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ABSTRACT Pitting corrosion of rotating machinery is one of the most common faults in industrial engi-
neering. The convolutional neural network (CNN) is increasingly applied to the fault diagnosis. However,
the conventional CNN method will reduce the feature dimension of the collected signal and cause the loss
of information during the pooling process. In this paper, a new method based on dilated CNN combined
with spatial dropout (DCSD) is proposed to diagnose the early faults of rotating machinery. By filling the
convolution kernel, the DCSD method can increase the receptive field of the CNN without increasing the
number of parameters while retaining more features of the raw vibration signal of the rotating machine.
To avoid the dropout method eliminates the adjacent elements with a strong correlation, the Spatial Dropout
method is adopted to reduce the overfitting problem of deep networks. The early pitting gears experiment
was designed to verify the DCSD method in this paper. The raw vibration signal data of 6 different healthy
states were collected to verify the effectiveness of the method. The experimental results show that the DCSD
method proposed can effectively distinguish the different early gears pitting, and the diagnostic accuracy is
better than other popular deep learning methods.

INDEX TERMS Deep learning, dilated convolutional neural network, fault diagnosis, rotating machinery,
spatial dropout.

I. INTRODUCTION
Fatigue damage is one of themost common faults of industrial
engineering [1]. Because the vibration signal features of early
pitting fault of gear are weak, the traditional fault diagnosis
method is challenging to find in time. Early fault diagnosis
of gear has always been a great challenge. Since the machine
has no noticeable symptoms before fatigue damage occurs,
it will have disastrous consequences for human society and
the ecological environment.Major disasters caused by fatigue
fracture of mechanical components are frequent in the world.
For example, in the disaster of Sayano-Shushenskaya Dam,
80% of the screw piles had fractured before the accident, but
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they were overlooked. It was a lack of awareness of early
faults that eventually led to the world’s worst hydropower
station collapse [2]. It is precisely because human society is
eager to reduce catastrophic accidents and economic losses
that the research on fatigue diagnosis and residual life pre-
diction has long been widely concerned by academia and
industry [3]. Despite this, the research on fatigue diagnosis
and residual life prediction still cannot meet the requirements
of high accuracy and high reliability in industrial applica-
tions. The frequent occurrence of disasters indicates that fault
diagnosis and residual life prediction are still not mature in
practical applications in the industry.

At present, most of the techniques and theories used in
fault detection of rotating machinery are confined to machine
learning methods. A branch of fault detection is the use
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of enhanced or estimated noise to improve signal-to-noise
ratio (SNR) and extract fault signatures [4]. Yuan et al. [5]
used two noise estimation techniques and strategies for dif-
ferent SNRs to detect mechanical faults. Hanachi et al. [6]
applied the Gas Turbine Engine developed to diagnose four
kinds of faults that gradually deteriorate to different degrees.
The results showed that compared with the previously fault
parameter estimation scheme, the diagnostic accuracy was
improved by ten times. In terms of denoising, Gan et al. [7]
proposed a multiple-domain manifold method and singular
value decomposition (SVD). The SVD is used to calculate the
singular value in the reconstructed space and the improved
singular value. Cerrada et al. [8] established a robust mul-
tistage fault diagnosis system for spur gears by selecting
the optimal state parameter set in the time, frequency, and
time-frequency domains extracted from vibration signals.
Feature selection is still an essential aspect of machine
learning-based fault diagnosis to achieve an excellent per-
formance. However, manually selecting features requires not
only a lot of prior knowledge but also consumes a lot of
time and energy. Conventional methods are labor-intensive
because they often rely on handcrafted features that require
expertise. As an emerging field in industrial application and
an effective solution for fault identification, artificial intelli-
gence technology has attracted more and more attention from
academia and industry [9].

The establishment of the Industrial Internet makes
real-time online mechanical fault diagnosis become a vital
component. Some new detection techniques have also been
used in the fault detection in mechanical components, such as
acoustic emission [10] and technology based on piezoelectric
elements and active Lamb waves [11]. Elforjani et al. [12]
connected the acoustic emission signal and corresponding
natural wear correlation of the slow bearing. The disadvan-
tage of using piezoelectric elements and active Lamb waves
for healthmonitoring of mechanical components is that active
Lamb waves can only be generated by providing a voltage
power supply. Hence, its application in the health monitoring
of complex mechanical structural components is limited [13].

