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ABSTRACT Organic shales usually present significant heterogeneities in rock textures and reservoir proper-
ties due to differing kerogen contents and morphologies, subsequently impacting shale elastic properties and
acoustic responses. Numerical upscaling of digital organic shales to evaluate effective elastic properties and
acoustic responses has important implications for source rocks and unconventional reservoir characteriza-
tion. We propose a modeling framework that includes the multiscale reconstruction of kerogen distributions,
the numerical modeling of effective elastic properties, and the acoustic response to evaluate the contribution
of organic matter. Based on digitized images of the microstructure of Longmaxi black shale samples obtained
by X-ray CT, the kerogen components are identified and decomposed into different-level slices in terms
of organic matter sizes and morphologies. Multiscale random media reconstruction is applied to these
kerogen slices, with synthetic kerogen distributions validated by original counterparts. A finite-element
method is used to model the effective elastic properties of digital organic shales, by which we investigate
the effect of different kerogen contents and organic matter morphologies. We use a rotated staggered-grid
finite-difference method to simulate ultrasonic wave propagation in digital organic shales to evaluate the
response of different kerogen contents and organic matter morphologies. Numerical examples show that the
multiscale randommediamethod can be applicable to natural organic shales for the reconstruction of kerogen
distributions. The elastic properties mainly depend on kerogen contents, with less influence by organicmatter
morphologies. The ultrasonic scattering effects become stronger for higher kerogen contents with smaller
rounding coefficients. Our results confirm the applicability of the proposed modeling framework to support
unconventional reservoir characterization. The purpose of this study is to provide the possibility of indicating
the sweet point of shale.

INDEX TERMS Digital organic shales, effective elastic properties, kerogen contents, multiscale reconstruc-
tions, organic matter morphologies, ultrasonic responses.

I. INTRODUCTION
As potential unconventional resources, organic shales have
been extensively studied in the last decade. The character-
ization of shale properties, particularly kerogen abundance
and type, is an important part of resource assessment [1].
However, due to the limited investigations of organic-rich
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samples, the dynamic and elastic behavior of organic matter
is a long-standing problem in geophysics [2]. Rock physics
models facilitate the interpretation of sonic measurements
and seismic responses for organic shales. Digital organic
shale images are used to digitize the pores and minerals of
organic shale and then carry out numerical simulations to
obtain the properties of the rock, such as the elastic modu-
lus. The workflow mainly includes the following steps [3]:
(a) digital imaging of rocks (e.g., high-resolution 3D CT
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scanning) to resolve their microstructure; (b) separation of the
pores and minerals; and (c) simulation of physical processes
in themicrostructural image to determine their effective prop-
erties. With digital organic shales, the aim of this study is to
reconstruct the distribution of kerogen grains and model their
effective elastic properties, followed by simulating ultrasonic
responses to evaluate the contribution of different kerogen
contents and grain morphologies [2].

Organic matter needs to be well understood in terms of
maturity levels, morphologies, and distribution features [4].
The former has been extensively addressed, and three matu-
rity levels [5], [6] significantly affect the effective elastic
properties of organic shales [1]. The latter two should not be
neglected in the evaluation of either shale-gas rock properties
or effective elastic properties. Analyses by Zargari et al. [7]
and Yenugu [8] imply that the physical and chemical pro-
cesses of kerogenmaturation strongly impact themorphology
and distribution of organic matter. Based on petrographic
and SEM observations, organic matter is generally irregu-
lar in morphology, multi-sized, and randomly distributed in
shales. In particular, the distribution of organic matter plays
an important role in determining the elastic properties of
organic-rich shales, which in turn affects production-induced
stress changes [9]. Therefore, it is critical to integrate the
morphology and distribution of organic matter into organic
rock physics models.

Multiscale reconstruction of source rock heterogeneities
provides an effective means to predict the spatial distribu-
tion of organic matter based on cores from several wells.
The literature abounds with works aimed at the core-scale
reconstruction of brittle minerals and pore structures of shales
but is rarely dedicated to organic matter. The reconstruc-
tion methods commonly used include truncated Gaussian
random media, simulated annealing, sequential indicator
simulation, multiple-point statistics, and various hybridmeth-
ods [10]–[14]. A comprehensive review of core-scale numer-
ical reconstruction methods with detailed applications can
be found in Ji et al. [15]. The most typical algorithms of
object-based techniques result from random media theory
described by mathematical tools such as autocorrelation
functions and power spectral density functions [16]–[22].
However, these methods are only suitable for a single-scale
or single-component reconstruction of digital cores and are
less accurate for strongly heterogeneous shales. Based on the
random distribution of organic matter in a petrographic slice
of digital core, we propose a multiscale random media recon-
struction of kerogen distribution by decomposing organic
matter into individual single-scale components in terms of
their sizes and morphologies, followed by single-scale ran-
dom media reconstruction and composition.

