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ABSTRACT Mobile edge computing (MEC) is currently one of the key technologies that can facilitate the
evolution of the future digitized economy. MEC can provide ubiquitous computational capabilities through
the multitier deployment of servers to ensure lower latencies and tighter integration with 5G, the Internet
of Things, blockchains and artificial intelligence. In this paper, we propose a new approach to optimizing
hardware resource allocation for edge nodes in a multitier MEC hierarchy. In addition to a centralized unit,
we consider active antenna units and distributed units equipped with edge nodes of different computational
capacities. A parametric Bayesian optimizer is implemented for hardware resource allocation to increase the
overall computational capacity of a 5G-based MEC system. Simulation results show that for given budget
constraints, the proposed solution outperforms pseudorandom resource allocation in terms of the proportion
of computational tasks completed. The achievable gains are in the range of 20-40 %, depending on the task
complexity and selected budget threshold.

INDEX TERMS Wireless networks, multitier MEC, resource allocation, Bayesian optimization.

I. INTRODUCTION
With the proliferation of 5Gmobile networks, various immer-
sive services such as virtual/augmented reality (VR/AR),
ubiquitous computing, online gaming and the Internet of
Things (IoT) are penetrating into our daily routines [1]–[4],
[5]. Since most of these services require the transmission
of massive volumes of data and extremely complex data
processing in the cloud, the existing network and cloud infras-
tructures are likely to be placed under high pressure in the
foreseeable future. In recent reports, Cisco has estimated
approximately 20 zettabytes of yearly data center traffic
by 2021 [6].

Currently, remote servers are typically deployed very far
from user equipment devices (UEs) [7], [8]. Thus, requests
from UEs are forwarded to a remote server through multiple
segments of the transport network infrastructure. Considering
the potential tremendous amount of traffic directed from the
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servers to each UE, the transport network may easily become
a bottleneck for future immersive services [9]. Moreover,
such remote servers are accessible by billions of UEs, so the
probability of congestion is very high for both communi-
cation and computing segments. Consequently, the queuing
strategy applied for request processing has a direct impact on
the performance of mobile cloud computing [10], [11].

Recently, the novel paradigm of mobile edge comput-
ing (MEC) has been introduced to alleviate the limitations
of mobile cloud computing [12]. The key idea of MEC
is to bring the computing infrastructure closer to the end
users so that most requests can be processed locally, without
being offloaded to remote cloud servers. The necessary local
servers can be integrated with the existing mobile network
infrastructure, such as base stations and baseband units [13],
[14]. MEC provides several essential benefits compared to
the conventional cloud computing. First, it reduces round trip
latency by placing servers in proximity to end users. Second,
by allowingmost traffic to be processed locally,MEC reduces
the volumes of data that are transmitted far distances through
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FIGURE 1. Proposed MEC architecture, which also provides computational resources at the AAU level.

the transport network [15]. Finally, local edge servers are
more suitable for context-oriented services because they can
store useful information that is relevant only to a particular
area and perform caching of essential content considering the
trends in the target area [7], [16]–[18].

Despite all of the benefits of MEC, the deployment of
integrated communications and computing infrastructure for
MEC is not a trivial task. To date, many research works have
pursued the goal of optimal MEC deployment through the
proposal of various implementations of game theory, convex
optimization and deep learning [7], [19], [20].

To simplify MEC deployment and provide more oppor-
tunities for operators, in this paper, we propose a multitier
MEC architecture based on an ultradense 5G network [9],
as illustrated in Fig. 1. The key conventional assumptions
are that each active antenna unit (AAU) is equipped with a
low-power MEC server and that each distributed unit (DU) is
equipped with a high-power MEC server [9], [21]. However,
in this work, all possible approaches are allowed to freely
explore the deployment of any amount of computational
resources allowed by the global constraints on any type of
node to exclude the possibility that any of the presented
scenarios may be better suited to configurations that do not
obey the above conventions. The two tiers of servers will
process most requests from UEs, with the exception of a few
ultraheavy requests, which will be forwarded to a centralized
unit (CU) in the cloud. Depending on the circumstances,
each task should be allocated to the corresponding tier of the
proposed MEC system. Despite the large number of research
contributions on optimal task allocation in MEC, none of the
existing works has considered the optimization of hardware
deployment to maximize the computational performance of a
multitier MEC system under capital investment constraints.

An additional degree of freedom in our optimization frame-
work is the presence of an exogenous dynamic in the sys-
tem, which is reflected by the movement of mobile users.

In difference to previous works, we take the snapshot of the
instantaneous positions of end users to evaluate the load on
the MEC servers at each individual simulation run. Conse-
quently, we reflect the overall spatio-temporal computational
demand, which allows to optimize the hardware capacity of
each tier in theMEC system. In order to simplify an optimiza-
tion problem, the detailed study of the physical layer proper-
ties of 5G network are omitted in this work, considering that
it’s impact on the service latency is one order of magnitude
lower than impact of the computational performance of the
MEC system.

Therefore, in this work, we propose an approach for opti-
mizing the computational capacity of a multitier MEC system
with given capital investment constraints and given behavior
of the end users. Accordingly, the main contributions of this
article are as follows:

1) We propose a method for optimal hardware deploy-
ment given capital investment constraints for a multi-
tier MEC architecture in which servers are integrated
into key elements of the 5G infrastructure, such as the
AAUs, DUs and CUs.

2) We simulate the task processing performance in a
multitier MEC system with task properties based on
real-world measurements of cloud gaming client net-
work activity [22].

3) Our experiments show that with a budget of 600 thou-
sand USD, the proposed optimization method achieves
a 41% increase in the completed task ratio compared to
the constrained pseudorandom approach in the 70 FPS
cloud gaming scenario and a 29 % increase in the
60 FPS cloud gaming scenario.

