of computer vision, such as for
image segmentation [6]. Specifically, organ segmentation can
help doctors quickly reconstruct information about human
tissues [4], [5]. One of the prerequisites for effective seg-
mentation is having noise free input medical images. Exist-
ing methods based on machine learning and interpretable
artificial intelligence are already widely used for automatic
diagnosis of diseases [7]. If there is noise in the input image,
this will inevitably reduce the confidence in the diagnostic
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information. Based on the above observations, noise removal
from medical images has become an essential step in medical
image information processing. As a medical imaging device
with quality limitations, portable ultrasound equipment can
greatly benefit from the noise removal process.

We present a novel Explainable AI (XAI) based approach
for medical image feature extraction. At the same time,
we also improve an existing denoising neural network archi-
tecture. In the training phase, we adopt a hierarchical noise
addition strategy. The noise is added only in regions where
no medical feature information is present. After our improve-
ment, this network architecture for normal image denoising
achieves excellent performance for medical image denoising.
Finally, we combine the medical image feature information
with the denoising network. This denoising pipeline ensures
that the neural network robustly removes speckle noise while
retaining the most meaningful feature information. It is worth
mentioning that we subtly utilize the neural network image
reconstruction technique to map the medical image feature
information. The advantage of this approach is that our pro-
posed feature extraction algorithm can be perfectly adapted
to different medical imaging devices. We will describe this
innovation in detail in the experimental introduction section.

We call the proposed novel portable ultrasound image
denoising network the Feature-guided Denoising Convo-
lutional Neural Network (FDCNN). Experimental results
demonstrate that our network outperforms existing denoising
methods. For the feature extraction part, compared to tradi-
tional methods, our proposed method can accurately detect
the important features contained in medical images. This
also verifies the superiority of our XAI-based approach over
traditional methods for medical image feature extraction. The
ultrasound image denoising problem can be solved much
better by our proposed method. At the same time, our method
has the potential to be adapted for other similar medical
devices.

The data used in our experiments is collected with the Clar-
ius handheld ultrasound device. We mainly acquire images of
the knuckles and heart regions of the human body. In addition
to our proposed novel method, we show the results of existing
methods for comparison.

II. REVIEW OF CLASSICAL FILTERING APPROACHES
In this section, we introduce several classical image noise
reduction algorithms. These algorithms use different filtering
methods to achieve denoising. Overall, different denoising
methods have different strengths and weaknesses in terms of
removal of different types of noise.

Median filtering is widely considered to be one of the most
classical and effective methods for image noise removal [12].
Previous work on noise removal from ultrasound images has
also introduced median filtering as a decent method [13].
Since the median value is not affected by the maximum
and minimum values of neighboring pixels, median filtering
has good performance in removing salt-and-pepper noise.
However, when the neighborhood of themedian filter is large,

the processed image has a strong smoothing effect, with edges
not retained properly. Thus, median filtering alone is not
sufficient to meet our needs.

Wavelet filtering takes advantage of time-frequency local-
ization and multi-resolution features. These two properties
ensure that the wavelet filter can remove noise while retaining
signal bursts and image edges. In previous work, Achim et al.
used a Bayesian estimator to create rules for noise removal
from ultrasound images [14]. However, the authors acknowl-
edge that the characteristics of noise vary across signal
detection. A perfect model to detect the noise component is
difficult to construct using simple statistical models.

Anisotropic diffusion filtering overcomes the drawbacks of
Gaussian blur [15]. Broadly speaking, anisotropic diffusion
filtering first treats the image as a heat field. As a result,
each pixel in the image can be seen as a heat flow. Based
on this assumption, if a neighborhood pixel differs signif-
icantly from the current pixel, it means that the neighbor-
hood pixel is likely to diffuse. Thus, this neighborhood pixel
is most likely a boundary. However, anisotropic diffusion
filtering has limitations in medical image processing. First,
the edge information of ultrasound images is often fuzzy. As a
result, the edge estimation for anisotropic diffusion filtering
is often inaccurate. Second, anisotropic diffusion filtering
further smoothes the ultrasound image. As a consequence,
important medical diagnostic information can be lost.