The effective elastic properties of organic shales have been
extensively studied by differentmethods, for example, analyt-
ical models [23] based on effective medium theory, the mod-
ified Backus averaging method [5], the Hashin-Shtrikman
lower-bound model [24], the hybrid approach of Backus
averaging, Krief/Gassmann models [25], [26], the solid

substitution model [27], [28], the rock-physics template
to correlate kerogen maturation and elastic behaviors of
shale [1], and rock-physics modeling of elastic properties
for prestressed organic shales [29]. The analytical model
for effective elastic properties is only applicable to simple
media. It is difficult to solve the effective elastic proper-
ties of rock components with arbitrary shapes. Numerical
methods are universal techniques to model complex media.
Elastic numerical modeling has been widely used for digital
cores [3], [30]–[34]. Substantial progress has been made in
the numerical modeling of kerogen contents. However, few
studies have investigated the effect of the morphology and
distribution of organic matter. For general applicability to
complex organic shales in this study, a finite-element (FE)
method is used to estimate the effective elastic properties
from a heterogeneous digital core, with particular attention
given to the distinction of elastic responses of different
morphologies and distributions of organic matter. The elastic
model allows its physical properties to vary laterally and
vertically, thereby mapping heterogeneous rock properties in
detail.

The ultrasonic response of brittle minerals and pore struc-
tures has been extensively addressed in numerical simula-
tions, but with no publications relevant to organic matter,
the effect of organic matter content, shape and distribution
on the ultrasonic response is lacking. Short-wavelength wave
scattering has long been the focus of geophysicists [35]–[37].
The scattering effect of small-scale heterogeneities called
coda [35], [38] has been widely used to analyze the inho-
mogeneous scale in the lithosphere [39], [40]. Ultrasonic
wave propagation in heterogeneous porous rocks is an
extremely complex process. Laboratory ultrasonic measure-
ments provide data on the interaction between ultrasonic
waves and small-scale random heterogeneities. Numerical
simulation of the ultrasonic response of digital cores enables
insights into the effect of microstructures [41]–[46]. Digi-
tal core technologies can capture mineral components and
microstructures at a micrometer resolution, making it possi-
ble to simulate wave propagation in authentic heterogeneous
rocks [28], [34]. Several key issues challenge such numer-
ical simulations, such as digital imaging of heterogeneities,
estimation of effective elastic constants, numerical dispersion
at high frequencies, and strong heterogeneities. This study
applies a rotated staggered-grid (RSG) finite-difference (FD)
method [47], [48] of Biot’s poroelastic equations to simu-
late ultrasonic wave propagation in digital organic shales,
especially highlighting the ultrasonic scattering of kerogen
contents and their morphologies. The RSG-FD method,
implemented by eight-order (for spatial derivatives) and
two-order (for time derivatives) FD operators, can improve
numerical stabilities and accuracies for high frequencies and
strong heterogeneities because no averaging of elastic moduli
is required in an elementary cell. To enable a controllable
absorbing boundary for numerical simulations at the core
scale, we use an unsplit convolutional perfectly matched
layer (CPML) absorbing boundary [49], [50].
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The paper is organized as follows: first, a core-scale recon-
struction of kerogen distributions is conducted by amultiscale
random media method for a group of digital shale cores with
different kerogen contents and morphologies. In particular,
single-scale decomposition and multiscale composition of
organic matter is illustrated in detail. Then, FE numerical
modeling of effective elastic properties is implemented for
digital organic shales by focusing on elastic responses to the
content and morphology of organic matter. We next apply
the RSG-FD numerical simulation of Biot’s poroelastic equa-
tions to ultrasonic wave propagation in digital organic shales
followed by a coda analysis of ultrasonic scattering with
kerogen contents and their morphologies.

II. MULTISCALE RECONSTRUCTION OF KEROGEN
DISTRIBUTIONS
Organic shales contain inorganic and organic components.
The former includes rigid grains of quartz and calcite and
ductile grains of clay typically undergoing initial sedimen-
tation, dehydration, compaction, and cementation, whereas
the latter involves complex physical and chemical changes
along with the sedimentation of fine-grained inorganic parti-
cles. Therefore, the size, density, and morphology of organic
matter is distributed heterogeneously, even inside the same
sedimentary facies. Reconstructing the spatial distribution
of organic matter using core samples from different wells
plays an important role in determining development schemes.
In this section, we take the Longmaxi organic shale as an
example to demonstrate the digital petrography, distribution
characteristics, and detailed reconstruction of organic matter.

A. DIGITAL CORE OF THE LONGMAXI FORMATION SHALE
Black organic shales from the lower Silurian Longmaxi For-
mation in Jiaoshiba Town in the eastern Sichuan fold belt
have thick reservoirs, dense distributions, and rich organic
matter and have supported the main shale-gas exploration
and development blocks in China. Figure 1 shows a shale
sample taken from an outcrop in this area. Rock physics
experiments show that total organic carbon (TOC) in black
shale has an average content of 2.18%. The main brittle
minerals are quartz (average content of more than 45%) and
feldspar [51], [52].