The remainder of this paper is organized as follows.
In Section II, we provide an overview of recent research
activities on MEC optimization. In Section III, we describe
the proposed system model and task processing in the
multitier MEC system. In Section IV, the proposed
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optimization method for multitier MEC deployment is
explained. In Section V, simulations of and performance
results for the proposed system are discussed. Section VI
presents potential future research topics and outlines further
possible improvements to MEC, and Section VII concludes
the paper.

II. RELATED WORKS
A traditional cloud computing paradigm, inwhich all requests
are processed at a number of large data centers placed at
multiple locations around the world, is inefficient for the
dynamic and agile 5G ecosystem. Except for a few rare cases,
most mobile services are context-aware services that rely
on information that is relevant only to certain local areas.
With the rapid increase in data volumes due to rich multi-
media applications and the deployment of massive numbers
of IoT devices, the transmission of context-aware traffic from
multiple areas to the same remote cloud servers is expected
to occupy a sufficient share of the total network traffic to
negatively impact network efficiency. Therefore, MEC is
widely considered an important pillar of the 5G ecosystem to
reduce the latency for rich multimedia services and improve
the efficiency of context-aware computing.

Whereas in cloud computing, computational power tends
to be centralized in large data centers, MEC has the oppo-
site aim of distributing computational power proportionally
within target areas, a goal that raises the question of optimal-
ity. To date, many research works have focused on the opti-
mization of task allocation for a given MEC system structure.

In [23], the authors mathematically defined and solved
the mixed integer dynamic task offloading and scheduling
problem. As their objective, they maximized the number of
offloaded and processed tasks, under the assumptions that
each serving unit can process one task at a time and that the
scheduling policy is non-preemptive. This optimization prob-
lem is NP-hard, and the authors solved it by implementing
logic-based Benders decomposition to reduce its complexity.

Another study [24] has proposed an NP-hard latency-
aware workload offloading strategy to minimize the average
response time by offloading tasks to a cloud server. The pro-
posed strategy has been shown to yield a significant decrease
in average latency compared to a location-aware workload
offloading algorithm [25].

An alternative solution was proposed in [26], where the
authors performed task partitioning considering latency-
sensitive applications and developed several competitive
algorithms for evaluating the performance of an MEC server.

In [27], three joint task allocation algorithms were stud-
ied: offloading without the consideration of joint data, full
offloading and offloading with equal time lengths. The
authors defined their objective as minimizing the energy
consumption for MEC in a scenario with one MEC-equipped
base station and several UEs using AR/VR applications.

It is worth mentioning several related works in which
multiobjective optimization has been implemented for the
computational and communications segments of MEC

systems. Typically, multiobjective optimization problems are
very complex (mostly NP-hard); thus, many studies have
been conducted to find an effective way to reduce their com-
plexity [23], [27], [28].

In [29] and [30], the objectives were to find the
trade-off between the energy consumption and corresponding
latency in various offloading scenarios. Specifically, in [29],
the time-division multiple access (TDMA) and orthogonal
frequency-division multiple access (OFDMA) schemes were
considered for the wireless channels. The researchers evalu-
ated and simulated the energy consumption for both offload-
ing and computing in a multiuser case. On the other hand,
in [30], the researchers evaluated the energy consumption for
complex tasks and reviewed potential security and privacy
improvements for the offloading of tasks to a server.

In [31], the researchers identified that the trade-off problem
is a multiobjective optimization problem (MOOP) that can be
solved via Pareto optimality, in which the principle is to find
the solution such that no other solution improves one of the
objectives. To achieve Pareto optimization, they introduced
a weighted-sum formulation that can effectively reduce the
computational complexity. The considered system consisted
of one full-duplex BS equipped with an edge computing
server, several MEC users and several mobile service users.

In [32], the authors proposed a framework for jointly min-
imizing the downlink and uplink transmission power while
providing secure data transmissionwith a given quality of ser-
vice (QoS). The authors adopted the weighted Tchebycheff
method to formulate the resource allocation algorithm as a
MOOP.

The joint optimization of computational resources and
wireless connectivity was proposed in [33] considering the
aspects of energy efficiency and QoS. The authors proposed
a device-to-device (D2D) architecture forMEC systems, with
the aim of fully utilizing the computational capabilities of the
UEs. The authors formulated the NP-hard problems of task
and resource allocation for various scenarios in theD2DMEC
system. In addition, a convex relaxation-based algorithm was
proposed to solve the formulated problems.

In the following sections, we describe the proposedmethod
of hardware deployment optimization for a multitier MEC
system considering given financial constraints.

III. SYSTEM MODEL
The proposed system model for multitier MEC consists of
multiple CUs, DUs and AAUs, represented by the notations
A, D, and C , respectively; in particular, their quantities are
denoted by NA, ND and NC , respectively [21]. In addition,
we denote the numbers of CPUs deployed at these node
elements by NCPU_A, NCPU_D, and NCPU_C, respectively. The
set of all tasks requested by UEs that exist in the system at
any given time step is defined as T(t). In Fig. 2, we show
the hierarchical tree structure of the proposed system model,
containing a CU at the top of the hierarchy, connected to
DUs at the next lower level of the hierarchy, and then AAUs
and UEs at even lower levels of the hierarchical tree. Once
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FIGURE 2. Simulated hierarchical network tree structure for MEC.

all units have been deployed, the system will automatically
connect UEs to the nearest AAUs and AAUs to the nearest
DUs; then, all DUs are connected to the only CU present in
the simulation. We represent the number of cycles required
to process a task as Ci, where the index i denotes the index
of the i-th task. The ratio between the offloaded data size
and the number of cycles is defined as the computational
intensity Ii [cycles/bit], and the size of the i-th task is denoted
by Di [34]. Therefore, the required number of computational
cycles for the i-th task can be calculated as

Ci = DiIi. (1)

For each taski, there will be a set of parameters, such as
{Li,Di, Ii, ni, r inode_type}. Here, Li denotes the latency require-
ments for taski, and ni is the ratio between the offloaded data
size and the downloaded data size, where the downloaded
data size can be calculated as niDi. For each task, we use
a factor r inode_type ∈ {0, 1} to represent where the task is
computed. We assume that a task can be executed at any level
of the hierarchy (i.e., by a DU, CU or AAU); thus, for each
task, we have three r inode_type factors, expressed as r

i
A, r

i
D and

r iC . Analogously, we can introduce

r inode_type =

{
1 if taski ∈ T(t) is executed at node_type
0 otherwise

.