As a nonlinear filter, bilateral filtering [16] uses a weighted
average to represent the intensity of a pixel. Compared to
the ordinary Gaussian low-pass filter, which only takes into
account the effect of position on the center pixel, bilateral
filtering can achieve a smoothing effect with edge preser-
vation and noise reduction. In terms of ultrasound image
denoising, bilateral filtering preservesmore image edge infor-
mation than anisotropic diffusion filtering. However, for
important diagnostic information, the weighted average
method over-smoothes much of the important information.
This is unacceptable for medical images.

III. REVIEW OF DEEP LEARNING APPROACHES
In the state-of-the-art, many deep learning approaches have
been proposed to remove noise in images. Noise2Self [9]
is a typical method, which can be combined with existing
neural networks, such as DnCNN, to remove noise in images.
Without using the signal prior, the noise estimation and the
clean ground truth, it can still remove blind-level noise in
images by learning with a single image. The Noise2Self
method solves the limitation of clean ground truth and obtains
persuasive denoising results.

In addition to the Noise2Self approach, a fast and flexi-
ble denoising convolutional neural network (FFDNet) [10]
can also remove noise from images. Many existing CNN
methods have over-smoothing artifacts during the denoising
step, which can make resulting images blurry and result in
the loss of important features. Differing from these CNN
approaches, FFDNet is a non-blind model. It designs a tun-
able noise level map, which can control the trade-off between
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the noise removal performance and the detail preservation
performance. It also involves the down-sampling of sub-
images, which can guarantee a good trade-off between infer-
ence speed and denoising performance.

In addition to FFDNet, Denoising Convolutional Neural
Networks (DnCNN) [11] is another popular CNN architec-
ture for noise removal. DnCNN is modified from the VGG
network [18]. More specifically, the size of the convolutional
filters inDnCNN is set to 3×3 and pooling layers are removed
from the VGG architecture. DnCNN contains three different
types of layers: Conv + ReLU, Conv + BN + ReLU and
Conv. It takes the Adam algorithm [17] as the gradient-based
optimizer, which can guarantee the performance of residual
learning.

Similar to DnCNN, Image Restoration Convolutional Neu-
ral Network (IRCNN) [30] is also a CNN architecture for
noise removal. The network contains seven dilated convo-
lution layers, which can enlarge the receptive field. Batch
normalization and residual learning are used to accelerate
training, and smaller-size training images are used to solve
the problem caused by boundary artifacts. Similar to DnCNN,
the IRCNN model also takes the Adam algorithm as the
gradient-based optimizer.

IV. THE PROPOSED FEATURE-GUIDED DENOISING CNN
MODEL
We propose the Feature-guided Denoising Convolutional
Neural Networks (FDCNN) for ultrasound images. As part
of its novelty, FDCNN can remove noise hierarchically
according to the features with different degrees of impor-
tance. The most important features are retained during the
fusion step. The remaining features in the original image can
also be partly preserved after noise removal, resulting from
improvements to the neural network architecture. In partic-
ular, we exploit the potential of Guided Backpropagation in
feature extraction to retain features. In addition, we utilize
feature information to guide noise addition so that the denois-
ing network can achieve better feature preservation. More
details are given in the following subsections.

1) FEATURE DETECTION
In the feature extraction phase for ultrasound images,
we explore the potential of Guided Backpropagation, as an
XAI (Explainable AI) method, for feature extraction. In gen-
eral, XAI is used to explain the logic behind every decision
made by an AI algorithm [21]. This research can be broadly
divided into local interpretation and global interpretation. The
goal of the Guided Backpropagation algorithm is to map
the decision path of a neural network. Thus, the Guided
Backpropagation algorithm is a local interpretation method.
The Guided Backpropagation algorithm is widely used to
explain the classification task of neural networks. In the
classification task, key areas of evidence in a picture that
are considered for classification are marked out. We have
borrowed this special attribute of Guided Backpropagation.
That is, if Guided Backpropagation is used in amedical image

recovery network, key medical image regions will also be
marked during the recovery process. In a broader sense, these
marked regions are the feature information for the medical
images. With this approach, our feature extraction algorithm
outperforms almost all traditional feature extraction methods
on ultrasound images.

As opposed to normal backpropagation, Guided Back-
propagation limits backpropagation to gradients less than
zero [20]. Thus, when the Guided Backpropagation algorithm
is used, the partial derivative of the gradient for a particular
feature map is given by the following equation.