With an 800 µm diameter core, we reconstructed a dig-
ital core with 0.65 µm pixels based on X-ray fluores-
cence computed tomography. Figure 2a shows the resulting
high-resolution 3D image chosen at the center of the core
sample (size of 390µm × 390µm × 390µm). It consists
of 3.2 million slices with a total of 600 × 600 × 600 pixels.
Pixel colors indicate the X-ray absorbability of varying com-
ponents, with red to green indicating small to large absorption
coefficients. Figure 2b is a 2D slice in the xy-direction.
Various minerals, pores/fractures, and kerogens are clearly
identified in local amplification (see Figure 2c) due to absorp-
tion differences. The higher the absorptivity is, the greater the
grayscale value is; white represents pyrites with the highest
absorptivity, black indicates pores/fractures with the lowest

FIGURE 1. Longmaxi Formation shale sample from an outcrop in
Jiaoshiba town, Chongqing city.

FIGURE 2. Reconstructed 3D image of the Longmaxi shale core (a) and its
2D slice in the xy-direction (b) with an enlarged display (c) of the square.

absorptivity, and gray denotes kerogens and other minerals.
Table 1 shows the absorptivity of minerals in the core sample.

B. MULTI-COMPONENT AND MULTISCALE
DECOMPOSITION
Various components, such as brittle minerals, pores, and
kerogens, vary widely in their morphological characteris-
tics as well as in their sizes, which presents an irregular
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TABLE 1. Absorptive capacities of X-rays of minerals at 20 keV.

distribution. Such strong heterogeneities are difficult to
model using single-scale and single-component methods.
As shown in Figure 2, the kerogen distribution is extracted
by a multi-threshold segmentation and then decomposed
into different-scale components of size. A multiscale ran-
dom method is proposed to mathematically reconstruct the
kerogen distribution of different scales. This reconstruction
scheme provides a potential application; that is, kerogen dis-
tributions can be modeled for individual wells and interpo-
lated under the constraint of sedimentary microfacies to build
a regional distribution for target formations.

Based on the absorptivity of different components, we can
implement the multi-threshold segmentation of digital core
images. The basic idea of segmentation [2], [53] is to divide
a grayscale histogram into different categories through mul-
tiple thresholds. The optimal segmentation threshold can
be obtained by maximizing the interclass or minimizing
the intraclass variance of categories. Figure 3 displays 2D
slices of the Longmaxi-shale digital image segmented by the
multi-thresholdmethod. Themajor components can be classi-
fied into four types: Type 1 (pores with a content of 5.69%),
Type 2 (brittle minerals with a content of 25.53%), Type 3
(background media with a content of 61.49%), and Type 4
(kerogens with a content of 7.29%), with each type exhibiting
obvious heterogeneity in size and morphology. We decom-
pose the kerogen type into three single-scale slices according
to its geometric scale, as shown in Figure 4, accounting for
3.58%, 2.22%, and 1.49%, respectively. The red spots denote
kerogens, light blue denotes mineral type 2, gray denotes
mineral type 3, and dark blue denotes pyrite. In particular,
the large-scale kerogen distribution is nonuniform in mor-
phology and presents a hollow structure due to the existence
of pores.

C. MULTISCALE RANDOM MEDIA RECONSTRUCTION
The multiscale random media reconstruction of kerogens
consists of reconstructing individual single-scale components
and then synthesizing them in terms of their proportions by
the following equation:

KEROGEN =
∑

αiAi, i = 1, 2, 3, (1)

where Ai and αi are the reconstructed counterpart and its
proportion ratio of the ith scale component, respectively. The
media reconstruction of each scale component requires three
parameters: the autocorrelation lengths a and b in the hori-
zontal and vertical directions and the rounding coefficient n.
These parameters need to be estimated carefully to ensure that
the average size and roughness of reconstructed kerogens can
approximate those of original kerogens. In this paper, we use
an intermixed autocorrelation function of n = 0.6, 0.7, and

FIGURE 3. 2D slices of the major components in Longmaxi shale in
the xy-direction: digital core (a), pores (b), kerogens (c), and brittle
minerals (d).

0.8 to model large-, middle-, and small-scale kerogen com-
ponents, respectively.

Figure 5 shows the reconstructed kerogens for three scales
of components, as shown in Figure 4, using different media
parameters. The red spots denote kerogens, light blue denotes
mineral type 2, gray denotes mineral type 3, and dark blue
denotes pyrite. The reconstructed middle- and small-scale
kerogen distributions agree well with the corresponding orig-
inal distributions shown in Figures 4b and 4c. Small dis-
crepancies in contrast to Figure 4a, however, are observed
in the reconstructed large-scale kerogen distribution. This is
because large-scale kerogens are usually distributed along
pores and therefore present specificmorphologies. Themedia
reconstruction of kerogen distributions can be validated by
subsequent correlation analyses.