(2)

The optimizer tunes the number of nodes of each node type
and the number of CPUs deployed on each type of node.
Thus, the proposed state of the MEC network is expressed
in compact form by the six-tuple

s ≡ 〈NCPU_A, NA, NCPU_D, ND, NCPU_C, NC〉. (3)

Formally, s ∈ S, where S is the space of all admissible
network states.

TABLE 1. Table of notations used.

A. MODELING OF DEPLOYMENT EXPENSES
Since the DUs and CU will be at least partially deployed at
already existing sites, only the price for indoor 30U server
racks needs to be considered, under the assumption that the
necessary supporting infrastructure is already present at the
DU and CU sites. Because of the scale of the simulation
and the high core counts of the server processors, a single
additional rack or outdoor cabinet will be sufficient to accom-
modate all CPU configurations considered for all simulated
nodes. Since it is possible to use a single CPU on a dual-CPU
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FIGURE 3. Existing types of task sets in MEC scenario.

motherboard, the number of server nodes at each network
node is computed as d(NCPU_node_type/2)e. A 30U rack can
host 30 server nodes, each with at most 2 CPUs; therefore,
the number of racks (coupled with the number of outdoor cab-
inets for AAUs) needed for one network node can be simply
calculated as d(NCPU_node_type/60)e. The total expenses are
formally expressed as shown in Eq. 4, with the constituents
given in Eq. 5 - 7.

We express the total expenses as

expenses(s) = cpu_expenses(s)+ server_node_expenses(s)

+ rack_expenses(s) (4)

with

cpu_expenses(s) =
∑

j∈{A,D,C}

NCPU_jNjPCPU, (5)

where PCPU is the price of each server CPU. The server node
expenses can be expressed as

server_node_expenses(s)=
∑

j∈{A,D,C}

dNCPU_j/2eNjPserv_node,

(6)

where Pserv_node_j is the price of a single server node and all
required hardware is assumed to be provided by the server
nodes except the CPUs. Finally, the rack expenses can be
determined as follows:

rack_expenses(s) =
∑

j∈{A,D,C}

dNCPU_j/60eNjPrack_j, (7)

where Prack_j is the price of a single rack or outdoor server
cabinet; this price is thus dependent on the type of network
node to be hosted.

B. LATENCY MODELING
Three main contributions to the latency are considered for
MEC [33], [35], [36]. These contributions correspond to the
three main phases of the task life cycle:
phase 1 - task offloading, in which the latency is caused by
the transmission of the task to the network node on which it
will be executed (the task’s target node);

phase 2 - task execution, for which the latency is caused
by the processing of the task by a particular CPU and is
influenced by the computational load imposed by other tasks;
and
phase 3 - task downloading, in which the task is sent from
the target node back to the user to complete its round trip, thus
adding the final latency contribution. Each phase is described
in more detail later in this subsection.

Formally, we express the total latency for taski as

ttotal,i = toffload,i + tprocess,i + tdownload,i. (8)

In the system model, to simulate a large number of simul-
taneously interacting network elements and tasks, sets with
equal division of simultaneously shared resources among the
tasks, that are parts of the processed sets, is introduced. Each
network node hosts three types of such sets to model the
division of the bandwidth needed for uplink and downlink
and the division of computational resources among the set
elements: uplink_set, downlink_set and computation_set.

1) PHASE 1: TASK OFFLOADING
The tasks are immediately sorted into uplink_set once they
are generated by the UEs, as illustrated in Fig. 3. uplink_set
simulates the transmission of a task to a node at a higher
hierarchical level, with all parallel tasks in the same set shar-
ing the transmission link resources. Similarly, downlink_set
represents transmission from the MEC nodes towards the
UEs.

Then, the offloading time toffload,i can be expressed as

toffload,i = tw,i + tF,i + tM,i, (9)

where tw,i denotes the time taken for wireless transmission
between the UE and the AAU, tF,i is the fronthaul trans-
mission time between the AAU and the DU, and tM,i is the
midhaul transmission time between the DU and the CU.

For the wireless link tw,i, let hW denote the channel power
gain from the UE to the AAU for offloading; then, the desired
offloading rate is given by

roffloadi = BoffloadW log2

(
1+

poffloadW hW
σ 2
W

)
, (10)
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where BoffloadW (in Hz) denotes the transmission bandwidth,
poffloadW is the transmission power for offloading tasks to the
AAU, and σ 2

W is the additive white Gaussian noise (AWGN)
at the AAU [33].

In a multiuser scenario, the data rate is given by

roffloadi (t) =
roffloadW

Ni(t)
. (11)

Therefore, roffloadi (t) is a time-varying quantity due to the
varying number of parallel tasks Ni(t). A task can be consid-
ered transferred when Eq. 12 is satisfied:

Di 6
tend,i∑
tstart,i

roffloadi (t)1t. (12)

Finally, the transmission time for taski is computed as

tw,i = (tend,i − tstart,i)1t. (13)

Regarding the wired links, the fronthaul andmidhaul trans-
mission times can be calculated in the same way since both
types of connections use optical fibers. To avoid repetition,
the notation used below does not distinguish between uplink
and downlink. For example, the fronthaul latency is given as
lF =

LF
c n, where LF is the length of the fronthaul optical

fiber, c is the speed of light, and n is the refractive index of
the glass in the cable. Analogously, the fronthaul offloading
time is given as tF,i =

Di
CF,i
+ lF, where CF,i is the capacity of

the fronthaul link on which taski, with message (request or
response) size Di, is present.
Similarly, the time taken for offloading Di through a mid-

haul connection is given as tM,i =
Di
CM,i
+ lM.