Rli =
(
f li > 0

)
·

(
Rl+1i > 0

)
· Rl+1i

For comparison, the corresponding formula for ordinary back
propagation is:

Rli =
(
f li > 0

)
· Rl+1i , where Rl+1i =

∂f out

∂f l+1i

The reason for limiting the return to gradients less than
0 is that the portion of the gradients smaller than 0 cor-
responds to the part that weakens the feature we want to
visualize; while our goal is to find the part of the image that
maximizes the activation of a feature. Thus, when the above
formula is used to pass ReLU, the maximally activated part
of the picture can be marked. Compared to traditional feature
extraction methods, the neural network feature map captures
both low-dimensional and high-dimensional information of
a picture. For low-level feature maps, the low-level neurons
mainly extract features like edges and stripes. Conversely,
for higher-level feature maps, these feature maps mainly
capture more abstract, high-dimensional features. By using
the Guided Backpropagation algorithm, we can maximize the
effect of each layer on the input image to describe features.

In this work, we apply Guided Backpropagation to a med-
ical image recovery network based on the U-net architec-
ture [22]. U-net does not have fully connected operations in
the network. On the left side of the network is a series of
downsampling operations consisting of convolution and Max
Pooling. These downsampling operations are also known as
contracting path. The contracting path consists of 4 blocks.
Each block uses three convolutions and one Max Pooling
to downsample. After each downsampling, the number of
feature maps is divided by two, resulting in a feature map
of size 32 × 32. The right side of the network is called
the expansive path, which also consists of 4 blocks. Before
passing through each block, the size of the Feature Map
is multiplied by two by deconvolution. The U-Net network
ensures the coherence and accuracy of feature map learning
by symmetric coding and decoding as well as propagation
path merging. In our experiments, we take the original image
as input. Then, the output of the network is compared to
the original image for loss calculation. This way, we can
train a medical image recovery network to perform well. The
reason for the training is to ensure that the Feature Map
learns the details in different dimensions that are needed to
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FIGURE 1. Feature detection results based on Guided BackPropagation:
(left) the feature mask layer; (right) the original image. We can see that
this feature detection method can avoid the undesirable effects of noise.

recover the image. Therefore, the Guided Backpropagation
algorithm can accurately capture the feature information of a
medical image. Figure 1 shows the results of feature detection
for some ultrasound images. We can clearly see that this
feature detection method can avoid the effect of noise. At the
same time, it preserves the most important part for medical
diagnostics.

Here, we explain why the direct application of traditional
image feature extraction algorithms, such as FAST (Fea-
tures from Accelerated Segment Test) [19] or ORB (Oriented
FAST and Rotated BRIEF) [23], is less effective. Specifi-
cally, two reasons account for this low effectiveness. First,
traditional feature extraction methods are less robust in noisy
regions. As shown in Figure 2, both the FAST and ORB
algorithms mark feature points in the noisy regions of an
ultrasound image. This problem is due to the fact that most
traditional algorithms only consider local information of the
image. For example, the FAST algorithm counts a discretized
Bresenham circle with a radius equal to 3 pixels. Then, spe-
cific rules are used to decide whether a pixel point is a feature
point or not. This undoubtedly leads to some noisy regions
with a large area or aggregation being incorrectly identified
as feature points. The failure of traditional feature extraction
algorithms on noisy ultrasound images also reminds us of the
need to devise a feature extraction algorithm that incorpo-
rates structure and global information on ultrasound images.
Based on this concept, we can maximize the robustness of
the algorithm in noisy regions. Second, the feature extraction
results of traditional methods are relatively fragmented and
independent. This goes against our subsequent denoising
framework. The feature extraction results will be used for
hierarchical noise addition and image fusion. These two steps
require that the feature regions of an ultrasound image are
clearly indicated. If the extraction results of a traditional
method are used directly, the denoising effect of the neural
network will not be improved. Instead, it will be burdened by
the addition of incorrect noise addition regions. Thus, using
traditional feature extraction methods actually reduces the
noise reduction effect. In the experimental results section,
we compare the denoising and fusion results for networks
trained by different feature extraction algorithms. These com-
parisons demonstrate the two issues mentioned above. Thus,
we propose a feature extraction algorithm for medical images

FIGURE 2. Results of different feature extraction algorithms.

based on Guided Backpropagation as one of the important
contributions of this experiment [20].