D. CORRELATION ANALYSES
The following power-spectrum function is often used to
describe random reconstruction media:

S (f ) = e−k|f |, (2)

where f is the frequency and k(0 < k < 1) indicates the size
of medium particles. Large values of k describe large parti-
cles, with the corresponding power-spectrum curves decay-
ing rapidly. The power-spectrum density of a signal can be
obtained by its autocorrelation function as follows:

R (τ ) =
∫
+∞

−∞

exp (−k |f |) exp (i2π f τ) df

=
2k

k2 + 4π2τ 2
, (3)

where τ is the position difference in the spatial domain.
Autocorrelation is defined as the Pearson correlation [54]
of two random processes in statistics. Compared to the term
4π2τ 2 (τ 6= 0), the term k2 is very small since 0 < k < 1
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FIGURE 4. Multiscale decomposition of kerogens: large scale (a), middle
scale (b), and small scale (c). The red spots denote kerogens, light blue
denotes mineral type 2, gray denotes mineral type 3, and dark blue
denotes pyrite.

and can be neglected. We have the following equation:

R (τ ) =
k

2π2τ 2
. (4)

k increases with increasing particle size, with the correspond-
ing R (τ ) varying relatively slowly.
With the autocorrelation function curve R (τ ), we can

determine a characteristic parameter that is defined as the
effective width of the primary peak at the R (τ ) value when it

FIGURE 5. Reconstructed kerogen distributions for three scales of
components: large scale (a), middle scale (b), and small scale (c) using an
intermixed autocorrelation function with different media parameters. The
red spots denote kerogens, light blue denotes mineral type 2, gray
denotes mineral type 3, and dark blue denotes pyrite.

is reduced to 1/e. Figure 6 compares the R (τ ) curves at three
scales of original and reconstructed kerogens. In general,
the correlation of two signals is defined as strong correlation
by their correlation coefficient greater than 0.8, weak corre-
lation by the correlation coefficient between 0.3 and 0.8, and
irrelevant by the correlation coefficient below 0.3. From Fig-
ure 6, we see that both the original and reconstructed kerogens
present strong correlations for all scales, with effective width
errors (EWEs) of 0.004, 0.002, and 0.005, respectively.
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FIGURE 6. Autocorrelation function curves of original and reconstructed
kerogens at large (a), middle (b), and small (c) scales.

The reconstructed kerogens at three scales are synthesized
in terms of their proportions using equation (1). The resulting
kerogen digital core is shown in Figure 7 with comparison to
the original. Similarly, the red spots denote kerogens, light
blue denotes mineral type 2, gray denotes mineral type 3, and
dark blue denotes pyrite. Both seem to have some discrep-
ancies because of the error in the rounding coefficient used
to model the morphology of kerogen particles. To measure
their discrepancy, we calculate the autocorrelation function
curve of the original and synthesized kerogen distributions,
as shown in Figure 8. We see that the kerogen slice recon-
structed by the multiscale method with EWE= 0.07 is much
better than that reconstructed by the conventional single-scale
method with EWE = 0.76. Therefore, the multiscale media
method is an effective tool to reconstruct the distribution and
morphology of heterogeneous kerogens.

III. ELASTIC MODULI MODELING OF ORGANIC MATTER
The effective elastic property of organic shales is essen-
tial to interpret sonic measurements and seismic responses

FIGURE 7. Comparison of original (a) and reconstructed (b) kerogen
slices.

for identifying sweet spots and characterizing source rocks.
Kerogen contents and shapes affect the effective elasticity
of organic shales. In this section, we first validate the FE
numerical method by analytical models for elastic modulus
modeling. Then, a comprehensive numerical investigation of
effective elastic properties is conducted for shale samples
with different contents and morphologies of organic matter.

A. ELASTIC PROPERTIES OF DIFFERENT MINERAL PHASES
IN THE LONGMAXI SHALE
Based on the absorption of different mineral phases listed
in Table 1, each pixel in the digital image of the Long-
maxi shale can be classified as one mineral phase with
specific values of equivalent bulk moduli (K ) and shear
moduli (G). Among the four types of mineral phases in the
Longmaxi-shale digital image shown in Figure 3, Type 2
(brittle minerals) and Type 3 (background media) are domi-
nated by quartz and clay, respectively. Pyrite is taken as Type
5 because of its very special elastic properties.

Based on the percentage of minerals inside a specific
mineral phase, we can calculate its equivalent values of K
and G by the average modulus estimation [55]. For example,
the proportions of quartz, kaolinite, and montmorillonite in
Type 2 are ϕ1 = 6%, ϕ2 = 92%, and ϕ3 = 2%,, respectively.
The bulk modulus (KM2 ) for Type 2 can be calculated as
follows:

KM2 = K1 × ϕ1 + K2 × ϕ2 + K3 × ϕ3 = 34.15GPa, (5)
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FIGURE 8. Comparison of autocorrelation function curves for original and
reconstructed kerogens by multiscale and single-scale random media
methods.

where K1 = 1.5GPa, K2 = 37GPa, and K3 = 1.2GPa
represent the bulkmoduli of kaolinite, quartz, andmontmoril-
lonite, respectively [56]. Likewise, the shear moduli for Type
2 can be computed as GM2 = 7.6GPa. For Type 3, the bulk
and shear moduli can be obtained in the same way, giving
KM3 = 66.14GPa and GM3 = 34.48GPa. The equivalent
volume moduli K , shear moduli G, and densities of all the
types are summarized in Table 2.

TABLE 2. Equivalent bulk moduli K, shear moduli G, and density ρ of all
the types (a Simmons and Birch [57]; b Blangy [58]; c Zhao et al. [1]).