2) PHASE 2: TASK EXECUTION
In the proposed discrete-event simulation, all tasks present on
any particular core in a given time step are required to share
the core instruction cycles available per unit of time. The exe-
cution time for any task will depend on the dynamics of any
other tasks present on the CPU core in each individual time
step. Because the tasks considered in this work are identical,
equal division of the computational resources among the tasks
present on a given core satisfies the fairness requirement, and
for a specific taski, the time-varying frequency it is assigned
in time slot t can be calculated as

fi(t) =
fCPU

Npar_tasks(i, t)
, (14)

where Npar_tasks(i, t) denotes the number of parallel tasks
being processed on the same CPU core as taski. However,
several CPUs will be deployed on the same node, with each
containing multiple cores; thus, the total number of tasks on
one node in a specific time slot t is denoted by NC (t), and
Npar_tasks(t) can be computed as

Npar_tasks(i, t) =
Ntasks(node, i)

Ncores(node_type)
. (15)

There is a limit on how many parallel tasks a single CPU
can support, but this number is extremely large considering

that one CPU can switch between tasks very quickly; thus,
this limit can be effectively neglected. The computational set
therefore depends on the number of CPUs deployed at each
node, as all CPUs will share all tasks evenly.

Once a task is transmitted to its target node, it will be
sorted into computation_set and start to be processed. The
analytical model used to simulate the process at the nodes has
been described in previous sections. In the actual simulation,
the number of calculation cycles elapsed and the number of
parallel tasks are checked in every simulation time step for
each task. A task is considered completed when the number
of elapsed cycles is larger than or equal to the task’s require-
ment, as follows:

DiIi 6
tend,i∑
tstart,i

fi(t)1t, (16)

where tstart,i and tend,i are the time slots in which the task
begins and ends processing, respectively; thus, the actual
processing time for task i can be calculated as

tprocess,i = (tend,i − tstart,i)1t. (17)

3) PHASE 3: TASK DOWNLOADING
When the execution of a task is complete, the result will be
moved to downlink_set to be transmitted back to the UE. The
mechanism of interactions for the downlink transmission set
is the same as that for the uplink transmission set: the size of
the data to be transferred is calculated based on the number of
parallel users/tasks in each time step, and a task is considered
transmitted once the delivered data size is equal to or larger
than the task size, as in Eq. 12.

There is no ambiguity in determining the task routing when
moving a task up the network tree hierarchy to be computed
by the target node, as each node has only a single parent; thus,
to route the task, it is sufficient to determine only the target
level index. On the other hand, when moving a computation
result down the hierarchy back to the UE that requested
the computation, the path back through the network to this
UE must be unambiguously determined. Since IP addressing
and routing are not implemented in our model, a simplified
mechanism using a stack data structure local to each task is
implemented to record all nodes visited by a task on its way
to the target node.

IV. SYSTEM OPTIMIZATION
A. OBJECTIVE FUNCTION
The main objective in this research is to maximize the perfor-
mance of MEC deployment within a limited budget. There-
fore, as a measure of performance, the ratio of the number
of failed tasks (Nfailed) to the total number of generated tasks
(NT) is considered. The failed tasks are defined as those that
exceed their latency requirements Li and are consequently
discarded for network congestion management. In addition,
we need to ensure that the operator’s total expenses do not
exceed a given budget threshold Bthresh. This assumption
is integrated into the optimization algorithm such that any
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configuration choice made by the optimizer is guaranteed to
satisfy the budget constraints. Thus, the objective function
can be expressed as

minimize
s

f (s, u) =
Nfailed(s, u)

NT
subject to expenses(s) < Bthresh
NA,ND,NC > 0, NA,ND,NC ∈ s

NCPU_A,NCPU_D,NCPU_C > 0,

NCPU_A,NCPU_D,NCPU_C ∈ s

NT > 0 (18)

where s is the tuple describing the CPU and node counts,
as defined in Eq. (3). In addition to the optimized s,
Nfailed(s, u) also depends on the MEC parameters represented
by the common symbol u. These parameters, which are
related to the task complexity, the task size, the connection
throughput, the number of users present in the simulation,
the frequency of the CPUs used, etc., are not subject to the
optimization process.

Again, the value of expenses(s) is guaranteed to not exceed
Bthresh; thus, f (s, u) is not defined for values of s such that
Bthresh would be exceeded.

B. BAYESIAN OPTIMIZATION
The Bayesian tree-structured parzen estimator (TPE)
optimizer was first proposed in [37] and by its nature it
resembles heuristic-based stochastic optimization in variable
landscape [38]. We need to appreciate the fact that the
optimizer performs well especially when the computation
of the cost objective function is expensive. In our case,
we can claim that the model under consideration is complex,
consisting of the large set of AAUs and DUs. Here the
overall network architecture (number of AAUs and DUs)
and corresponding CPU deployment needs to be optimized,
considering the budget constraints of the operator. Evaluation
of the objective function for each tuned configuration would
require large time complexity, as calculating even a single
f (s, u) value for a simulation model scenario cycle requires a
rather costly computational effort. Thus, in general we can
claim that; a) the problem is complex and non-linear and
b) the evaluation of each instance of objective function is
time expensive. Typical solutions including dealing with the
problem as the constraint satisfaction problem would be dif-
ficult (tree search algorithms with some tree pre-processing
(forward checking, arc consistency, etc). As the literature
suggest [39], in these cases, local search algorithms (hill
climbing, simulated annealing) but more importantly algo-
rithms solving themore difficult problem of global search, are
of prominent interest. By its nature, we can assign Bayesian
TPE optimizer to the latter group and thus we found it
extremely interesting. Specifically, a Bayesian TPE optimizer
is adopted for this research to reduce the number of objective
function evaluations. Compared to blind search strategies,
this algorithm includes a mechanism to ensure that historical
objective function values are widely used rather than being

forgotten during the optimization process. Finally referring
to [39], provided we ensure that the TPE optimizer iterates
over large number of steps, the algorithm will find a global
optimum with probability approaching 1. Based on our large
numerical experiments we can claim with high certainty
that at the end, the solution proposed by Bayesian TPE
optimizer could be declared as the global optimum or the
point very close to the global optimum in the parametric
search space (almost optimal). Thus, it could serve as the
good alternative to the well-known analytic representatives
with precise performance prediction capabilities reached at
the cost of severe model relaxation.