2) NOISE ADDITION
After the features are detected, we need to add Gaussian
noise to the original images, guided by the feature infor-
mation. We implement residual learning [24] so that the
dilated convolutional neural network can learn how to remove
noise following the differences between the original and the
noise-added images. The noise addition step is only involved
during training. For testing, FDCNN directly removes the
noise in the original ultrasound image without adding
noise.

In the state-of-the-art, to achieve residual learning, Gaus-
sian noise is randomly added to the original image. According
to residual learning, random noise could be added to the
important features of the images, which can mislead a neu-
ral network into mapping the features as noise. This effect
decreases the clarity of the image features and violates the
denoising goal for ultrasound images. This situation is not
obvious if the neural network is trained with a low noise level.
Once we train the network with high noise levels, the prob-
ability of adding noise to features will increase. This can
make the neural network learn more about feature removal
and make the denoised images fuzzy.

To resolve this problem, we propose the feature-guided
architecture to achieve noise removal while preserving image
features. Instead of adding noise to the entire image, we uti-
lize the detected features to avoid adding noise on the fea-
tures. Specifically, we generate random Gaussian noise with
an adaptive noise level depending on the size of the orig-
inal ultrasound image. Given the unknown noise level in
ultrasound images, we train the neural network with blind
noise levels; i.e., we generate noise within a moderate range
instead of a fixed level. Specifically, we train the neural
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FIGURE 3. The Denoising Network Architecture.

network with a noise level ranging from 15 to 50. Then,
we modify the noise array to remove noise that appear on
features, so that feature-guided noise can be obtained. After
adding feature-guided noise, we utilize the feature-guided
noisy images to train the neural network.

It is worth mentioning that the feature guiding step is
not only involved in the training and validation steps, it is
also utilized during testing. In the testing step, we first
use the pre-trained detector model to obtain the impor-
tant features and save the feature information in a feature
array. Then, we remove the noise in the original ultrasound
image to obtain the coarse denoised image. To integrate
the preserved features with the denoised image, we utilize
the Laplacian pyramid to obtain the final feature-guided
denoised image. We do not directly use trained models to
remove noise in the feature-removed ultrasound image, and
add the features back to the resulting image. We abandon
this easy approach because the intensity of the resulting
image is slightly decreased during noise removal on the
feature-removed image. This intensity-decreasing effect is
common for denoising techniques, which can make these
features stand out after adding the preserved features back to
an image. Therefore, we implement the Laplacian pyramid as
the image fusion technique, which makes the intensity transi-
tion natural. Following this approach, features with different
degrees of importance can be preserved. The most important
features are retained during the fusion step. The remaining
features in the original image can also be partly preserved
due to the feature-guided denoising model.

3) FDCNN ARCHITECTURE
The architecture of the FDCNN model is adapted from the
VGG network [18] and IRCNN [30]. Compared to the VGG
network, we remove max pooling and incorporate dilation in
our architecture. The dilated convolution is used to enlarge

the receptive field, which can guarantee a larger image region
for capturing context information. To make the architecture
work well for ultrasound image denoising, we set the depth
of the neural network to 17 and the size of convolution
filters to 3 × 3. The number of feature maps for each of the
middle layers is set to 64. In addition, batch normalization
and residual learning are used to accelerate training, and
smaller-size training images are used to solve the problem
caused by boundary artifacts. The architecture of the FDCNN
denoiser is shown in Fig. 3. In our proposed architecture,
FDCNN contains six different types of layers: 1D-Conv +
ReLU, 1D-Conv + BN + ReLU, 2D-Conv + BN + ReLU,
3D-conv + BN + ReLU, 4D-conv + BN + ReLU and 1D-
Conv. The first layer is a ReLU + Dilated Convolution with
a dilation factor of 1, where 64 feature maps are generated
by 64 filters with size 3 × 3 × 1. In this case, the receptive
field will be increased to 3 × 3. Following Conv, rectified
linear units (ReLU) are involved for non-linearity. To further
increase the receptive field, we also increase the dilation
factor for the following 5 layers. The second to sixth layers
are BN + ReLU + Dilated Convolution with the dilation
factors of 2, 3, 4, 3, and 2, respectively. Even though batch
normalization can boost the training speed [27], the training
time can still be increased significantly due to the increase
in the dilation factor. To control the overall training time,
we decrease the dilation factor to 1 from the seventh layer
with reservation of batch normalization and ReLU. The last
layer of the architecture is a Dilated Convolution with a
dilation factor of 1, where the output is reconstructed by a
3× 3× 64 filter.