B. VALIDATION OF FE NUMERICAL MODELING BY
ANALYTICAL MODELS
Two solid substitution models are used to compare with FE
numerical modeling. One model [59] (called the C&S model
in this study) is based on the generalization of Gassmann
equations for porous media saturated with a solid mate-
rial, which assumes that the rock matrix is a homogeneous
isotropic medium. The second model [60] (called the S&M
model in this study) extends the C&Smodel to heterogeneous
media by using reciprocity. Both models have been applied to
study the effect of kerogen contents on the elastic properties
of organic shales [28].

Figure 9 shows four kerogen models generated by random
media using the rounding coefficient n = 0.6. The kerogen

FIGURE 9. Four kerogen models generated by random media using the
rounding coefficient n = 0.6. The kerogen content accounts for 1% (a),
3% (b), 5% (c), and 8% (d).

FIGURE 10. Comparison of effective bulk (a) and shear (b) moduli versus
kerogen contents by FEM, C&S, and S& M.

contents account for 1%, 3%, 5%, and 8%, respectively. The
resultant equivalent elastic properties by FEM, C&S, and
S&M are compared in Figure 10. We see that the FE numeri-
cal results agree well with those of the S&M model, whereas
the modeling accuracies of the C&S model are gradually
reduced with increasing heterogeneities in the distribution of
kerogen matter. The modeling accuracy of the S&M is con-
trolled by two parameters that represent the effects of kerogen
moduli on the saturated medium bulk and shear moduli. For
multiscale distributions or complex morphologies of kerogen
matter, these two parameters become unstable and reduce
the accuracy of S&M [28]. The FE numerical method is
universally valid for general applicability to complex organic
shales.

C. EFFECT OF KEROGEN CONTENTS ON EFFECTIVE
ELASTIC PROPERTIES
Digital core techniques facilitate the investigation of the influ-
ence of kerogen contents and other factors in a quantitative
and accurate way. We can build several kerogen models with
the same background elastic moduli but different kerogen
contents. As shown in Figure 11, the total volume of pores
and kerogens in the digital core is 9.43%. We gradually
filled some pores with kerogens to increase the kerogen
content from 0% to 9.43%, producing a group of samples with
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FIGURE 11. Digital core slices with kerogen contents of 1.99% (a), 2.99%
(b), 4% (c), 4.98% (d), 6% (e), 6.95% (f), 7.91% (g), and 9.43% (h).

FIGURE 12. Effective bulk (dots) and shear (asterisks) moduli of each
slice in Figures 11a-11h.

different kerogen contents. Figures 11a-11h show digital core
slices with kerogen contents of 1.99%, 2.99%, 4%, 4.98%,
6%, 6.95%, 7.91%, and 9.43%, respectively. The red spots
denote kerogens, light blue denotes mineral type 2, gray
denotes mineral type 3, and dark blue denotes pyrite.

The effect of kerogen contents on porosity can be
ignored [61], [62] because the correlation between porosity
and kerogens in shales is not obvious. The bulk and shear
moduli of mature kerogens that are used in this study are
Kk = 5.0GPa andGk = 3.5GPa, respectively [1]. FE numer-
ical modeling is conducted for the effective elastic moduli
of each slice in Figures 11a-11h, with the results shown
in Figure 12. The effective bulk (dots) and shear (asterisks)
moduli decrease with increasing kerogen contents because of
the much smaller moduli of kerogens than minerals. There-
fore, the increase in kerogen content causes a decrease in the
effective elastic moduli of organic shales.

D. EFFECT OF KEROGEN MORPHOLOGIES ON EFFECTIVE
ELASTIC PROPERTIES
The elastic properties of organic shales may also be affected
by kerogen shapes. Figure 13 shows several kerogen models
with the same background elastic moduli and kerogen content
(7.4%) but different kerogen morphologies that are generated
by random media with different values of the rounding coef-
ficient n. The rounding coefficient gradually increases from
0.5 to 1.0, as shown in Figures 13a-13f. Similarly, the red
spots denote kerogens, light blue denotes mineral type 2,
gray denotes mineral type 3, and dark blue denotes pyrite.

FIGURE 13. Digital core slices with different kerogen shapes generated
by different rounding coefficients of 0.5 (a), 0.6 (b), 0.7 (c), 0.8 (d), 0.9 (e),
and 1.0 (f).

FIGURE 14. Effective bulk (dots) and shear (asterisks) moduli of each
slice in Figures 13a-13f.

FIGURE 15. A digital core slice 390µm× 390µm in size that contains
600× 600 pixels. The slice represents porous media, but each pixel is
actually a single-phase medium.

FE numerical modeling is conducted for the effective elastic
moduli of each slice, with the results shown in Figure 14.
With increasing coefficients, kerogen particles tend to be
smooth at the edge, and the corresponding bulk (dots) and
shear (asterisks) moduli increase. In general, rough kerogen
particles are easier to compress than round particles and have
smaller elastic moduli. Compared with Figure 12, the effect
of kerogen shapes is much less than that of kerogen contents.