In recent years, the research and application of health
monitoring methods based on deep learning [14] are attract-
ing increasing attention in the coming era of big data
in the industry [15]. Deep learning models include deep
belief network [16], autoencoder [17], restricted Boltzmann
machine [18], recurrent neural network (RNN) [19], con-
volutional neural network (CNN) [20], etc. For different
data types, different network models need to be selected to
represent the data distribution. For example, for text data,
RNN and CNN are usually used. Shao et al. [21] proposed
a new fault diagnosis framework that used infrared thermal
image carried out fault diagnosis for rotor-bearing under
variable working conditions. Improved transmission CNN
solved the problem of limited available training data in the
target domain. He et al. [22] proposed an ensemble transfer
CNNs driven by multi-channel signals to carry out fault diag-
nosis of rotating machinery under cross-working conditions.

Zhao et al. [23] proposed a local feature-based gated recurrent
unit (GRU) network. It is a hybrid approach that combines
handcrafted functional design with automated learning for
machine health monitoring. Long et al. [24] combined a
competitive swarm optimization algorithmwith a local search
for intelligent diagnosis of mechanical faults. This method
can reliably identify different faults. He et al. [25] proposed
a method that uses the Short-Time Fourier Transform to
preprocess sensor signals. The experimental results show that
the method can provide better diagnostic performance even at
a relatively low speed. A method proposed by Li et al. [26]
used the one-dimensional separable convolution with a resid-
ual connection network to classify gear faults under mixed
conditions. In addition, autoencoders and support vector
machines are applied to fault diagnosis of multi-joint indus-
trial robots [27]. By extracting the bottom features layer
by layer and gradually aggrading them to abstract features.
Although pooling in CNN can increase the receptive field
and improve the performance of the network, downsampling
will cause the loss of information of the input features. The
maximum pooling is to divide the input signal into several
sub-area and output the maximum value for each sub-area,
and all other values will be discarded. For the early fault
diagnosis, due to the weak vibration signal features of the
fault, all features except the maximum value are abandoned
through maximum pooling, which is not beneficial to the
early diagnosis of weak fault signals of rotating machinery.
Therefore, pooling operation is not the best method in the
early fault diagnosis of rotating machinery.

To solve the problems above, this paper proposes a
new method, Dilated CNN combined with spatial dropout
(DCSD), for early fault diagnosis of rotating machinery,
which uses a dilated CNN instead of convolution and pooling.
Compared with ordinary convolution, dilated convolution
can increase the receptive field without increasing network
parameters or decreasing network dimensions. At the same
time, the spatial dropout method is adopted to reduce the
overfitting problem of the deep network to avoid the prob-
lem that the conventional dropout method eliminates the
adjacent features with a strong correlation. Compared with
traditional dropout, which randomly sets some elements to
zero, spatial dropout randomly sets some areas to zero.
This dropout method has been proved to be effective in
early fault diagnosis of rotating machinery. The highlights
of this paper are summarized as follows: Compared with the
conventional one-dimensional CNN, the early fault diagno-
sis method for rotating machinery proposed increases the
receptive field. It maintains excellent diagnostic performance
without increasing network parameters or reducing network
dimensions.

The rest of this paper is organized as follows. The pro-
posed DCSD method is described in detail in Section II.
In Section III, a gearbox test rig was designed to verify the
proposed method. In Section IV, the test results are analyzed
and discussed, and the effectiveness of the proposed early
fault diagnosis method for rotating machinery is validated by
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FIGURE 1. Flowchart of the proposed DCSD model.

comparing it with other methods. Finally, the conclusion was
drawn in Section V.

II. THE METHOD
The environmental noise of rotating machinery is extensive
and complex, and the classical CNN is difficult to meet
the industrial needs for early fault diagnosis. In this paper,
the dilated CNN and spatial dropout are used for the early
fault diagnosis of rotating machinery. Based on the expan-
sion of the convolution kernel, a novel module with a larger
receptive field is proposed. Besides, a depth neural network
based on spatial dropout and dilated convolution are con-
structed. The flowchart of the DCSD method for the early
fault diagnosis of rotating machinery is shown in Fig. 1. The
raw vibration signal of rotating machinery is taken as input.
The feature extraction module is composed of 1D dilated
CNNs and 1D spatial dropouts. The collected features are
input into the classification module Softmax for early fault
diagnosis of rotating machinery.