4) IMAGE FUSION
Our proposed noise reduction network can accurately remove
the noise present in an image. However, the denoised image is
usually accompanied by a brightness change in the diagnostic

28276 VOLUME 9, 2021



G. Dong et al.: Feature-Guided CNN for Denoising Images From Portable Ultrasound Devices

FIGURE 4. In the denoised image, the joint of the hand has some feature
information clearly removed. Also, the brightness is increased compared
to the original image. In addition, there is a suspicious dashed line. These
are some troublesome issues. Our image fusion strategy solves these
problems perfectly.

information, an erroneous removal of some important diag-
nostic information, and an increase of unknown information.
Figure 4 shows some of the common problems resulting from
deep learning based noise reduction networks. For medical
images, these errors can be unacceptable. A small change can
result in a wrong diagnosis by a doctor. Based on this con-
sideration, we introduce image fusion for feature information
with noise reduced images. Zhang et al. devised a method to
enhance images through pyramidal fusion [25]. We adopted
their design concept to address the above-mentioned common
problems.

Figure 5 show the overall workflow of FDCNN. Among all
the steps, we focus on the image fusion process. First, the fea-
ture extraction image is not a binary map. The brightness of
each pixel actually represents the importance of the feature at
that location. However, for image fusion, wewant the features
to have a consistent level of importance. So, we binarized
the image first. All pixels greater than 0 are considered as
feature regions; this creates a feature mask layer. This mask
layer represents the regions that are used for fusion in the
original image. For these regions, we use Laplacian pyramids
to fuse them into the noise reduced image. The result is
an image that preserves diagnostic features while removing
noise.

We briefly introduce the Laplacian pyramid fusion algo-
rithm [26]. First, each image involved in the fusion is decom-
posed into a multi-scale pyramid. The low-resolution images
are in the upper layers, while the high-resolution images
are in the lower layers. A synthetic pyramid is obtained by
fusing the pyramids of all the images at the correspond-
ing layers with certain rules. The synthetic pyramid is then
reconstructed according to the inverse process of pyramid

FIGURE 5. This figure explains the overall workflow of FDCNN. First,
the original image is extracted with a feature mask layer via a U-net
network based on Guided Backpropagation. Then, we add noise to the
featureless areas using the mask layer. After that, we feed the image into
the noise reduction network and perform residual learning. Then,
we merge the feature information and the denoised images by a
Laplacian fusion algorithm [26]. Finally, our result can remove noise while
preserving feature information in an ultrasound image.

generation to obtain the fusion pyramid. For the Laplacian
pyramid, we first construct a Gaussian pyramid. Constructing
a Gaussian pyramid requires first blurring the image of the
next layer with a Gaussian blur. Then, even rows and columns
of the blurred image are removed to reduce the image size. For
the Laplacian pyramid, the image at each layer is the image
of the Gaussian pyramid at the same layer minus the previous
layer. Then, the image for each layer will also be Gaus-
sian blurred to obtain the final result. The formula is given
below.

Li = Gi − UP (Gi+1)⊗ G5×5
After the above step, we pass in the mask layer. We sum the
two images of the Laplacian pyramid according to the mask
layer. The result of the summation is a new pyramid. At the
same time, we apply the same operation to the Gaussian
pyramids of the two images. Each layer of the new pyramid
is then up-sampled and summed with the previous layer. The
final result is the Laplacian Pyramid Fusion image. Because
Gaussian blur is used in the process of building the pyramids,
the edges of the fusion are smooth.