IV. ULTRASONIC SIMULATION OF ORGANIC MATTER
The ultrasonic response of organic matter provides insight
into the geophysical prediction of sweet spots. It is also
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FIGURE 16. The resulting effective bulk (a), shear moduli (b) and density
(c) for the digital core slice shown in Figure 15.

essential to interpret the heterogeneity of organic shales in
terms of their scattering characteristics. Laboratory ultrasonic
measurements illustrate that wave propagation in organic
shales is an extremely complex process. The interaction
between waves and microstructures as small-scale random
heterogeneities involves strong scattering. Numerical simu-
lation of ultrasonic responses in organic shales provides a
supplementary means to interpret sonic measurements.

Numerical simulation of elastic wave propagation in shales
faces several major challenges. First, unlike sandstones,
shales are characterized by compliant microstructures (e.g.,
lenticular kerogens, bedding laminae, clay aggregates, and
microcracks), which are difficult to capture but significantly
affect wave propagation. We need higher-frequency waves
to detect such heterogeneities, which challenge the accuracy
and stability of numerical algorithms. Second, digital cores
only provide an image of the gray distribution of microstruc-
tures (pores and minerals). Numerical simulation needs a

FIGURE 17. Snapshot (a) and waveform at receiver (b) for the digital core
slice shown in Figure 15.

reasonable digital porous model with poroelastic properties
reflecting the characteristics of true rocks. Megahertz ultra-
sound causes strong boundary reflections on the side ends of a
core, which seriously interfere with ultrasonic coda and affect
the accuracy of scattering analyses. In this section, we apply
the RSG-FD numerical simulation of Biot’s poroelastic equa-
tions (see Appendix B) to ultrasonic wave propagation in dig-
ital organic shales, followed by a coda analysis of ultrasonic
scatterings with kerogen contents and morphologies.

A. DOUBLE-PHASE MEDIUM MODEL
Figure 15 shows a digital core slice 390µm × 390µm in
size that contains 600 × 600 pixels. The red spots denote
kerogens, light blue denotes mineral type 2, gray denotes
mineral type 3, and dark blue denotes pyrite. The slice repre-
sents porous media, but each pixel is actually a single-phase
medium, either a solid (quartz grains) or a pores (interstitial
clays/fluids). Tomake Biot’s poroelastic equations applicable
for numerical simulation, we need to build a digital core
model as a double-phase medium. Based on the concept of
a real reservoir of oil/gas, the fluid always exists as a mixture
with quartz/clays rather than a pure fluid pool. Therefore,
in this study, the fluid (oil) is assumed to be uniformly dis-
tributed in the whole background of a digital core to make
the model a heterogeneous double-phase medium. That is,
each pixel, as a mixture of oil with either quartz grains or
interstitial clays residing in pores, is a double-phase medium
and has both solid and liquid parameters.

We need to define reasonable physical properties for each
pixel. According to the proportion of minerals inside a pixel,
the average moduli can be calculated by FE modeling using
the basic rock physical parameters, such as bulkmoduli, shear
moduli, and densities listed in Table 2. The resulting effective
elastic moduli and density are shown in Figure 16. In the
numerical simulation, the grid interval1x = 1z = 0.65µm,
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FIGURE 18. L/a-ka scatter mode and the distribution of digital core
scatter intensity.

FIGURE 19. The waveforms at the receiver indicated by the triangle (left)
and wavefield snapshots at 0.045µs (right) for kerogen contents of 1.99%
(a), 2.99% (b), 4% (c), and 7.91% (d).

time interval1t = 0.00000015 ms, time length T= 80001t,
and P-wave velocity V = 4506 m/s. The excitation source
(indicated by an asterisk), as shown in Figure 17a, is located at
x= 3001x and z= 301z in the slice. The receiver (indicated
by a triangle) is located at x= 3001x and z= 4301z. There is
a clear onset of maximum amplitude as direct waves occur in

FIGURE 20. The waveforms at the receiver indicated by the triangle (left)
and wavefield snapshots at 0.045µs (right) for rounding coefficients
of 0.5 (a), 0.6 (b), 0.7 (c), and 1.0 (d).

FIGURE 21. Kerogen content (a) and rounding coefficient (b) versus Q−1.

the snapshot (Figure 17a) andwaveforms occur at the receiver
(Figure 17b).Wave scattering as a superposition of incoherent
high-frequency scattered waves exhibits strong attenuation
due to small-scale random heterogeneities. Figure 17 demon-
strates the formation of coda as continuous waves in the tail
portion of wave trains.

The digital core heterogeneity characteristics and scatter-
ing intensity can be represented by the L/a-ka distribution
diagram (Figure 18), where the average rock heterogeneity
characteristic length a is 3.88µm, the ultrasonic wavenumber
k is 1.12 × 106 m−1, and the wave propagation distance L
is 2.6 × 10−4 m. It is assumed that the excitation ultrasonic
frequency is 800 MHz. Figure 18 reflects the correlation
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between the medium inhomogeneous scale and the wave-
length scale.