The Bayesian optimizer, or more specifically, its
Python-based implementation provided in the Hyperopt
library [40], belongs to the class of sequential model-based
global optimization (SMBO) algorithms, which consecu-
tively create a model of the objective function. Strategically,
it selects candidate parameter changes using a surrogate
function regressionmodel based on the TPE. In the following,
we will continue to discuss optimization mostly in terms of
probabilistic models. Examples of probability densities are
generally denoted by p(. . .).While the expected improvement
for Bayesian optimization based on a Gaussian process model
is calculated via direct modeling of p (f (s, u)|s), the TPE
approach involves calculating p (f (s, u)|s) from p (s|f (s, u)),
p (f (s, u)) and p (s). As can be readily seen, p (f (s, u)|s) is the
posterior distribution.

It is now feasible to apply parameterization to write the
conditional distribution function p (s|f (s, u)) as follows:

p (s|f (s, u)) =

{
l (s) if f (s, u) < f ∗

g (s) if f (s, u) ≥ f ∗
, (19)

where f ∗ is a threshold parameter that defines the successive
sampling process and l(s) and g(s) are distributions that par-
tially describe p(s|f (s, u)). Candidate parameters for objec-
tive function evaluations are chosen using the expectation
value of the improvement function:

EIf ∗ (s) = −
∑
s ∈ S

f (s, u) < f ∗

(
f ∗ − f (s, u)

)
p (f (s, u)|s)

∝ −

(
γ +

g (s)
l (s)

(1− γ )
)−1

. (20)

Here, f ∗ is conditioned on the optimizer’s hyparameter γ
such that p(f (s, u) < f ∗) = 1f (s,u)<f ∗ = γ .
As a result, in each optimization step, we have a set con-

sisting of all previously calculated objective function values
for different vector parameters such that f (s, u) is less than
f ∗. In mathematical terms, we can conclude that in the sit-
uations described above, we are led to a low-level set that
is adopted to model the probability density l(s) in Eq. (19).
The complementary subset, which satisfies f (s, u) ≥ f ∗,
is used to define the probability density g(s). Both g(s) and
l(s) are obtained from collected samples (objective function
evaluations for parameter vectors) using Parzen estimation.
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As the name suggests, EIf ∗ (s) balances the exploration of
regions with high and low chances of improving the objective
function based on future improvements.

In each optimization step, first, a set of potential parameter
values is chosen based on l(s). Then, the evaluation candidate
is selected using Eq. (20). The progressive changes to the
model in terms of the objective function estimates based
on the obtained measurements are reflected in the gradual
changes in the EI... values for the same inputs.
Pseudocode in Alg. 1 describes the optimization process

with Niterations, where Niterations = 1000. Before the algorithm
is able to suggest suitable candidate parameters, it needs to
add sufficient amount of measurements (objective function
values, paired with parameters used for their evaluation) to a
set of measured samples, by running warmup iterations with
random parameter values. This is needed to build sufficient
approximation of conditional distribution shown in Eq. 19 in
order to calculate EI for candidate parameters according to
Eq. 20.

Algorithm 1 Optimization Algorithm
sample_set← ∅
for warmup_iteration← 0 to Nwarmup_iterations by 1 do

s← pseudorandom(Bthresh)
sample_set.insert(f (s, u), s)

for iteration← 0 to Niterations by 1 do
max_EI ← 0
candidate_set ← get_candidate_set(sample_set)

max_EI ← 0
foreach candidate si ∈ candidate_set do

If EI (si, sample_set) > max_EI max_EI ←

EI (si, sample_set) s_best_EI ← si
sample_set.insert(f (s_best_EI , u), s_best_EI )

After this exploration phase, multiple candidate parameters
are repeatedly chosen, but only the parameters with best
EI are used to evaluate computationally expensive function
f (s, u). When the algorithm terminates, the sample_set will
contain all measurements along with measurement contain-
ing f (s, u) with lowest found value (lowest ratio of uncom-
pleted tasks) and tuned parameters s used to achieve this
value.

C. PSEUDORANDOM RESOURCE ALLOCATION
Wehave decided to use the pseudorandom resource allocation
as the baseline for the performance improvement delivered
by Bayesian TPE optimizer. Expenses available for pseudo-
random resource allocation at each MEC network layer are
assigned to individual network levels so that their sum is equal
to budget threshold as follows:

BA_thresh + BD_thresh + BC_thresh = Bthresh, (21)

and at the same time constraint Bj >= expensesj(s_minj, u)
must be met, because each network layer should contain at

least a single node with at least a single processor. Thus,
s_minj equals sj such that Nj_min = 1,Nj_CPU_min = 1,
Nj_min,Nj_CPU_min ∈ s_minj.
Once randomly selected amount of the total budget is

assigned to particular MEC level, the largest possible number
of CPUs at a particular MEC network level is given as

Nj_CPU_max = argmax
Nj_CPU

(expenses(sj)), Nj_min,Nj_CPU ∈ sj

subject to (sj) < Bj_thresh. (22)

When Nj_CPU_max is known, specific value Nj_CPU_spec =

random(1..Nj_CPU_max) is chosen. The variable Nj_CPU_spec
specifies the random number of CPUs that is guaranteed
to stay within the budget for j-th network level if deployed
within at least one, or more nodes. Specific number of nodes
that will be deployed at given level Nj_spec is determined
as the largest number of nodes, with each node containing
Nj_CPU_spec CPUs, that can be purchased without exceeding
Bj_thresh, as shown in Eq. 23

Nj_spec=bBj_thresh/expenses(sj)c, Nj_min,Nj_CPU_spec ∈ sj.