V. EXPERIMENTAL RESULTS
In this section, we provide details on how we collect and
arrange our data to work on the proposed architecture.
Furthermore, we demonstrate the improvements attained by
the proposed approach on ultrasound images by comparing
our approach to the performance of other networks driven
by different feature extraction algorithms. To illustrate the
denoising performance, we also compare with five clas-
sical filtering methods; namely, median filter, wavelet fil-
ter, non-local means filter, anisotropic diffusion filter and
bilateral filter. Deep learning approaches, such as DnCNN,
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IRCNN, Noise2Self and FFDNet, are also included in
the comparisons. To evaluate the denoising performance,
we consider both peak signal to noise ratio (PSNR) [28]
and structural similarity index (SSIM) [29] for objective
evaluation.

A. EXPERIMENTAL SETTINGS
1) DATA
Given the lack of public ultrasound image datasets, we use
our Clarius handheld ultrasound device to collect ultrasound
images for training and testing. Our data focuses on two
parts of the human body: knuckles and the heart. Our data
includes 500 ultrasound images, which includes 400 ultra-
sound images of size 180 × 180 for training, 46 ultrasound
images of size 321 × 481 for validation and 54 ultrasound
images of size 440× 380 for testing.

2) ARRANGEMENT
For the experiments, we use separate datasets for train-
ing, validation and testing steps. For the filtering methods,
we involve the training and validation sets to determine the
parameter chosen, and use the testing set to test the denoising
performance of the five filtering methods. For existing deep
learning methods and our proposed method, we use three
datasets separately for training, validation and testing. Fol-
lowing this arrangement, all the approaches are tested on the
same testing set so that the evaluation can be quantitative and
qualitative.

B. EVALUATION
In this section, we demonstrate the effectiveness of our
approach in improving the quality of ultrasound images cap-
tured by our handheld device. In order to test the denois-
ing performance, state-of-the-art approaches add Gaussian
noise to the original clean image and test the denoising
performance on the noise-corrupted image. However, this
testing method can only prove the denoising performance on
noise-corrupted images instead of real noisy images. In our
experiments, we tested our proposed approach on the original
ultrasound images. These original ultrasound images are real
noisy images directly captured by the device.We calculate the
PSNR and SSIM values for the denoised and original images
to evaluate the denoising performance. Also, we perform a
user study to demonstrate performance based on subjective
human evaluations.

1) IMAGE ANALYSIS
In order to illustrate the denoising performance of our
proposed method, we first test our feature-guided architec-
ture with two other feature extraction methods. In partic-
ular, we compare the performance of FDCNN driven by
Guided-BP with networks driven by FAST and ORB. The
denoising results of FDCNN driven by different feature
extraction algorithms are shown in Fig. 6 and Table. 1. To
evaluate the denoising performance on ultrasound images,

TABLE 1. PSNR and SSIM results of FDCNN driven by different feature
extraction algorithms.

FIGURE 6. Denoising results of FDCNN driven by different feature
extraction algorithms.

we need to pay attention to the noise removal performance
and feature preservation in the ultrasound images. From
Fig. 6, we can see that our proposed architecture (driven by
Guided-BP) can successfully remove the noise appearing in
the magnified dark area. In addition, the features are clear
without over-smoothing artifacts. Compared to our proposed
architecture, the networks driven by FAST and ORB cannot
achieve promising results. From Fig. 6, we can find that the
results of ORB and FAST generate negative artifacts near the
bottom left corner and the intensity of the important features
are decreased compared to the original image. The reason
for these artifacts is that ORB and FAST can only detect
limited features. When we utilize these features to guide
the noise addition, the possibility that the noise is generated
on the undetected features is still high. This situation can
mislead the network intomapping the features as noise, which
can result in over-smoothing artifacts and lower intensity of
features.

In order to demonstrate the performance of our proposed
method, we also compare our FDCNN with five traditional
filtering methods and the four deep learning methods men-
tioned in Section 2. The comparison results can be seen
in Fig. 7. From Fig. 7 we can see that FDCNN can pre-
serve features quite well. The feature details are preserved,
which are very similar to the original image. We can also
see that FDCNN successfully removes noise in the magni-
fied dark area. Compared to FDCNN, DnCNN makes the
resulting images a little blurred, which can result in loss
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FIGURE 7. Denoising results for different methods: (a) Original image; (b) FDCNN with fusion; (c) FDCNN without fusion; (d) DnCNN; (e) IRCNN;
(f) Noise2Self; (g) FFDNet; (h) Median Filter; (i) Wavelet Filter; (j) Anisotropic Diffusion Filter; (k) Bilateral Filter; and (l) Non-local Means Filter.