A. DILATED CONVOLUTIONAL NEURAL NETWORKS
In the early fault diagnosis of rotating machinery, the more
information extracted from the inputs, the more likely the raw
vibration signals will be correctly classified. The receptive
field is feeling scope size relative to the original input signal.
The size of the receptive field represents how many features
the extracted. The larger the receptive field is, the more infor-
mation it contains. Therefore, more features can be obtained
by increasing the receptive field of neurons in CNN. If the
receptive field contains the early fault diagnosis characteris-
tics, it is easier to identify the early fault correctly.

However, if only consider increasing the receptive field
and performing excessive pooling operations, the signal will
lose too many features. In the early fault diagnosis of rotating
machinery, CNN will pass through the pooling layer many
times. Each pooling layer is downsampling, and the recep-
tive field of neuron nodes will be increased by reducing the
size of the original vibration signal [28]. Assuming that the

pooling step of each pooling layer is 2, each time through
the pooling layer, the output feature becomes 1/2 of the input
feature. The input signal is continuously pooled five times,
and the final output becomes 1/32 of the input signal. In this
process, the output features become very sparse, which is not
conducive to the early fault diagnosis of rotating machinery.
Therefore, a method is needed to make the original vibra-
tion signal denser and the receptive field larger. The dilated
convolution just meets these two requirements. It can have a
relatively sizeable receptive field without downsampling.

The dilated convolution kernel is to inject holes into the
standard convolution kernel to increase the receptive field.
The weight of the newly added convolution point is set as 0,
and dilated convolution kernels are obtained. Fig. 2 shows
the way to fill the convolution kernel. The size of the original
convolution kernel is 3×3. When the dilation rate is 2, a hole
is inserted between the elements of the convolution kernel to
obtain a dilated convolution kernel with a size of 5× 5.

FIGURE 2. Filling principle of the dilated convolution kernel (on the left
is the conventional convolution kernel, right is the Dilated convolution
kernel).

For a convolution kernel with a size of k × k , assuming
that the size of the convolution kernel after inserting the hole
is kd× kd , r on behalf of dilation rate, then

kd = k + (k − 1) (r − 1) (1)

A schematic diagram of dilated convolution quoted from
Princeton University Fisher Yu et al. [29] was shown in Fig 3.
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FIGURE 3. The receptive field of convolution kernel (on the left is the
conventional CNN operation, right is the dilated CNN operation).

The red dot in the figure represents the coordinates covered
by the convolution kernel, and the blue part represents the
convolution operation. In conventional CNN, the parameters
in a convolution kernel will be multiplied and added with the
values on the feature map in a continuous range, as shown
in the left figure. Fig. 3(a) is a standard 3 × 3 convolution
operation. That is, the dilation rate is 1, and the receptive field
is a 3× 3 area. Fig. 3(b) is a 3× 3 conventional convolution
kernel connected in series 3 × 3 dilated convolution kernel,
each red dot will cover a 3 × 3 area, so the overall area is
nine 3 × 3 convolution kernels with a step size 2, forming a
7×7 area. At this time, the convolution kernel can be regarded
as a kernel size of 7× 7. However, there are only nine useful
convolutions. It can be seen that the receptive field expands to
7× 7 when the calculated amount unchanged. The light blue
blocks in the figure have only undergone one convolution
operation, and the darker blue blocks have undergone mul-
tiple convolution operations. By analogy, when the distance
between adjacent weights is 4, it is equivalent to nine 7 × 7
areas spread out by step of 4 to form a 15×15 area. Compared
with the number of parameters of the standard convolution,
the number of parameters of the dilated convolution has not
increased. Still, the receptive field is significantly larger than
that of the standard convolution

Fig. 4 shows a schematic diagram of an ordinary convo-
lution operation and a dilated convolution operation. Take an
input feature map with a size of 7×7 and a convolution kernel
with 3× 3 as an example. Fig. 4 (a) shows an ordinary CNN
operation. Fig. 4 (b) shows a dilated CNN operation with a

FIGURE 4. Diagram of conventional CNN and dilated CNN operation.

dilated rate is 2. Intuitively, the latter is the same thing as a
5 × 5 convolution kernel. The larger the convolution kernel,
the larger the receptive field of the network, so the dilated
convolution can use a smaller convolution kernel to obtain a
larger receptive field.