(23)

This pseudorandom allocation scheme ensures that
expenses approach Bj_thresh as much as possible so that finan-
cial resources assigned to given level are not unnecessarily
wasted.

V. METHODOLOGY FOR MEASURING SIMULATION
PERFORMANCE
Two scenarios differing in the latency tolerated by theUEs are
analyzed, with the tolerated latency also dictating the rate at
which tasks are generated. In the first scenario, the deadline is
set to approximately 16.667 ms, corresponding to rendering
at 60 frames per second (FPS) provided by the MEC system.
The deadline value for the second scenario is set to approxi-
mately 14.286 ms, corresponding to 70 FPS rendering. Other
properties of the tasks in both scenarios, including the number
of cycles needed to compute each task and the sizes of the
requests and responses between the user and target nodes, are
identical.

The measurement iterations for evaluating optimized and
random network configurations correspond to n budget steps
from min_budget to max_budget_limit . For the n-th budget
step, Bthresh,n = Bthresh,(n−1) + budget_step, where the ini-
tial threshold is Bthresh,0 = min_budget , and Bthresh,n <=
max_budget in each step.
Additionally, there is an inner loop of the optimization

algorithm - for each budget step, trial_count = 1000 simu-
lations are run repeatedly in a Monte Carlo manner to obtain
aggregate metric measurements. The parameters of the ran-
dom simulation runs are averaged over all runs, but only con-
figurations that do not exceed the budget are allowed. A large
trial_count ensures a value that is close to the expected value
due to the law of large numbers for average random runs and
thus ensures that the optimization results are close to optimal.
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The other task properties are close to those of cloud gaming
workloads. Specifically, each user request message is set
to 1024 bits in size and contains user input that controls
the server-resident process. While the size of the job to be
computed is not relevant to network transmission because
it resides on the server, the number of cycles required to
complete the job determines the duration of the server’s delay
before the response message is sent. The number of cycles
needed to process a single task (render a single frame) in
our simulation is 2.31 ∗ 107 cycles. In addition, the size of
the response from the target server is set to 100000 bits per
message, corresponding to the approximate amount of data
needed to send a single compressed frame that is part of a
video stream (a sequence of consecutive server responses).
To determine these values, approximate request and response
sizes were obtained empirically while interacting with the
Nvidia Now cloud gaming service, usingWireshark to record
the network activity [22]. Finally, to simulate the simultane-
ous multithreading speedup of the simulated Intel processors,
the core speed of each simulated processor is increased by
approximately 20% [41].

The calculation of the expenses depends strictly on the
constant prices of the network node components and the cho-
sen numbers of processors per node type, which determine
all other accompanying resources and infrastructure. All of
the following prices are estimated average market prices at
the time of the writing of this work. The price of a single
18-core CPU with a frequency of 2.4 GHz and an L3 cache
size of 45 MB is approximately 2400 USD. Each CPU is
installed on a server node, with each server node hosting at
most 2 CPUs due to motherboard limitations. The price of a
single server node with a dual-CPU motherboard including
196 GB of RAM, a 4 TB hard drive and a 250 GB SSD drive,
but excluding the cost of the CPUs, is also approximately
2400 USD. The price of a 30U server cabinet intended for
external placement, as needed to host the hardware for AAUs,
is 2700 USD, excluding other costs needed to provide the
cabinet with networking capabilities and electrical power,
which will probably increase the cost (along with the cost of
the required deployment procedures). Thus, the lower bound
for the deployment of an exterior cabinet, which is also used
for expense calculations in our model, is 3500 USD.

The pseudocode given in Alg. 2 formally describes the
measurement methodology applied throughout the simula-
tion study, and Tab. 2 provides a list of simulation parameters
and corresponding values.

VI. RESULTS
In this section, we present simulation results for the proposed
system model. We compare the performance of the proposed
optimum search algorithm with that of conventional pseudo-
random hardware resource allocation.

Ability of optimization algorithm to find global optimum
is illustrated in Fig. 4, showing that after 1000 optimization
iterations used in our experiments, the algorithm achieves
lowest possible value of objective function for higher budgets.

Algorithm 2Measurement Methodology Algorithm

/* Overall budget limits in USD ($) */
max_budget_limit ← 1600000
min_budget ← 400000
budget_step← 100000

Bthresh← min_budget

while (Bthresh <= max_budget) do
mc← max_conf _cpus(Bthresh)
mn← max_conf _nodecounts(Bthresh)
max_conf ← mc,mn

if random_trials == TRUE then
i← 0

metrics_tr ← trials(trial_count, max_conf)
/* get average */

metrics← metrics_tr/trial_count

else
/* return trial with lowest obj.

func. metric vector component
value */

metrics← optimization(trial_count,max_conf )
Bthresh← Bthresh + budget_step

function trials (trial_count, max_conf):
while i < trial_count do

conf ← rand_conf (max_conf )
/* this is a vector of multiple
metrics, including the objective
function */

metrics_tr ← metrics+ network_eval(conf )
i← i+ 1

return metrics_tr

Two scenarios with different user quality requirements are
considered, corresponding to refresh rates of 60 FPS and
70 FPS. The actual costs for the solutions found by the algo-
rithms are illustrated in Fig. 5, showing that both approaches,
by design, closely approach the budget threshold but never
exceed it.

In general, the optimum search algorithm outperforms
pseudorandom resource allocation regardless of the refresh
rate and budget constraints. However, the greatest advantage
of the proposed algorithm is observed for lower budgets.
With an increasing budget, both randomly deployed network
configurations and optimized network configurations show
acceptable performance, regardless of the quality require-
ments. As expected, both algorithms perform better for the
60 FPS scenario because of the lower requirements.

Fig. 6 shows the trade-off between the total budget allo-
cated for MEC network configuration and the corresponding
performance. In the lower budget range, even optimized con-
figurations cannot provide sufficient computational power
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TABLE 2. Table of simulation settings.