TABLE 2. PSNR and SSIM results of different methods on testing set.

TABLE 3. Subjective user evaluation results for different methods.

of details. Compared to DnCNN, IRCNN can preserve the
image features better and reduce noise in the dark target
area. Compared to our proposed architecture, Noise2Self and
FFDNet can also remove the noise quite well. However, these
two approaches have over-smoothing artifacts on ultrasound
images.

Compared to the filtering methods, our proposed archi-
tecture achieves much better denoising performance. From
Fig. 7 we can see that the median filter and anisotropic
diffusion filter cannot achieve good denoising performance
on ultrasound images. Their denoised results are quite blurry,
making it difficult to even recognize detailed textures. Com-
pared to themedian and anisotropic diffusion filters, the result
from the wavelet filter is much clearer, with a legible bound-
ary. However, the wavelet filter also removes considerable
feature information near the boundary, which runs counter to
the goal of feature preservation. Compared to other filtering
methods, the bilateral filter performs the best among the
four filtering methods, and provides acceptable denoising
performance. From Fig. 7 we can see that the noise in the
dark area is reduced. Even if the image feature in the demo
image is a little blurry, it is still clearer than the median and
anisotropic diffusion filters. Non-local means filter achieves
similar denoising performance. The result is slightly blurry
compared to the bilateral filter, but it is still better than the
median filter. Compared to the five filtering methods and four

deep learning methods, our proposed approach has superior
denoising performance based on an analysis of the results.

2) STATISTICAL ANALYSIS
In addition to analyzing the result images, we also eval-
uate the denoising performance by conducting a statisti-
cal analysis. From Table 1 we can see that our FDCNN
driven by Guided-BP can achieve better denoising perfor-
mance than the networks driven by ORB and FAST. From
Table 2, we can see that our proposed FDCNN also has top
rankings. Specifically, performance of FDCNN with fusion
slightly exceeds FDCNNwithout fusion. In addition, DnCNN
and IRCNN also provide reliable results with SSIM over
0.9 and PSNR over 33. The Noise2Self method returns
higher SSIM than IRCNN with lower PSNR value. FFD-
Net has opposite performance, producing higher PSNR and
lower SSIM. For the filtering methods, Bilateral filter and
non-local means filter perform best with PSNR values around
34 and SSIM values around 0.8. From the above statisti-
cal analysis, we can see that the proposed feature-guided
denoising CNN architectures can achieve excellent denoising
performance.

3) SUBJECTIVE USER EVALUATION
In addition to the PSNR and SSIM metrics, we also intro-
duce a study based on human subjective evaluation. For
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this evaluation, we select 10 participants. Five of them are
from the University of Alberta’s Department of Computing
Science and have a background in denoising techniques.
The remaining five participants are from their families and
have no experience with denoising techniques. We present
the results of 11 deep learning and traditional filter-based
approaches to the participants without telling them the exact
method. After viewing all the test images, they are asked
to evaluate the results for each method. During the eval-
uation, we allow subjects to compare with the original
image. The comparison scores lie in a range of 0 to 10,
where 0 is the worst and 10 is the best. Table 3 shows
the results of this user evaluation. Clearly, we can see that
FDCNN achieves the leading score without fusing the feature
images. After fusion, the final results beat all the methods we
tested.

VI. CONCLUSION
We presented a feature-preserving denoising approach for
portable ultrasound images. In our algorithm, we first devel-
oped a novel feature extraction technique for medical images.
This feature extraction technique adapted ideas from inter-
pretable artificial intelligence and the U-net image recon-
struction network. Benefiting from the application of guided
back-propagation path tracking, we detected the specific
location of the features accurately. Following this, we utilized
an optimized neural network for strong denoising. We then
combined the previously obtained feature images with the
Laplacian Pyramid Fusion method. Based on the above meth-
ods, we were able to retain the original medical features
as much as possible, while strongly denoising the images.
At the same time, Laplacian Pyramid Fusion also avoids the
problem of sharp edges that can occur during fusion. In the
end, we can conclude that noise from portable ultrasound
images can be almost perfectly removed by our method. Our
research can allow portable ultrasound images to approach
medical diagnostic capabilities as large ultrasound devices in
medical labs and hospitals.
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