In the basic CNN structure, when the convolution step is
fixed at 1, the receptive field recursion formula of ordinary
convolution is shown as follows:

Fn = Fn−1 + Kn − 1 (2)

where Fn is the length of the receptive field of the back layer,
Fn−1 is that of the front layer, and Kn is the length of the
convolution kernel between the front and rear layers. For
convolution with space, its receptive field recurrence formula
is as follows:

Fn = Fn−1 + Dn × (Kn − 1) (3)

whereDn represents the dilation rate between the convolution
of the front and the back layers, and the other terms are the
same as (1). According to the above method, the most direct
ways to expand the receptive field include increasing the
depth of the network, increasing the step size parameter of the
convolution kernel, and increasing the size of the convolution
kernel.

The size of the output feature map of the dilated convolu-
tion is:

o =
W + 2p− k − (k − 1)× (r − 1)

s
(4)

where k represents the size of the original convolution kernel,
r represents the expansion rate of the dilated convolution
relative to the original convolution, o represents the size of
the feature output by the dilated convolution, W represents
the size of the feature input, p represents the data padding
size, and s represents the slide step of the convolution.

It can be seen from the above process that the dilated con-
volution can increase the receptive field by injecting holes in
the convolution kernel and ensure that the calculation amount
of the network does not increase significantly. This method
overcomes the problems of feature detail information, spatial
information loss, and small target information fault caused by
sampling.

For a one-dimensional input signal x[i], a filter w[k] with
length k and expansion coefficient l is used for dilated con-
volution operation, which can be expressed as (5).

y [i] =
∑k

k=1
x [i+ s× k]w [k] (5)

Conventional CNN can be regarded as a dilated convolution
with a dilation rate is 1. When the dilation rate is greater
than 1, the effect of increasing the receptive field can be
achieved, as shown in Fig. 5. In Fig. 5, (a) is the conventional
CNN with k = 3, and the step size is 2. At this time,
the receptive field size of the latter layer of the network is 3;
(b) is the conventional CNNwith k = 3, and the step size is 1;
(c) is the dilated CNN with k = 3, the step size is 1, and the
dilation rate is 2. Although the size of the convolution kernel
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FIGURE 5. 1D dilated convolution receptive field.

in (c) is 3, every other point is sampled, and the receptive field
size is 5. The content in the parentheses after the output node
is the name of the input node, and the hollow circle represents
the node with zero paddings.

B. SPATIAL DROPOUT
The dropout operation randomly zeroes some elements and
performs a scale transformation for the non-zero parts [30].
The magnitude of the scale conversion is related to the drop
rate. The specific process can be understood as follows: After
the zeroing operation, the zero part can be considered to be
discarded. Therefore, the model is forced to use the remain-
ing information to fit the target. However, each dropout is
random, so the model is forced to learn with a relatively
small number of features, each time the learned features
are different. Each feature should contribute to the model’s
prediction, rather than focusing on partial features, leading to
overfitting.

Spatial dropout is a novel dropout method proposed by
Tompson et al. [31]. Spatial dropout is similar to dropout,
but it disconnects the entire feature map instead of a single
feature. If there is a strong correlation between adjacent fea-
tures, ordinary dropout cannot normalize its output. Spatial
dropout can help improve independence between features.
When using dropout technology, it can be found that normal
dropout randomly and independently sets some elements to
zero, while spatial dropout randomly sets all to zero for a
specific dimension, as shown in Fig. 6:

C. RELU ACTIVATION FUNCTIONS
The Rectified Linear Unit (ReLU) activation function was
first proposed by Hinton et al. [32]. It is a more straightfor-

FIGURE 6. Schematic diagram of conventional dropout and spatial
dropout.

ward function than the Sigmoid function [33] and can effec-
tively avoid the problem of gradient disappearance. In this
paper, the ReLU activation function was used as the fea-
ture map of the early pitting signal of rotating machinery.
Compared with the Sigmoid function and Tanh function [34],
ReLU has a small amount of calculation, high computational
efficiency, and can alleviate the problem of gradient disap-
pearance. At the same time, ReLU has the characteristics
of sparseness and alleviates the problem of overfitting [35].
Therefore, it has gradually replaced the Sigmoid activation
function and has become the most widely used activation
function in the early fault diagnosis tasks of rotating machin-
ery. The mathematical expression of the ReLU function and
its derivative function expression is:

f (u) = max (0, u) (6)

f ′ (u) =

{
0, u < 0
1, u > 0

(7)

The ReLU function and its derivative function image are
shown in Fig. 7. In Fig. 7(a), the abscissa u represents the
output of the previous network, and the ordinate f(u) denotes
the output of the ReLU network. When the input u >0,
the output of the activation function is equal to the input;
otherwise, the output value is 0. The image of the derivative
of the ReLU function is shown in Fig. 7(b). When the input is
negative, the derivative of the ReLU function is 0; when the
input is positive, the derivative of the ReLU function is 1, and
no gradient disappears phenomenon.