FIGURE 4. Objective function values for a subset (400 best out of 1000)
of optimization iterations, for various deployment budgets. Note that
iterations were ordered according to their resulting objective function
values in this plot, for better clarity of optimization trends. Bayesian
optimizer is not guaranteed to monotonously decrease objective function
values with increasing optimization iterations, and the set of parameters
resulting in best objective function value can be found in any iteration.

for certain numbers of users and their tasks. On the other
hand, the randomly deployed systems cannot satisfy all tasks
for any simulated budget, although the completed task ratio
increases with higher budgets. For a budget of 600 thousand
USD, optimization enables a 29 % increase in the number of
completed tasks for the less demanding 60 FPS scenario. For
the higher computational requirements of the 70 FPS scenario
and the same budget value constraint, the optimizer is able to
achieve a 41 % improvement in the task completion metric
compared to the constrained pseudorandom approach. For
optimization in the 60 FPS scenario, all tasks are completed
when the budget is raised to approximately 700,000USD, and

FIGURE 5. Expenses for MEC network configurations found by the
optimization algorithm based on 1000 simulation runs and the average of
the 4 best results obtained from 1000 budget-constrained random runs.

FIGURE 6. Proportion of tasks completed using the network configuration
found by the optimization algorithm based on 1000 simulation runs and
the average of the 4 best results obtained from 1000 budget-constrained
random runs. The red arrows illustrate the percent increases in this metric
obtained through optimization for the 60 FPS scenario, and green arrows
illustrate the same for the 70 FPS scenario.

for the 70 FPS tasks, all tasks are completed when the budget
is at least 1,000,000 USD. For a budget of 1.3 million USD,
the optimization approach achieves improvements over the
random approach of 8 % and 22 % for the 60 FPS and 70 FPS
scenarios, respectively. We can observe that relative improve-
ment enabled by optimization compared to the constrained
pseudorandom approach increases with increasing difficulty
of the simulation runs in terms of both budget and deadline
constraints, as reflected by a decreasing number of relatively
successful solutions in the search space. Larger budgets and
lower FPS rates decrease the challenge for the random search
method, resulting in smaller differences between the random
search results and the optimized results for easier computa-
tional loads.

It is evident that the configurations found by the optimiza-
tion algorithm cost much less than pseudorandomly chosen
configurations with the same performance when the bud-
gets are higher because the pseudorandom approach yields
diminishing returns on investments as the budget increases.
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FIGURE 7. Deployment expenses per completed task per second for MEC
network configurations found by optimization algorithm using
1000 simulation runs and average of 4 best results obtained from
1000 budget-constrained random runs.

Therefore, the optimized configurations are able to provide
better performance when the budget is low and cost less when
the budget is high.

Apart from overall deployment costs, it is also useful to
calculate the deployment expenses per single completed task
delivered for both considered resource allocation approaches
and scenarios. As computational resources and their overall
costs influence how many tasks with given parameters can
be completed by the MEC network per second, we can define
the unit of thementionedmetric as [USDdeptask−1s−1] where
USDdep is the amount of dollars that were spent strictly on
MEC network deployment, without inclusion of any opera-
tional expenses (OPEX).

The metric can be calculated as

USDdep_task_s =
USDdep

NUE ∗ FPS ∗
Nfailed(s,u)

NT

, (24)

where NUE is the number of connected UEs and Nfailed(s,u)
NT

is
the ratio of completed tasks. Single generated frame corre-
sponds to single task, so that NUE ∗ FPS is the total number
of tasks generated in the network per second.

The metric is plotted in Fig. 7 as a function of the budget.
Here we can see that for lower budgets optimization approach
outperforms random approaches in both scenarios, with dif-
ference in performance of pseudorandom runs decreasing
and then stabilizing with higher budgets. Improvement of
USDdep_task_s is more significant in case of optimization for
70 FPS scenario.

Finally, Fig. 8 shows the numbers of CPUs deployed at
the CU level (subfigure (a) and AAU level (subfigure (b)
for different budget ranges and scenarios. The results for
deployment of CPUs at CU show that the random network
configuration algorithm simply increases the CPU count at
CU as the available budget increases. By contrast, the opti-
mization algorithm actually deploys a smaller number of
CPUs to the CU because it identifies that this parameter is of

lower importance and that the saved expenses can be more
effectively used to improve other network parameters, like
notable increase of cumulative CPU count of nodes at AAU
level compared to random runs for higher budgets. DU level
was not included in this comparison, as there is not a clearly
visible pattern for deployment of CPUs at this level, like the
difference between CU and AAU resource allocation.

VII. FUTURE RESEARCH
A. MULTI-OPERATOR FRAMEWORK FOR SERVICE
PRICING OF THE END-USERS
Further step towards the optimization of the MEC would
be the inclusion of the multi-operator framework, where the
MEC operators compete to attract the end-users demand. The
operators with different sizes and configurations would need
to optimize their network architecture taking into account
spatial/temporal characteristics of the region and the pres-
ence of the competitors. Such a scenario would require a
fine grained MEC resource sharing on the level of virtual
machines, which can be rented by operators. In such a sce-
nario, we expect to observe service price competition result-
ing in possible emergence of cartels, or alternatively the price
war, from which the end-user can benefit from. In addition,
further advancements in modelling of the end-user behaviour
with different services and requirements would be welcomed
in this area. Introduction of end-user oriented metric such as
US dollar/task (in terms of OPEX - not to be confused with
metric presented earlier that was derived from deployment
expenses) would bring us additional insight to the behaviour
and sustainability of the multi-operator framework in the
presence of various edge demand services (video stream-
ing, data, augmented reality), co-existing in such a complex
techno-economic ecosystem.