B. EFFECT OF KEROGEN CONTENTS ON ULTRASONIC
RESPONSES
The RSG-FD numerical method of Biot’s poroelastic equa-
tions described in Appendix B is conducted to simulate ultra-
sonic wave propagation in the digital core slices, as shown
in Figures 11a-11h. Figure 19 shows the waveforms at the
receiver indicated by the triangle (left) and wavefield snap-
shots at 0.045 µs (right) for kerogen contents of 1.99% (a),
2.99% (b), 4% (c), and 7.91% (d). The scattering effect
becomes stronger with increasing kerogen content, which
reduces the energy of coherent wavefields. The attenuation
is stronger at high kerogen contents, as shown in Figure 21a,
since the elastic modulus of kerogen is much smaller than that
of the mineral.

C. EFFECT OF KEROGEN MORPHOLOGIES ON
ULTRASONIC RESPONSES
In terms of the effects of the kerogenmorphologies, Figure 20
shows the waveforms at the receiver indicated by the tri-
angle (left) and wavefield snapshots at 0.045 µs (right) for
rounding coefficients of 0.5 (a), 0.6 (b), 0.7 (c), and 1.0 (d).
The scattering effect becomes weaker with increasing round-
ing coefficients. The attenuation is stronger when rounding
coefficients are smaller, as shown in Figure 21b, because
when the rounding coefficient is small, the particle edges are
rough and the particles are relatively dispersed, the kerogen is
difficult to compress due to the effects related to the Poisson
ratio.

V. CONCLUSION
Organic shales usually exhibit significant heterogeneity as a
result of multiscale components, which also affect their elas-
tic properties and acoustic response. We propose a multiscale
random media method to reconstruct kerogen distributions
for a group of digital shale cores with different kerogen
contents and morphologies and model their effective elastic
properties, followed by a simulation of acoustic responses.
The main conclusions are as follows:

1) The reconstruction of the spatial distribution of organic
matter plays an important role in determining devel-
opment schemes. The size, density, and morphology
of organic matter are distributed heterogeneously, even
inside the same sedimentary facies, which makes the
conventional single-scale method difficult to apply.
The multiscale method can not only describe the
microscopic heterogeneity of kerogens more precisely
but also provide the feasibility to study the seismic
response of individual shale components. Therefore,
multiscale media reconstruction is an effective method
to reconstruct the distribution and morphology of het-
erogeneous kerogens.

2) We validate that the finite-element method is univer-
sally valid for general elastic modulus modeling of
complex organic shales. Kerogen contents and mor-
phologies significantly influence the effective elasticity
of organic shales. Numerical investigations of effective
elastic properties conducted for shale samples with
different contents and morphologies of organic mat-
ter show that the increase in kerogen content and the
decrease in the rounding coefficient n, which deter-
mines the morphology parameter of kerogens, leads to
a decrease in the elastic modulus of organic shale.

3) We conduct a numerical simulation of ultrasonic
responses by applying the rotated staggered-grid finite
difference method to Biot’s poroelastic equations, fol-
lowed by a coda analysis of ultrasonic scatterings.
The ultrasonic responses are mainly affected by kero-
gen contents, with less influence by organic matter
morphologies. The scattering effects become stronger
for higher kerogen contents with smaller rounding
coefficients.

APPENDIX A
The geometry of rock particles formed in different sedimen-
tary environments varies greatly, and the conventional ran-
dom medium model cannot adapt to this multiscale situation.
Xi and Yao [21] propose an intermixed randommedia model,
and the autocorrelation function is as follows:

ϕ (x, z) = exp

[
−

(
x2

a2
+
z2

b2

)n]
, (A-1)

where a and b are the autocorrelation lengths in the x and
z directions, respectively, and n is the rounding coefficient.
If the values of a and b are fixed, the value of n determines the
attenuation degree of ϕ with the change of x and z. The larger
n is, the smoother the boundary of the reconstructed rock
particle is. Conversely, the smaller n is, the more irregular the
boundary of the reconstructed rock particle is. The average
particle size can be controlled by fixing the n value and
changing a and b. In particular, the intermixed model degen-
erates into exponential type and Gaussian type when n = 0.5
and 1, respectively. Therefore, a and b reflect the average
scale of particles in the horizontal and vertical directions, and
the rounding coefficient n controls the roughness of particle
edges.

The direction factor θ ∈ [0, 2π) is introduced into the
intermixed randommediamodel to obtain a vector intermixed
random media model [63], whose autocorrelation function is
as follows:

ϕ (x, z)

=exp

{
−

[
(x cosθ + z sinθ)2

a2
+
(x sinθ − z cosθ)2

b2

]n}
.

(A-2)

The vector model degenerates into an intermixedmodel when
θ = 0.
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APPENDIX B
Biot’s equation for isotropic porous media saturated with a
viscous fluid is as follows [64], [65]:{
ρbüi + ρf ẅi=

(
λ+ µ+ α2M

)
uj,ji + µui,jj + αMwj,ji

ρf üi + ρmẅi + bẇi=M (αuj,ji + wj,ji),

(B-1)

where ui is the displacement component of the solid phase,
Ui is the displacement component of the fluid phase, λ and µ
are the Lamé constants of the drained matrix, and the quantity
ρb = (1− φ) ρs + φρf is the composite density, with ρs and
ρf being the solid and fluid densities, respectively. φ is the
porosity. Darcy’s law defines the movement of viscous fluids
of viscosity η in the frame of permeability χ , and b = η/χ .
ρm = τρf /φ, with τ being the tortuosity:

α = 1−
Km
Ks
, Km = λ+

2
3
µ

M =
Ks

1− φ − Km
Ks
+ φ Ks

Kf

wi = φ (Ui − ui) ,

(B-2)

where Ks and Kf are the solid and fluid bulk moduli, respec-
tively.