FIGURE 7. ReLU function and its derivative image.

III. GEAR TEST EXPERIMENTS
To verify the DCSD method proposed, a gear early pitting
experiment was designed. As shown in Fig. 8, the experi-
mental equipment is mainly composed of two 45kW motors,
a gearbox, and a cooling device. The raw vibration data
is transferred to the notebook computer through the data
acquisition card through the accelerometer installed on the
gearbox. The vibration signal sampling rate is 10240Hz; the
sampling time is 3s; the data were collected independently
5 times. The speed is 1800rpm, and the load is 50Nm.

The experiments used six different healthy state gears.
As shown in Fig. 9, the gear tooth of the healthy state 1 was
not pitting; the intermediate gear tooth in the healthy state
2 have about 10% pitting; The intermediate gear tooth in the
health state 3 have about 30% pitting; the intermediate gear
tooth in the health state 4 has about 50% pitting. All the gear
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FIGURE 8. Photo of the test bench.

FIGURE 9. Photos of 6 kinds of different health state gears.

teeth were normal except the intermediate tooth in the healthy
states 2, 3, and 4. The intermediate gear tooth in the health
state 5 has about 50% pitting, and two adjacent gear teeth
have 10% pitting, respectively. The intermediate gear teeth in
the healthy state 6 gear has about 50% pitting; the adjacent
upper gear tooth has 30% pitting, and the adjacent lower gear
tooth has 10% pitting.

The raw gears vibration signals in 6 kinds of health states
are shown in Fig. 10. The gears in each health state con-
tinuously extract 10,000 points for drawing. The abscissa is
the number of the extracted points, and the ordinate is the
amplitude. It can be seen from Fig. 10 that the amplitude
range of the 6 kinds of health states is between -4 m/s2 and
4 m/s2, and the average value is around 0. The amplitude
of gears in health state 1 is slightly larger than that of gears

in other health states, and the amplitude of gears in health
state 6 is slightly smaller than that of gears in other health
states. It is difficult to distinguish the image of the raw
vibration signal in different health states with the naked eye.
Conventional machine learning methods are also difficult to
distinguish such close vibration signals effectively.

The frequency histogram of the amplitude of the raw
gears vibration signal in six different health states is shown
in Fig. 11, in which 10,000 points were extracted for drawing.
From the figure, all of the frequency histograms are following
the normal distribution. The largest number of frequency
is around 600, and the smallest frequency part is around
±3.5. The raw vibration signals of different health states in
this experiment are very close, and the signal is not well
partitioned.
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FIGURE 10. Raw vibration signal of gears in 6 kinds of health states.

FIGURE 11. The frequency histogram of the amplitude of the raw
vibration signal in 6 health states.

In order to adapt to the neural network sensitive interval,
the raw vibration signal was contracted to between 0 and 1.
The vibration signal box plot of the 5 data sets in 6 different
health states is shown in Fig. 12. It can be seen from the
figure that all the data set median concentrate between 0.4 and
0.5, which is relatively stable. The upper quartile is around
0.5, and the lower quartile is around 0.35. The positions
of the farthest points of health state 1, 2, and 6 fluctuate
considerably, ranging from 0.7-0.8 and 0.1-0.2, respectively.
The positions of the farthest points of the gears of other health
states are relatively stable, at nearby 0.25 and 0.7, respec-
tively. The abnormal value in health state 1 is relatively more,
and that in the other five health states are controlled in single
digits. In general, the data of this verification experiment is
relatively clean. Although there are outliers, the number of
outliers accounts for a small proportion. The data can be used
to validate the DCSD method presented in this paper.