B. SPECIFIC IMPROVEMENTS FOR ARTIFICIAL
INTELLIGENCE WORKLOADS
One topic neglected in this work is the role of artificial intel-
ligence (AI) acceleration in MEC networks in the near future
[42], [43]. MEC is an essential technology for facilitating the
widespread development of 5G networking and beyond. AI
workloads can benefit from specialized hardware dedicated to
tasks of this kind - from accelerators using decreased floating
point precision coupled with the single instruction multiple
data (SIMD) architecture with some specific improvements,
to paradigm-shifting neuromorphic dataflow chips such as
the IBM TrueNorth. AI accelerators do not necessarily need
to accelerate the training process, as often only inference
using a pretrained model is required after deployment, thus
enabling additional savings by excluding unneeded hardware
functionality.

As shown by OpenAI [44], the history of AI research
milestones can be divided into two eras. The first era lasted
from the dawn of AI research until 2012 and was character-
ized by increases in computational requirements per model
that were consistent with Moore’s law. Since 2012, the field
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FIGURE 8. Overall CPU count assigned to nodes at the CU and AAU MEC newtork level by the optimization algorithm based on 1000 simulation runs
and the average of the 4 best results (in terms of objective function) obtained from 1000 budget-constrained random runs.

has experienced a steady, approximately tenfold increase
in computational requirements per trained milestone model
per year, which has not solely corresponded to advances
in hardware capabilities but rather has been mainly asso-
ciated with an increased push for massive parallelization.
Based on these considerations, it is expected that the divide
between the capabilities of state-of-the-art cloud/remote edge
computing-based AI solutions and those computed directly
on mobile devices may continue to increase.

Given the current and expected future trends in the AI
accelerator market, it would be useful to introduce a scenario
involving accelerators of this kind into the study of MEC
hardware resource optimization and compare it with more
conventional CPU + GPU hardware combinations.

However, due to the rapid development of the AI acceler-
ator market, such a comparison may be difficult from a cost
comparison point of view at the time of writing and is thus
left for possible future research.

C. BLOCKCHAIN ENHANCEMENT BASED ON MEC
Blockchain is one of the key technologies underlying the
envisioned future digitized economy. Blockchains will likely
support various industries, such as finance, manufacturing,
retail, and ICT. MEC servers can act as validators for a
blockchain by using their capacity to store the history of
transactions [45]. There are multiple applications that can
be supported by blockchain technology but have different
requirements in terms of speed, security, privacy, scalability,
etc. [46]. Future networks should therefore support various
blockchain protocols, which will need to work simultane-
ously while sharing the same computational capacity of
MEC servers. Therefore, the enhancement of MEC servers
for blockchain, such as through the addition of field pro-
grammable gate arrays or application-specific integrated cir-
cuits, may be an interesting topic for the future.

D. 6G EDGE INTELLIGENCE
Whereas MEC currently strongly relies on the powerful
5G infrastructure, we cannot ignore the fact that future

generations of mobile networks will require even tighter
integration with AI. Edge intelligence empowered by AI is
considered one of the key missing elements in current 5G net-
works and is likely to be considered one of the key enabling
factors for future 6G development. 6G network technology
is anticipated to encompass hyperdense network deploy-
ment, reconfigurable hardware, flying-drone cells, fully pro-
grammable network infrastructures, and an immersive user
experience [47]. Thus, the importance of MEC and AI will
be even greater for the effective management of the grow-
ing radio access network (RAN) infrastructure. Therefore,
the findings of the current paper are very important for sup-
porting the development of future 6G edge intelligence.

E. THz OR LI-FI WIRELESS CHANNEL MODELS
In [48], several promising high-frequency bands for wire-
less communication were listed and compared, among which
the THz and Li-Fi bands were both considered potential
candidates for use in 6G mobile networks.

Research on the terahertz (THz) band (0.06-10 THz) has
been conducted in many studies, and the results have indi-
cated significant improvements in performance [49]. There-
fore, the incorporation of THz technology may be a major
improvement to the MEC system model, as it can provide
higher bandwidths and higher data rates. Additionally, as seen
from our simulation results, the wireless network can become
a bottleneck as the numbers of users and tasks increase, which
will lead to a low QoS for UEs.

In related studies, the THz band has shown high
atmospheric absorption; therefore, THz channels are highly
frequency selective depending on the designed applica-
tion [50]. However, the channel model for such a frequency
range is still under development. The authors of [51] per-
formed extensive ray-tracing simulations to observe channel
characteristics in the range of 275 to 325 GHz. Similarly,
in [52] and [53], a D2D scatter channel model was developed,
considering statistical geometrical information. In both [54]
and [55], a statistical channel model was built in which
kiosk application scenarios were specifically considered. The
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above studies all focused on close-range communication or
indoor communication due to the limited transmission range
of THz signals; accordingly, if such channel models are to be
implemented in the MEC system model, the range of each
AAU will need to be changed, or it may even be necessary to
include femtocells or picocells for sufficient coverage.

On the other hand, the Li-Fi band (430-790 THz), which
is also referred to as the visible light communication (VLC)
or free-space optical (FSO) band, shows even better perfor-
mance in terms of data rate than the THz band [56]. The
characteristics of Li-Fi make it suitable for indoor usage;
hence, many researchers have focused on hybrid networks
combining Li-Fi and Wi-Fi to achieve sufficient network
coverage and significant performance boosts [57]–[59].

VIII. CONCLUSION
We have studied multitier MEC deployment based on an
ultradense 5G network. The main assumptions in the stud-
ied scenario are that each active antenna unit is equipped
with a low-power MEC server, while each distributed unit
is equipped with a high-power MEC server. For the given
scenario, we have proposed an algorithm for optimizing the
allocation of hardware resources for any given budget con-
straint. In addition, we have analyzed the performance of
the proposed system for various computational requirements
and compared it with conventional pseudorandom resource
allocation. Simulation results show that the proposed opti-
mization algorithm provides up to 41% higher computational
capacity than pseudorandom resource allocation under the
same budget. Finally, we have outlined the potential impor-
tance of MEC optimization for the future development of AI,
blockchain and 6G technologies.
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