The discrete format of each physical quantity in the L-order
rotated staggered-grid FD is as follows [66]:

∂νi

∂x
|(x,z)

=

∑L/2

n=1

cn
21x

{
νi|
(
x+
(
n− 1

2

)
,z+

(
n− 1

2

))
+ νi|

(
x+
(
n− 1

2

)
,z−

(
n− 1

2

))−νi|(x−(n− 1
2

)
,z−

(
n− 1

2

))
−νi|

(
x−
(
n− 1

2

)
,z+

(
n− 1

2

))} , (B-3)

∂νi

∂z
|(x,z)

=

∑L/2

n=1

cn
21z

{
νi|
(
x+
(
n− 1

2

)
,z+

(
n− 1

2

))
− νi|

(
x+
(
n− 1

2

)
,z−

(
n− 1

2

)) − νi|(x−(n− 1
2

)
,z−

(
n− 1

2

))
+ νi|

(
x−
(
n− 1

2

)
,z+

(
n− 1

2

))} , (B-4)

∂qi
∂x
|(x,z)

=

∑L/2

n=1

cn
21x

{
qi|(x+(n− 1

2

)
,z+

(
n− 1

2

))
+ qi|(x+(n− 1

2

)
,z−

(
n− 1

2

)) − qi|(x−(n− 1
2

)
,z−

(
n− 1

2

))
− qi|(x−(n− 1

2

)
,z+

(
n− 1

2

))} , (B-5)

∂qi
∂z
|(x,z)

=

∑L/2

n=1

cn
21z

{
qi|(x+(n− 1

2

)
,z+

(
n− 1

2
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− qi|(x+(n− 1
2

)
,z−

(
n− 1

2
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2

)
,z−

(
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∂τij

∂x
|(x+ 1

2 ,z+
1
2 )

=

∑L/2

n=1

cn
21x

{
τij|(x+n,z+n) + τij|(x+n,z−(n−1))

− τij|(x−n,z−(n−1)) − τij|(x−n,z+n)
}
, (B-7)

∂τij

∂z
|(x+ 1

2 ,z+
1
2 )

=

∑L/2

n=1

cn
21z

{
τij|(x+n,z+n) − τij|(x+n,z−(n−1))

− τij|(x−n,z−(n−1)) + τij|(x−n,z+n)
}
, (B-8)

∂p
∂x
|(x+ 1

2 ,z+
1
2 )

=

∑L/2

n=1

cn
21x

{
p|(x+n,z+n) + p|(x+n,z−(n−1))

− p|(x−n,z−(n−1)) − p|(x−n,z+n)
}
, (B-9)

∂p
∂z
|(x+ 1

2 ,z+
1
2 )

=

∑L/2

n=1

cn
21z

{
p|(x+n,z+n) − p|(x+n,z−(n−1))

− p|(x−n,z−(n−1)) + p|(x−n,z+n)
}
, (B-10)

where cn is the difference coefficient.
The CPML formulas of the poroelastic equations are as

follows [66]:

ρν̇x = ρm

(
1
χx
∂xτxx + ψx,τxx +

1
χz
∂zτxz + ψz,τxz

)
+ ρf

(
1
χx
∂xp+ ψx,p

)
+ ρf bqx , (B-11)

ρν̇z= ρm

(
1
χx
∂xτxz + ψx,τxz +

1
χz
∂zτzz + ψz,τzz

)
+ ρf

(
1
χz
∂zp+ ψz,p

)
+ ρf bqz, (B-12)

ρq̇x =−ρf

(
1
χx
∂xτxx + ψx,τxx +

1
χz
∂zτxz + ψz,τxz

)
− ρb

(
1
χx
∂xp+ ψx,p

)
− ρbbqx , (B-13)

ρq̇z=−ρf

(
1
χx
∂xτxz + ψx,τxz +

1
χz
∂zτzz + ψz,τzz

)
− ρb

(
1
χz
∂zp+ ψz,p

)
− ρbbqz, (B-14)

τ̇xx = (λu + 2µ)
(

1
χx
∂xνx + ψx,νx

)
+βM

(
1
χx
∂xqx + ψx,qx

)
, (B-15)

τ̇zz= (λu + 2µ)
(

1
χz
∂zνz + ψz,νz

)
+βM

(
1
χz
∂zqz + ψz,qz

)
, (B-16)
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τ̇xz=µ

(
1
χz
∂zνx + ψz,νx +

1
χx
∂xνz + ψx,νz

)
, (B-17)

ṗ=−βM
(

1
χx
∂xνx + ψx,νx +

1
χz
∂zνz + ψz,νz

)
−M

(
1
χx
∂xqx + ψx,qx +

1
χz
∂zqz + ψz,qz

)
. (B-18)
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