In this validation experiment, six kinds of gear early pitting
faults were accurately distinguished. Five data sets of gear
vibration signals for each healthy state, including four sets,
are used for training, and one set for testing. The network uses

three dilated convolutional layers and two spatial dropout lay-
ers stacked. Dilated convolution can significantly increase the
receptive field and retain the detailed information of the raw
vibration signal. Finally, a dense layer and a softmax layer
are connected, and the neural network output is normalized
to the probability distribution of (0, 1) through the softmax
classifier. Add Batch Normalization [36] layers after each
convolutional layer to normalize the output data to a standard
normal distribution. The hyperparameters of the network are
as follows: For the dilated convolution, the channel is 32, 64,
and 128; kernel size is 9; strides is 1; the activation function is
ReLU; dilation rate is 2; bias initializer is random normal, and
the standard deviation is 0.01. spatial dropout takes 0.5. The
optimization method adopts SGD. The initial learning rate is
set to 0.4. Network training was done through an Alienware
laptop, the software used Python, and the Tensorflow frame-
work was used for training. The main configuration of the
computer is as follows: Intel Core i7-9750H, 32 GB RAM,
NVMe 512GB solid-state drive, and Nvidia GeForce GTX
1660 Ti.

IV. RESULTS AND DISCUSSIONS
The accuracy curves of the training set and the validation set
of the method proposed in this paper are shown in Fig. 13.
It can be seen from the figure that the accuracy curve of the
training set rises faster in the initial stage. The accuracy curve
of the training set is higher than that of the validation set. The
two curves graduallymerged from about the 40th epoch. They
overlapped after about the 60th epoch. It can be seen from the
results that the method proposed in this paper can effectively
judge the early pitting faults of gears.

The loss curves of the training set and validation set of the
method proposed in this paper are shown in Fig. 14. From
the figure, it can be seen that the loss curve of the training
set decreases faster in the initial stage, and the loss curve of
the training set is lower than that of the validation set. For the
loss curve, the two curves gradually merge from about the
40th epoch and overlap after about the 60th epoch. It can be
seen from the results that the method proposed in this paper
has a good effect on the diagnosis of early gear pitting fault
diagnosis.

The confusion matrix of the DCSD method proposed in
this paper for six different health states is shown in Fig. 15.
It can be seen from the figure that for the early gear pitting
in health states 3 and 6, the method proposed to predict the
accuracy rate reached 100%. And 1% of early gear pitting
with health states 1 and 5 were misjudged as health states
2 and 4, respectively. 2% of the early gear pitting with health
states of 2 and 4 were misjudged as health states of 3 and 6,
respectively. From Fig. 10-12, the early pitting signals of
different healthy states are very similar, and the influence
of environmental noise may cause the neural network to
misjudge. But the overall classification effect for early gear
pitting is still excellent.

It is comparing to the DCSD method proposed in this
paper with other classic deep learning methods. Performing
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FIGURE 12. The raw vibration signal box plot of the 5 data sets in 6 different health states.

FIGURE 13. The accuracy curves of the training set and validation set of
the method proposed.

FIGURE 14. The loss curves of the training set and validation set of the
method proposed.

on the same gear early fault diagnosis data, and the result
is shown in Fig. 16. The parameters for the methods shown
in Fig. 16 are listed in Table 1. The DCSD method proposed
in this paper has the best effect on the early gears pitting
fault diagnosis, and the diagnosis accuracy rate exceeds 99%.

FIGURE 15. The confusion matrix of six gears with different health states.

The stability of the DCSD method is excellent. The standard
deviation of the method proposed is within ±0.5. Although
the other methods have achieved relatively good results,
the accuracy rate was all above 80%, but there is still a gap
with the DCSD method. It can be seen from the results that
the method proposed in this paper is very effective for early
gear pitting fault diagnosis.

For each type of gear pitting healthy states, 100 points are
selected for t-SNE visualization. The results of the visualiza-
tion are shown in Fig. 17. The six different gear health states
have relatively clear boundaries on the three-dimensional
(3D) coordinate map. Although the boundary between a few
gears is not particularly bright, most of the raw vibration
signals can be effectively classified. The method proposed
in this paper is useful for the early pitting fault diagnosis of
rotating machinery.
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TABLE 1. The parameters of the DCSD method and that of the other methods.

FIGURE 16. Comparison of the accuracy of the DCSD method with other methods.

FIGURE 17. 3D visualization of 6 different pitting health states.

V. CONCLUSION
This paper proposes a novel deep learning method based on
the combination of dilated convolution and spatial dropout
for early fault diagnosis of rotating machinery. The verify
experiment proves the effectiveness of the DCSD method
for six kinds of early gears pitting fault. The early fault
diagnosis method for rotating machinery proposed maintains
excellent diagnostic performance without increasing network
parameters or reducing network dimensions. The superiority
of this method is verified through comparative research. As a
result, the DCSD method can be applied to the early fault
diagnosis of rotating machinery effectively. The author will
conduct further research in the future.
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